51
|
Whittle RS, Diaz-Artiles A. Modeling individual differences in cardiovascular response to gravitational stress using a sensitivity analysis. J Appl Physiol (1985) 2021; 130:1983-2001. [PMID: 33914657 DOI: 10.1152/japplphysiol.00727.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human cardiovascular (CV) system elicits a physiological response to gravitational environments, with significant variation between different individuals. Computational modeling can predict CV response, however model complexity and variation of physiological parameters in a normal population makes it challenging to capture individual responses. We conducted a sensitivity analysis on an existing 21-compartment lumped-parameter hemodynamic model in a range of gravitational conditions to 1) investigate the influence of model parameters on a tilt test CV response and 2) to determine the subset of those parameters with the most influence on systemic physiological outcomes. A supine virtual subject was tilted to upright under the influence of a constant gravitational field ranging from 0 g to 1 g. The sensitivity analysis was conducted using a Latin hypercube sampling/partial rank correlation coefficient methodology with subsets of model parameters varied across a normal physiological range. Sensitivity was determined by variation in outcome measures including heart rate, stroke volume, central venous pressure, systemic blood pressures, and cardiac output. Results showed that model parameters related to the length, resistance, and compliance of the large veins and parameters related to right ventricular function have the most influence on model outcomes. For most outcome measures considered, parameters related to the heart are dominant. Results highlight which model parameters to accurately value in simulations of individual subjects' CV response to gravitational stress, improving the accuracy of predictions. Influential parameters remain largely similar across gravity levels, highlighting that accurate model fitting in 1 g can increase the accuracy of predictive responses in reduced gravity.NEW & NOTEWORTHY Computational modeling is used to predict cardiovascular responses to altered gravitational environments. However, considerable variation between subjects and model complexity makes accurate parameter assignment for individuals challenging. This computational effort studies sensitivity in cardiovascular model outcomes due to varying parameters across a normal physiological range. This allows determination of which parameters have the largest influence on outcomes, i.e., which parameters must be most carefully selected to give accurate predictions of individual responses.
Collapse
Affiliation(s)
- Richard S Whittle
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas
| | - Ana Diaz-Artiles
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas.,Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| |
Collapse
|
52
|
Macaulay TR, Peters BT, Wood SJ, Clément GR, Oddsson L, Bloomberg JJ. Developing Proprioceptive Countermeasures to Mitigate Postural and Locomotor Control Deficits After Long-Duration Spaceflight. Front Syst Neurosci 2021; 15:658985. [PMID: 33986648 PMCID: PMC8111171 DOI: 10.3389/fnsys.2021.658985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Astronauts experience post-flight disturbances in postural and locomotor control due to sensorimotor adaptations during spaceflight. These alterations may have adverse consequences if a rapid egress is required after landing. Although current exercise protocols can effectively mitigate cardiovascular and muscular deconditioning, the benefits to post-flight sensorimotor dysfunction are limited. Furthermore, some exercise capabilities like treadmill running are currently not feasible on exploration spaceflight vehicles. Thus, new in-flight operational countermeasures are needed to mitigate postural and locomotor control deficits after exploration missions. Data from spaceflight and from analog studies collectively suggest that body unloading decreases the utilization of proprioceptive input, and this adaptation strongly contributes to balance dysfunction after spaceflight. For example, on return to Earth, an astronaut's vestibular input may be compromised by adaptation to microgravity, but their proprioceptive input is compromised by body unloading. Since proprioceptive and tactile input are important for maintaining postural control, keeping these systems tuned to respond to upright balance challenges during flight may improve functional task performance after flight through dynamic reweighting of sensory input. Novel approaches are needed to compensate for the challenges of balance training in microgravity and must be tested in a body unloading environment such as head down bed rest. Here, we review insights from the literature and provide observations from our laboratory that could inform the development of an in-flight proprioceptive countermeasure.
Collapse
Affiliation(s)
| | | | - Scott J. Wood
- NASA Johnson Space Center, Houston, TX, United States
| | | | - Lars Oddsson
- RxFunction Inc., Eden Prairie, MN, United States
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
- Recaniti School for Community Health Professions, Ben Gurion University of the Negev, Beersheba, Israel
| | | |
Collapse
|
53
|
Effect of 5-day dry immersion on the human foot morphology evaluated by computer plantography and soft tissues stiffness measuring. Sci Rep 2021; 11:6232. [PMID: 33737674 PMCID: PMC7973787 DOI: 10.1038/s41598-021-85771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/03/2021] [Indexed: 11/08/2022] Open
Abstract
16 participants have been subjected to Dry Immersion model (DI) for 5 days. DI reproduces the space flight factors such as lack of support, mechanical and axial unloading, physical inactivity, elimination of vertical vascular gradient. Long-term bed rest is also associated with similar factors, so the results of the study may be useful for clinical medicine. Computer plantography and measuring the stiffness of the soft tissues of the foot and superficial muscles of the shin (mm. tibialis anterior and peroneus longus) were performed twice before DI exposure, on the 2nd and 4th days of DI exposure, as well as on the 2nd day of the recovery period. DI exposure effects the parameters under study in two ways: by raising the longitudinal arch and by flattening the transverse arch, which is accompanied by a decrease in the soft tissues stiffness of the foot and superficial muscles of the shin. The work reveals the phenomenon of compensating the longitudinal arch state by changing the characteristics that reflect the transverse arch state. The results of the study for the first time demonstrate the correlation of the foot morphological characteristics with a decrease in stiffness of mm. peroneus longus and tibialis anterior.
Collapse
|
54
|
Nutritional Orthopedics and Space Nutrition as Two Sides of the Same Coin: A Scoping Review. Nutrients 2021; 13:nu13020483. [PMID: 33535596 PMCID: PMC7912880 DOI: 10.3390/nu13020483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/19/2023] Open
Abstract
Since the Moon landing, nutritional research has been charged with the task of guaranteeing human health in space. In addition, nutrition applied to Orthopedics has developed in recent years, driven by the need to improve the efficiency of the treatment path by enhancing the recovery after surgery. As a result, nutritional sciences have specialized into two distinct fields of research: Nutritional Orthopedics and Space Nutrition. The former primarily deals with the nutritional requirements of old patients in hospitals, whereas the latter focuses on the varied food challenges of space travelers heading to deep space. Although they may seem disconnected, they both investigate similar nutritional issues. This scoping review shows what these two disciplines have in common, highlighting the mutual features between (1) pre-operative vs. pre-launch nutritional programs, (2) hospital-based vs. space station nutritional issues, and (3) post-discharge vs. deep space nutritional resilience. PubMed and Google Scholar were used to collect documents published from 1950 to 2020, from which 44 references were selected on Nutritional Orthopedics and 44 on Space Nutrition. Both the orthopedic patient and the astronaut were found to suffer from food insecurity, malnutrition, musculoskeletal involution, flavor/pleasure issues, fluid shifts, metabolic stresses, and isolation/confinement. Both fields of research aid the planning of demand-driven food systems and advanced nutritional approaches, like tailored diets with nutrients of interest (e.g., vitamin D and calcium). The nutritional features of orthopedic patients on Earth and of astronauts in space are undeniably related. Consequently, it is important to initiate close collaborations between orthopedic nutritionists and space experts, with the musculoskeletal-related dedications playing as common fuel.
Collapse
|
55
|
Du J, Cui J, Yang J, Wang P, Zhang L, Luo B, Han B. Alterations in Cerebral Hemodynamics During Microgravity: A Literature Review. Med Sci Monit 2021; 27:e928108. [PMID: 33446627 PMCID: PMC7814510 DOI: 10.12659/msm.928108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Most reported neurological symptoms that happen after exposure to microgravity could be originated from alterations in cerebral hemodynamics. The complicated mechanisms involved in the process of hemodynamics and the disparate experimental protocols designed to study the process may have contributed to the discrepancies in results between studies and the lack of consensus among researchers. This literature review examines spaceflight and ground-based studies of cerebral hemodynamics and aims to summarize the underlying physiological mechanisms that are altered in cerebral hemodynamics during microgravity. We reviewed studies that were published before July 2020 and sought to provide a comprehensive summary of the physiological or pathological theories of hemodynamics and to arrive at firm conclusions from incongruous results that were reported in those related articles. We give plausible explanations of inconsistent results on factors including intracranial pressure, cerebral blood flow, and cerebrovascular autoregulation. Although there are no definitive data to confirm how cerebral hemodynamics changes during microgravity, every discrepancy in results was interpreted by existing theories, which were derived from physiological and pathological processes. We conclude that microgravity-induced alterations of hemodynamics at the brain level are multifaceted. Factors including duration, partial pressures of carbon dioxide, and individual adaptability contribute to this process and are unpredictable. With a growing understanding of this hemodynamics model, additional factors will likely be considered. Aiming for a full understanding of the physiological and/or pathological changes of hemodynamics will enable researchers to investigate its cellular and molecular mechanisms in future studies, which are desperately needed.
Collapse
Affiliation(s)
- Jichen Du
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| | - Jiangbo Cui
- Aerospace Clinic Academy, Peking University Health Science Center, Beijing, China (mainland)
| | - Jing Yang
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| | - Peifu Wang
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| | - Lvming Zhang
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| | - Bin Luo
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| | - Bailin Han
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| |
Collapse
|
56
|
Meigal AY, Tretjakova OG, Gerasimova-Meigal LI, Sayenko IV. Program of Seven 45-min Dry Immersion Sessions Improves Choice Reaction Time in Parkinson's Disease. Front Physiol 2021; 11:621198. [PMID: 33519524 PMCID: PMC7841462 DOI: 10.3389/fphys.2020.621198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/11/2020] [Indexed: 01/26/2023] Open
Abstract
The study hypothesis held that in subjects with Parkinson's disease (PD), the reaction time (RT) tests of the higher cognition demand would have more readily improved under the program of analog microgravity (μG) modeled with "dry" immersion (DI). To test this hypothesis, 10 subjects with PD have passed through a program of seven DI sessions (each 45 min long) within 25-30 days, with overall μG dose 5 1/4 h. Five patients were enrolled as controls, without DI (noDI group). Simple RT (SRT), disjunctive RT (DRT), and choice RT (CRT) were assessed in four study points: before the DI program (preDI), 1 day after the DI program (postDI), 2 weeks after the DI program (DI2w), and 2 months after the DI program (DI2m). The motor time (MT) was assessed with the tapping test (TT). Additionally, signal detection time (SDT) and central processing time (CPT) were extracted from the data. Before the program of DI, the RT tests are in accordance with their cognition load: SRT (284 ± 37 ms), DRT (338 ± 38 ms), and CRT (540 ± 156 ms). In accordance with the hypothesis, CRT and DRT have improved under DI by, respectively, 20 and 8% at the study point "DI2w," whereas SRT, SDT, and MT did not change (<5% in the preDI point, p > 0.05). Thus, the program of DI provoked RT improvement specifically in the cognitively loaded tasks, in a "dose of cognition-reaction" manner. The accuracy of reaction has changed in none of the RT tests. The neurophysiologic, hormonal/neuroendocrine, behavioral, neural plasticity, and acclimation mechanisms may have contributed to such a result.
Collapse
Affiliation(s)
- Alexander Yu. Meigal
- Laboratory of Novel Methods in Physiology, Institute of Higher Biomedical Technologies, Petrozavodsk State University, Petrozavodsk, Russia
| | - Olesya G. Tretjakova
- Laboratory of Novel Methods in Physiology, Institute of Higher Biomedical Technologies, Petrozavodsk State University, Petrozavodsk, Russia
| | - Liudmila I. Gerasimova-Meigal
- Laboratory of Novel Methods in Physiology, Institute of Higher Biomedical Technologies, Petrozavodsk State University, Petrozavodsk, Russia
| | - Irina V. Sayenko
- State Scientific Center, “Institute of Biomedical Problems,” Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
57
|
Solbiati S, Martin-Yebra A, Vaïda P, Caiani EG. Evaluation of Cardiac Circadian Rhythm Deconditioning Induced by 5-to-60 Days of Head-Down Bed Rest. Front Physiol 2021; 11:612188. [PMID: 33519517 PMCID: PMC7838678 DOI: 10.3389/fphys.2020.612188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Head-down tilt (HDT) bed rest elicits changes in cardiac circadian rhythms, generating possible adverse health outcomes such as increased arrhythmic risk. Our aim was to study the impact of HDT duration on the circadian rhythms of heart beat (RR) and ventricular repolarization (QTend) duration intervals from 24-h Holter ECG recordings acquired in 63 subjects during six different HDT bed rest campaigns of different duration (two 5-day, two 21-day, and two 60-day). Circadian rhythms of RR and QTend intervals series were evaluated by Cosinor analysis, resulting in a value of midline (MESOR), oscillation amplitude (OA) and acrophase (φ). In addition, the QTc (with Bazett correction) was computed, and day-time, night-time, maximum and minimum RR, QTend and QTc intervals were calculated. Statistical analysis was conducted, comparing: (1) the effects at 5 (HDT5), 21 (HDT21) and 58 (HDT58) days of HDT with baseline (PRE); (2) trends in recovery period at post-HDT epochs (R) in 5-day, 21-day, and 60-day HDT separately vs. PRE; (3) differences at R + 0 due to bed rest duration; (4) changes between the last HDT acquisition and the respective R + 0 in 5-day, 21-day, and 60-day HDT. During HDT, major changes were observed at HDT5, with increased RR and QTend intervals' MESOR, mostly related to day-time lengthening and increased minima, while the QTc shortened. Afterward, a progressive trend toward baseline values was observed with HDT progression. Additionally, the φ anticipated, and the OA was reduced during HDT, decreasing system's ability to react to incoming stimuli. Consequently, the restoration of the orthostatic position elicited the shortening of RR and QTend intervals together with QTc prolongation, notwithstanding the period spent in HDT. However, the magnitude of post-HDT changes, as well as the difference between the last HDT day and R + 0, showed a trend to increase with increasing HDT duration, and 5/7 days were not sufficient for recovering after 60-day HDT. Additionally, the φ postponed and the OA significantly increased at R + 0 compared to PRE after 5-day and 60-day HDT, possibly increasing the arrhythmic risk. These results provide evidence that continuous monitoring of astronauts' circadian rhythms, and further investigations on possible measures for counteracting the observed modifications, will be key for future missions including long periods of weightlessness and gravity transitions, for preserving astronauts' health and mission success.
Collapse
Affiliation(s)
- Sarah Solbiati
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,Institute of Electronics, Computer and Telecommunication Engineering, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Alba Martin-Yebra
- Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, BSICoS Group, Universidad de Zaragoza, Zaragoza, Spain
| | - Pierre Vaïda
- College of Health Sciences, University of Bordeaux, Bordeaux, France
| | - Enrico G Caiani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,Institute of Electronics, Computer and Telecommunication Engineering, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
58
|
Advantages and Limitations of Current Microgravity Platforms for Space Biology Research. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010068] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human Space exploration has created new challenges and new opportunities for science. Reaching beyond the Earth’s surface has raised the issue of the importance of gravity for the development and the physiology of biological systems, while giving scientists the tools to study the mechanisms of response and adaptation to the microgravity environment. As life has evolved under the constant influence of gravity, gravity affects biological systems at a very fundamental level. Owing to limited access to spaceflight platforms, scientists rely heavily on on-ground facilities that reproduce, to a different extent, microgravity or its effects. However, the technical constraints of counterbalancing the gravitational force on Earth add complexity to data interpretation. In-flight experiments are also not without their challenges, including additional stressors, such as cosmic radiation and lack of convection. It is thus extremely important in Space biology to design experiments in a way that maximizes the scientific return and takes into consideration all the variables of the chosen setup, both on-ground or on orbit. This review provides a critical analysis of current ground-based and spaceflight facilities. In particular, the focus was given to experimental design to offer the reader the tools to select the appropriate setup and to appropriately interpret the results.
Collapse
|
59
|
Harris KM, Petersen LG, Weber T. Reviving lower body negative pressure as a countermeasure to prevent pathological vascular and ocular changes in microgravity. NPJ Microgravity 2020; 6:38. [PMID: 33335101 PMCID: PMC7746725 DOI: 10.1038/s41526-020-00127-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023] Open
Abstract
Mitigation of spaceflight-related pathologies such as spaceflight-associated neuro-ocular syndrome (SANS) and the recently discovered risk of venous thrombosis must happen before deep space exploration can occur. Lower body negative pressure (LBNP) can simulate gravitational stress during spaceflight that is likely to counteract SANS and venous thrombosis, but the ideal dose and method of delivery have yet to be determined. We undertook a review of current LBNP literature and conducted a gap analysis to determine the steps needed to adapt LBNP for in-flight use. We found that to use LBNP in flight, it must be adapted to long time duration/low pressure use that should be compatible with crew activities. A lack of understanding of the etiology of the pathologies that LBNP can counteract hinders the application of LBNP as a countermeasure during spaceflight. Future research should aim at filling the knowledge gaps outlined in this review.
Collapse
Affiliation(s)
- Katie M Harris
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Lonnie G Petersen
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA.,Department of Radiology, University of California San Diego, San Diego, CA, USA.,Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Centre (EAC), European Space Agency (ESA), Köln, Germany.,KBR GmbH, Köln, Germany
| |
Collapse
|
60
|
Yang JQ, Jiang N, Li ZP, Guo S, Chen ZY, Li BB, Chai SB, Lu SY, Yan HF, Sun PM, Zhang T, Sun HW, Yang JW, Zhou JL, Yang HM, Cui Y. The effects of microgravity on the digestive system and the new insights it brings to the life sciences. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:74-82. [PMID: 34756233 DOI: 10.1016/j.lssr.2020.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/04/2020] [Accepted: 07/28/2020] [Indexed: 06/13/2023]
Abstract
BACKGROUND Weightlessness is a component of the complex space environment. It exerts adverse effects on the human body, and may pose unknown challenges to the implementation of space missions. The regular function of the digestive system is an important checkpoint for astronauts to conduct missions. Simulated microgravity can recreate the changes experienced by the human body in a weightless environment in space to a certain extent, providing technical support for the exploration of its mechanism and a practical method for other scientific research. METHODS AND MATERIALS In the present study, we reviewed and discussed the latest research on the effects of weightlessness or simulated microgravity on the digestive system, as well as the current challenges and future expectations for progress in medical science and further space exploration. RESULTS A series of studies have investigated the effects of weightlessness on the human digestive system. On one hand, weightlessness and the changing space environment may exert certain adverse effects on the human body. Studies based on cells or animals have demonstrated the complex effects on the human digestive system in response to weightlessness. On the other hand, a microgravity environment also facilitates the ideation of novel concepts for research in the domain of life science. CONCLUSION The effects of weightlessness on the digestive system are considerably complicated. The emergence of methods that help simulate a weightless environment provides a more convenient alternative for assessing the impact and the mechanism underlying the effect of weightlessness on the human body. In addition, the simulated microgravity environment facilitates the ideation of novel concepts for application in regenerative medicine and other fields of life science.
Collapse
Affiliation(s)
- Jia-Qi Yang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Nan Jiang
- The Center for Hepatopancreatobiliary Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Zheng-Peng Li
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Song Guo
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Zheng-Yang Chen
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Bin-Bin Li
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Shao-Bin Chai
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Sheng-Yu Lu
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Pei-Ming Sun
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, the Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China.
| | - He-Ming Yang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Yan Cui
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China.
| |
Collapse
|
61
|
Nay K, Koechlin-Ramonatxo C, Rochdi S, Island ML, Orfila L, Treffel L, Bareille MP, Beck A, Gauquelin-Koch G, Ropert M, Loréal O, Derbré F. Simulated microgravity disturbs iron metabolism and distribution in humans: Lessons from dry immersion, an innovative ground-based human model. FASEB J 2020; 34:14920-14929. [PMID: 32918768 DOI: 10.1096/fj.202001199rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023]
Abstract
The objective of the present study was to determine the effects of dry immersion, an innovative ground-based human model of simulated microgravity and extreme physical inactivity, on iron homeostasis and distribution. Twenty young healthy men were recruited and submitted to 5 days of dry immersion (DI). Fasting blood samples and MRI were performed before and after DI exposure to assess iron status, as well as hematological responses. DI increased spleen iron concentrations (SIC), whereas hepatic iron store (HIC) was not affected. Spleen iron sequestration could be due to the concomitant increase in serum hepcidin levels (P < .001). Increased serum unconjugated bilirubin, as well as the rise of serum myoglobin levels support that DI may promote hemolysis and myolysis. These phenomena could contribute to the concomitant increase of serum iron and transferrin saturation levels (P < .001). As HIC remained unchanged, increased serum hepcidin levels could be due both to higher transferrin saturation level, and to low-grade pro-inflammatory as suggested by the significant rise of serum ferritin and haptoglobin levels after DI (P = .003 and P = .003, respectively). These observations highlight the need for better assessment of iron metabolism in bedridden patients, and an optimization of the diet currently proposed to astronauts.
Collapse
Affiliation(s)
- Kévin Nay
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Bruz, France.,DMEM, University of Montpellier, INRAE, Montpellier, France.,Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | | | - Sarah Rochdi
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Marie-Laure Island
- INSERM, University of Rennes, INRAE, UMR 1241, AEM2 Platform, Nutrition Metabolisms and Cancer (NuMeCan) Institute, Rennes, France.,Department of Biochemistry, CHU Rennes, France
| | - Luz Orfila
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Loïc Treffel
- Institut NeuroMyoGène, Faculté de Médecine Lyon Est, Lyon, France
| | | | - Arnaud Beck
- Institute for Space Medicine and Physiology (MEDES), Toulouse, France
| | | | - Martine Ropert
- INSERM, University of Rennes, INRAE, UMR 1241, AEM2 Platform, Nutrition Metabolisms and Cancer (NuMeCan) Institute, Rennes, France.,Department of Biochemistry, CHU Rennes, France
| | - Olivier Loréal
- INSERM, University of Rennes, INRAE, UMR 1241, AEM2 Platform, Nutrition Metabolisms and Cancer (NuMeCan) Institute, Rennes, France
| | - Frédéric Derbré
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Bruz, France
| |
Collapse
|
62
|
Navasiolava N, Yuan M, Murphy R, Robin A, Coupé M, Wang L, Alameddine A, Gauquelin-Koch G, Gharib C, Li Y, Custaud MA. Vascular and Microvascular Dysfunction Induced by Microgravity and Its Analogs in Humans: Mechanisms and Countermeasures. Front Physiol 2020; 11:952. [PMID: 32973543 PMCID: PMC7468431 DOI: 10.3389/fphys.2020.00952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Weightlessness and physical inactivity have deleterious cardiovascular effects. The space environment and its ground-based models offer conditions to study the cardiovascular effects of physical inactivity in the absence of other vascular risk factors, particularly at the macro- and microcirculatory levels. However, the mechanisms involved in vascular dysfunction and remodeling are not sufficiently studied in the context of weightlessness and its analogs including models of physical inactivity. Here, we summarize vascular and microvascular changes induced by space flight and observed in models of microgravity and physical inactivity and review the effects of prophylactic strategies (i.e., countermeasures) on vascular and microvascular function. We discuss physical (e.g., exercise, vibration, lower body negative pressure, and artificial gravity) and nutritional/pharmacological (e.g., caloric restriction, resveratrol, and other vegetal extracts) countermeasures. Currently, exercise countermeasure appears to be the most effective to protect vascular function. Although pharmacological countermeasures are not currently considered to fight vascular changes due to microgravity, nutritional countermeasures are very promising. Dietary supplements/natural health products, especially plant extracts, should be extensively studied. The best prophylactic strategy is likely a combination of countermeasures that are effective not only at the cardiovascular level but also for the organism as a whole, but this strategy remains to be determined.
Collapse
Affiliation(s)
| | - Ming Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center (ACC), Beijing, China
| | - Ronan Murphy
- School of Health and Human Performance, Faculty of Science & Health, Dublin City University, Dublin, Ireland
| | - Adrien Robin
- Clinical Research Center, CHU d'Angers, Angers, France.,Mitovasc, UMR INSERM 1083-CNRS 6015, Université d'Angers, Angers, France
| | - Mickael Coupé
- Mitovasc, UMR INSERM 1083-CNRS 6015, Université d'Angers, Angers, France
| | - Linjie Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center (ACC), Beijing, China
| | - Asmaa Alameddine
- Mitovasc, UMR INSERM 1083-CNRS 6015, Université d'Angers, Angers, France
| | | | - Claude Gharib
- Institut NeuroMyoGène, Faculté de Médecine Lyon-Est, Université de Lyon, Lyon, France
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center (ACC), Beijing, China
| | - Marc-Antoine Custaud
- Clinical Research Center, CHU d'Angers, Angers, France.,Mitovasc, UMR INSERM 1083-CNRS 6015, Université d'Angers, Angers, France
| |
Collapse
|
63
|
Rusanov VB, Pastushkova LK, Larina IM, Chernikova AG, Goncharova AG, Nosovsky AM, Kashirina DN, Brzhozovsky AG, Navasiolava N, Kononikhin AS, Kussmaul AR, Custaud MA, Nikolaev EN. The Effect of Five-Day Dry Immersion on the Nervous and Metabolic Mechanisms of the Circulatory System. Front Physiol 2020; 11:692. [PMID: 32754043 PMCID: PMC7366513 DOI: 10.3389/fphys.2020.00692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
The purpose of the study was to investigate the regulatory and metabolic changes in the circulatory system when simulating microgravity conditions in a five-day dry immersion. These changes reflect the adaptation processes characteristic for the initial stages of a space flight or a short-duration space flight. Studies were conducted with 13 healthy male volunteers aged 21 to 29 years. The assessment of regulatory and metabolic processes in the circulatory system was based on the heart rate variability (HRV) and urine proteomic profile analysis. It was found that the restructuring of hemodynamics during 5 days hypogravity begins with the inclusion of the nervous circuit of regulation, and for manifestations at the body fluids protein composition level and activation of the metabolic regulation, these periods are apparently insufficient. Perhaps this is due to the fact that the metabolic regulation, being evolutionarily ancient and genetically determined, is more stable and requires more time for its pronounced activation when stimulated by extreme life conditions.
Collapse
Affiliation(s)
- Vasily B Rusanov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | | | - Irina M Larina
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Anna G Chernikova
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Anna G Goncharova
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Andrei M Nosovsky
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Daria N Kashirina
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander G Brzhozovsky
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | | | - Alexey S Kononikhin
- Skolkovo Institute of Science and Technology, Skolkovo, Russia.,V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Anna R Kussmaul
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
64
|
Shenkman BS. How Postural Muscle Senses Disuse? Early Signs and Signals. Int J Mol Sci 2020; 21:E5037. [PMID: 32708817 PMCID: PMC7404025 DOI: 10.3390/ijms21145037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
A mammalian soleus muscle along with other "axial" muscles ensures the stability of the body under the Earth's gravity. In rat experiments with hindlimb suspension, zero-gravity parabolic flights as well as in human dry immersion studies, a dramatic decrease in the electromyographic (EMG) activity of the soleus muscle has been repeatedly shown. Most of the motor units of the soleus muscle convert from a state of activity to a state of rest which is longer than under natural conditions. And the state of rest gradually converts to the state of disuse. This review addresses a number of metabolic events that characterize the earliest stage of the cessation of the soleus muscle contractile activity. One to three days of mechanical unloading are accompanied by energy-dependent dephosphorylation of AMPK, accumulation of the reactive oxygen species, as well as accumulation of resting myoplasmic calcium. In this transition period, a rapid rearrangement of the various signaling pathways occurs, which, primarily, results in a decrease in the rate of protein synthesis (primarily via inhibition of ribosomal biogenesis and activation of endogenous inhibitors of mRNA translation, such as GSK3β) and an increase in proteolysis (via upregulation of muscle-specific E3-ubiquitin ligases).
Collapse
Affiliation(s)
- Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia
| |
Collapse
|
65
|
Kermorgant M, Nasr N, Czosnyka M, Arvanitis DN, Hélissen O, Senard JM, Pavy-Le Traon A. Impacts of Microgravity Analogs to Spaceflight on Cerebral Autoregulation. Front Physiol 2020; 11:778. [PMID: 32719617 PMCID: PMC7350784 DOI: 10.3389/fphys.2020.00778] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
It is well known that exposure to microgravity in astronauts leads to a plethora physiological responses such as headward fluid shift, body unloading, and cardiovascular deconditioning. When astronauts return to Earth, some encounter problems related to orthostatic intolerance. An impaired cerebral autoregulation (CA), which could be compromised by the effects of microgravity, has been proposed as one of the mechanisms responsible for orthostatic intolerance. CA is a homeostatic mechanism that maintains cerebral blood flow for any variations in cerebral perfusion pressure by adapting the vascular tone and cerebral vessel diameter. The ground-based models of microgravity are useful tools for determining the gravitational impact of spaceflight on human body. The head-down tilt bed rest (HDTBR), where the subject remains in supine position at -6 degrees for periods ranging from few days to several weeks is the most commonly used ground-based model of microgravity for cardiovascular deconditioning. head-down bed rest (HDBR) is able to replicate cephalic fluid shift, immobilization, confinement, and inactivity. Dry immersion (DI) model is another approach where the subject remains immersed in thermoneutral water covered with an elastic waterproof fabric separating the subject from the water. Regarding DI, this analog imitates absence of any supporting structure for the body, centralization of body fluids, immobilization and hypokinesia observed during spaceflight. However, little is known about the impact of microgravity on CA. Here, we review the fundamental principles and the different mechanisms involved in CA. We also consider the different approaches in order to assess CA. Finally, we focus on the effects of short- and long-term spaceflight on CA and compare these findings with two specific analogs to microgravity: HDBR and DI.
Collapse
Affiliation(s)
- Marc Kermorgant
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), Toulouse, France
| | - Nathalie Nasr
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), Toulouse, France
- Department of Neurology, Institute for Neurosciences, Toulouse University Hospital, Toulouse, France
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospital, Cambridge, United Kingdom
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Dina N. Arvanitis
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), Toulouse, France
| | - Ophélie Hélissen
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), Toulouse, France
| | - Jean-Michel Senard
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), Toulouse, France
- Department of Clinical Pharmacology, Toulouse University Hospital, Toulouse, France
| | - Anne Pavy-Le Traon
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), Toulouse, France
- Department of Neurology, Institute for Neurosciences, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
66
|
Shoshina II, Sosnina IS, Zelenskiy KA, Karpinskaya VY, Lyakhovetskii VA, Pronin SV. The Contrast Sensitivity of the Visual System in “Dry” Immersion Conditions. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920040211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
67
|
Pandiarajan M, Hargens AR. Ground-Based Analogs for Human Spaceflight. Front Physiol 2020; 11:716. [PMID: 32655420 PMCID: PMC7324748 DOI: 10.3389/fphys.2020.00716] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/29/2020] [Indexed: 11/13/2022] Open
Abstract
This mini-review provides an updated summary of various analogs for adaptations of humans to the microgravity of space. Microgravity analogs discussed in this paper include dry immersion, wet immersion, unilateral lower-extremity limb suspension, head down tilt (HDT), and supine bed rest. All Earth-based analogs are imperfect simulations of microgravity with their own advantages and disadvantages. This paper compares these five frequently used microgravity analogs to offer insights into their usefulness for various physiological systems. New developments for each human microgravity analog are explored and advantages of one analog are evaluated against other analogs. Furthermore, the newly observed risk of Spaceflight Associated Neuro-Ocular Syndrome (SANS) is included in this mini review with a discussion of the advantages and disadvantages of each method of simulation for the relatively new risk of SANS. Overall, the best and most integrated analog for Earth-based studies of the microgravity of space flight appears to be head-down tilt bed rest.
Collapse
Affiliation(s)
- Meenakshi Pandiarajan
- Department of Orthopaedic Surgery, Altman Clinical and Translational Research Institute, University of California, San Diego, San Diego, CA, United States
| | - Alan R Hargens
- Department of Orthopaedic Surgery, Altman Clinical and Translational Research Institute, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
68
|
Loïc T, Nastassia N, Mkhitaryan K, Emmanuelle J, Kathryn Z, Guillemette GK, Marc-Antoine C, Claude G. DI-5-Cuffs: Lumbar Intervertebral Disc Proteoglycan and Water Content Changes in Humans after Five Days of Dry Immersion to Simulate Microgravity. Int J Mol Sci 2020; 21:ijms21113748. [PMID: 32466473 PMCID: PMC7312650 DOI: 10.3390/ijms21113748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
Most astronauts experience back pain after spaceflight, primarily located in the lumbar region. Intervertebral disc herniations have been observed after real and simulated microgravity. Spinal deconditioning after exposure to microgravity has been described, but the underlying mechanisms are not well understood. The dry immersion (DI) model of microgravity was used with eighteen male volunteers. Half of the participants wore thigh cuffs as a potential countermeasure. The spinal changes and intervertebral disc (IVD) content changes were investigated using magnetic resonance imaging (MRI) analyses with T1-T2 mapping sequences. IVD water content was estimated by the apparent diffusion coefficient (ADC), with proteoglycan content measured using MRI T1-mapping sequences centered in the nucleus pulposus. The use of thigh cuffs had no effect on any of the spinal variables measured. There was significant spinal lengthening for all of the subjects. The ADC and IVD proteoglycan content both increased significantly with DI (7.34 ± 2.23% and 10.09 ± 1.39%, respectively; mean ± standard deviation), p < 0.05). The ADC changes suggest dynamic and rapid water diffusion inside IVDs, linked to gravitational unloading. Further investigation is needed to determine whether similar changes occur in the cervical IVDs. A better understanding of the mechanisms involved in spinal deconditioning with spaceflight would assist in the development of alternative countermeasures to prevent IVD herniation.
Collapse
Affiliation(s)
- Treffel Loïc
- Institut NeuroMyogène, Faculté de Médecine Lyon Est, 69008 Lyon, France;
- Correspondence:
| | - Navasiolava Nastassia
- Centre de Recherche Clinique, Centre Hospitalier Universitaire d’Angers, 49100 Angers, France; (N.N.); (C.M.-A.)
| | - Karen Mkhitaryan
- Siemens Healthinners, Service Application, 93210 Saint-Denis, France;
| | | | - Zuj Kathryn
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L3G1, Canada;
| | | | - Custaud Marc-Antoine
- Centre de Recherche Clinique, Centre Hospitalier Universitaire d’Angers, 49100 Angers, France; (N.N.); (C.M.-A.)
- MitoVasc UMR INSERM 1083-CNRS 6015, Université d’Angers, 49100 Angers, France
| | - Gharib Claude
- Institut NeuroMyogène, Faculté de Médecine Lyon Est, 69008 Lyon, France;
| |
Collapse
|
69
|
Borovik AS, Orlova EA, Tomilovskaya ES, Tarasova OS, Vinogradova OL. Phase Coupling Between Baroreflex Oscillations of Blood Pressure and Heart Rate Changes in 21-Day Dry Immersion. Front Physiol 2020; 11:455. [PMID: 32508675 PMCID: PMC7253653 DOI: 10.3389/fphys.2020.00455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction Dry immersion (DI) is a ground-based experimental model which reproduces the effects of microgravity on the cardiovascular system and, therefore, can be used to study the mechanisms of post-flight orthostatic intolerance in cosmonauts. However, the effects of long-duration DI on cardiovascular system have not been studied yet. The aim of this work was to study the effects of 21-day DI on systemic hemodynamics and its baroreflex control at rest and during head-up tilt test (HUTT). Methods Ten healthy young men were exposed to DI for 21 days. The day before, on the 7th, 14th, and 19th day of DI, as well as on the 1st and 5th days of recovery they were subjected to HUTT: 15 min in supine position and then 15 min of orthostasis (60°). ECG, arterial pressure, stroke volume and respiration rate were continuously recorded during the test. Phase synchronization index (PSI) of beat-to-beat mean arterial pressure (MAP) and heart rate (HR) in the frequency band of baroreflex waves (∼0.1 Hz) was used as a quantitative measure of baroreflex activity. Results During DI, strong tachycardia and the reduction of stroke volume were observed both in supine position and during HUTT, these indicators did not recover on post-immersion day 5. In contrast, systolic arterial pressure and MAP decreased during HUTT on 14th day of DI, but then restored to pre-immersion values. Before DI and on day 5 of recovery, a transition from supine position to orthostasis was accompanied by an increase in PSI at the baroreflex frequency. However, PSI did not change in HUTT performed during DI and on post-immersion day 1. The amplitude of MAP oscillations at this frequency were increased by HUTT at all time points, while an increase of respective HR oscillations was absent during DI. Conclusion 21-day DI drastically changed the hemodynamic response to HUTT, while its effect on blood pressure was reduced between days 14 and 19, which speaks in favor of the adaptation to the conditions of DI. The lack of increase in phase synchronization of baroreflex MAP and HR oscillations during HUTT indicates disorders of baroreflex cardiac control during DI.
Collapse
Affiliation(s)
- Anatoly S Borovik
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Evgeniya A Orlova
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Elena S Tomilovskaya
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Olga S Tarasova
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga L Vinogradova
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.,Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
70
|
Amirova L, Navasiolava N, Rukavishvikov I, Gauquelin-Koch G, Gharib C, Kozlovskaya I, Custaud MA, Tomilovskaya E. Cardiovascular System Under Simulated Weightlessness: Head-Down Bed Rest vs. Dry Immersion. Front Physiol 2020; 11:395. [PMID: 32508663 PMCID: PMC7248392 DOI: 10.3389/fphys.2020.00395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
Background The most applicable human models of weightlessness are −6° head-down bed rest (HDBR) and head-out dry immersion (DI). A detailed experimental comparison of cardiovascular responses in both models has not yet been carried out, in spite of numerous studies having been performed in each of the models separately. Objectives We compared changes in central hemodynamics, autonomic regulation, plasma volume, and water balance induced by −6° HDBR and DI. Methods Eleven subjects participated in a 21-day HDBR and 12 subjects in a 3-day DI. During exposure, measurements of the water balance, blood pressure, and heart rate were performed daily. Plasma volume evolution was assessed by the Dill–Costill method. In order to assess orthostatic tolerance time (OTT), central hemodynamic responses to orthostatic stimuli, and autonomous regulation, the 80° lower body negative pressure–tilt test was conducted before and right after both exposures. Results For most of the studied parameters, the changes were co-directional, although they differed in their extent. The changes in systolic blood pressure and total peripheral resistance after HDBR were more pronounced than those after DI. The OTT was decreased in both groups: to 14.2 ± 3.1 min (vs. 27.9 ± 2.5 min before exposure) in the group of 21-day HDBR and to 8.7 ± 2.1 min (vs. 27.7 ± 1.2 min before exposure) in the group of 3-day DI. Conclusions In general, cardiovascular changes during the 21-day HDBR and 3-day DI were co-directional. In some cases, changes in the parameters after 3-day DI exceeded changes after the 21-day HDBR, while in other cases the opposite was true. Significantly stronger effects of DI on cardiovascular function may be due to hypovolemia and support unloading (supportlessness).
Collapse
Affiliation(s)
- Liubov Amirova
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.,Laboratoire MITOVASC, UMR Institut National de la Santé et de la Recherche Médicale 1083, Centre National de la Recherche Scientifique 6015, Université d'Angers, Angers, France
| | - Nastassia Navasiolava
- Laboratoire MITOVASC, UMR Institut National de la Santé et de la Recherche Médicale 1083, Centre National de la Recherche Scientifique 6015, Université d'Angers, Angers, France
| | - Ilya Rukavishvikov
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Claude Gharib
- Institut NeuroMyogène, Université Claude Bernard Lyon 1, Lyon, France
| | - Inessa Kozlovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Marc-Antoine Custaud
- Laboratoire MITOVASC, UMR Institut National de la Santé et de la Recherche Médicale 1083, Centre National de la Recherche Scientifique 6015, Université d'Angers, Angers, France.,Centre de Recherche Clinique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Elena Tomilovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
71
|
DI-5-CUFFS: Venoconstrictive Thigh Cuffs Limit Body Fluid Changes but Not Orthostatic Intolerance Induced by a 5-Day Dry Immersion. Front Physiol 2020. [DOI: 10.108810.3389/fphys.2020.00383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
72
|
Robin A, Auvinet A, Degryse B, Murphy R, Bareille MP, Beck A, Gharib C, Gauquelin-Koch G, Daviet A, Larcher F, Custaud MA, Navasiolava N. DI-5-CUFFS: Venoconstrictive Thigh Cuffs Limit Body Fluid Changes but Not Orthostatic Intolerance Induced by a 5-Day Dry Immersion. Front Physiol 2020; 11:383. [PMID: 32431622 PMCID: PMC7214795 DOI: 10.3389/fphys.2020.00383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
Venoconstrictive thigh cuffs are used by cosmonauts to ameliorate symptoms associated with cephalad fluid shift. A ground simulation of microgravity, using the dry immersion (DI) model, was performed to assess the effects of thigh cuffs on body fluid changes and dynamics, as well as on cardiovascular deconditioning. Eighteen healthy men (25-43 years), randomly divided into two groups, (1) control group or (2) group with thigh cuffs worn 10 h/day, underwent 5-day DI. Cardiovascular responses to orthostatic challenge were evaluated using the lower body negative pressure (LBNP) test; body fluid changes were assessed by bio-impedance and hormonal assay; plasma volume evolution was estimated using hemoglobin-hematocrit; subjective tolerance was assessed by questionnaires. DI induced a decrease in plasma volume of 15-20%. Reduction in total body water of 3-6% stabilized toward the third day of DI. This reduction was derived mostly from the extracellular compartment. During the acute phase of DI, thigh cuffs limited the decrease in renin and the increase in N-terminal prohormone of brain natriuretic peptide (NT-proBNP), the loss in total body water, and tended to limit the loss in calf volume, extracellular volume and plasma volume. At the later stable phase of DI, a moderate protective effect of thigh cuffs remained evident on the body fluids. Orthostatic tolerance time dropped after DI without significant difference between groups. Thigh cuff countermeasure slowed down and limited the loss of body water and tended to limit plasma loss induced by DI. These observed physiological responses persisted during periods when thigh cuffs were removed. However, thigh cuffs did not counteract decreased tolerance to orthostatic challenge.
Collapse
Affiliation(s)
- Adrien Robin
- Centre de Recherche Clinique, CHU d'Angers, Angers, France.,Mitovasc UMR INSERM 1083-CNRS 6015, Université d'Angers, Angers, France
| | - Aline Auvinet
- Centre de Recherche Clinique, CHU d'Angers, Angers, France
| | - Bernard Degryse
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Ronan Murphy
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | | | | | - Claude Gharib
- Faculté de Médecine Lyon-Est, Institut NeuroMyoGène, Université de Lyon, Lyon, France
| | | | - Aude Daviet
- Laboratoire de Biochimie, CHU d'Angers, Angers, France
| | | | - Marc-Antoine Custaud
- Centre de Recherche Clinique, CHU d'Angers, Angers, France.,Mitovasc UMR INSERM 1083-CNRS 6015, Université d'Angers, Angers, France
| | - Nastassia Navasiolava
- Centre de Recherche Clinique, CHU d'Angers, Angers, France.,Mitovasc UMR INSERM 1083-CNRS 6015, Université d'Angers, Angers, France
| |
Collapse
|
73
|
Saveko A, Rukavishnikov I, Brykov V, Osetsky N, Ryazanskiy S, Grishin MA, Tomilovskaya E, Kozlovskaya I. Foot-ground reaction force during long-term space flight and after it: walking in active treadmill mode. Gait Posture 2020; 76:382-388. [PMID: 31923758 DOI: 10.1016/j.gaitpost.2019.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/28/2019] [Accepted: 12/31/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Alina Saveko
- RF State Scientific Center - Institute of Biomedical Problems of the Russian Academy of Sciences, 123007, 76A Khoroshevskoe Shosse, Moscow, Russia.
| | - Ilya Rukavishnikov
- RF State Scientific Center - Institute of Biomedical Problems of the Russian Academy of Sciences, 123007, 76A Khoroshevskoe Shosse, Moscow, Russia.
| | - Vitaly Brykov
- RF State Scientific Center - Institute of Biomedical Problems of the Russian Academy of Sciences, 123007, 76A Khoroshevskoe Shosse, Moscow, Russia.
| | - Nikolay Osetsky
- RF State Scientific Center - Institute of Biomedical Problems of the Russian Academy of Sciences, 123007, 76A Khoroshevskoe Shosse, Moscow, Russia.
| | - Sergey Ryazanskiy
- RF State Scientific Center - Institute of Biomedical Problems of the Russian Academy of Sciences, 123007, 76A Khoroshevskoe Shosse, Moscow, Russia.
| | | | - Elena Tomilovskaya
- RF State Scientific Center - Institute of Biomedical Problems of the Russian Academy of Sciences, 123007, 76A Khoroshevskoe Shosse, Moscow, Russia.
| | - Inesa Kozlovskaya
- RF State Scientific Center - Institute of Biomedical Problems of the Russian Academy of Sciences, 123007, 76A Khoroshevskoe Shosse, Moscow, Russia.
| |
Collapse
|
74
|
Pechenkova E, Nosikova I, Rumshiskaya A, Litvinova L, Rukavishnikov I, Mershina E, Sinitsyn V, Van Ombergen A, Jeurissen B, Jillings S, Laureys S, Sijbers J, Grishin A, Chernikova L, Naumov I, Kornilova L, Wuyts FL, Tomilovskaya E, Kozlovskaya I. Alterations of Functional Brain Connectivity After Long-Duration Spaceflight as Revealed by fMRI. Front Physiol 2019; 10:761. [PMID: 31333476 PMCID: PMC6621543 DOI: 10.3389/fphys.2019.00761] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/31/2019] [Indexed: 12/22/2022] Open
Abstract
The present study reports alterations of task-based functional brain connectivity in a group of 11 cosmonauts after a long-duration spaceflight, compared to a healthy control group not involved in the space program. To elicit the postural and locomotor sensorimotor mechanisms that are usually most significantly impaired when space travelers return to Earth, a plantar stimulation paradigm was used in a block design fMRI study. The motor control system activated by the plantar stimulation involved the pre-central and post-central gyri, SMA, SII/operculum, and, to a lesser degree, the insular cortex and cerebellum. While no post-flight alterations were observed in terms of activation, the network-based statistics approach revealed task-specific functional connectivity modifications within a broader set of regions involving the activation sites along with other parts of the sensorimotor neural network and the visual, proprioceptive, and vestibular systems. The most notable findings included a post-flight increase in the stimulation-specific connectivity of the right posterior supramarginal gyrus with the rest of the brain; a strengthening of connections between the left and right insulae; decreased connectivity of the vestibular nuclei, right inferior parietal cortex (BA40) and cerebellum with areas associated with motor, visual, vestibular, and proprioception functions; and decreased coupling of the cerebellum with the visual cortex and the right inferior parietal cortex. The severity of space motion sickness symptoms was found to correlate with a post- to pre-flight difference in connectivity between the right supramarginal gyrus and the left anterior insula. Due to the complex nature and rapid dynamics of adaptation to gravity alterations, the post-flight findings might be attributed to both the long-term microgravity exposure and to the readaptation to Earth's gravity that took place between the landing and post-flight MRI session. Nevertheless, the results have implications for the multisensory reweighting and gravitational motor system theories, generating hypotheses to be tested in future research.
Collapse
Affiliation(s)
| | - Inna Nosikova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Alena Rumshiskaya
- Radiology Department, Federal Center of Treatment and Rehabilitation, Moscow, Russia
| | - Liudmila Litvinova
- Radiology Department, Federal Center of Treatment and Rehabilitation, Moscow, Russia
| | - Ilya Rukavishnikov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Elena Mershina
- Medical Research and Educational Center, Lomonosov Moscow State University, Moscow, Russia
| | - Valentin Sinitsyn
- Medical Research and Educational Center, Lomonosov Moscow State University, Moscow, Russia
| | - Angelique Van Ombergen
- Lab for Equilibrium Investigations and Aerospace, Faculty of Science, University of Antwerp, Antwerp, Belgium
| | - Ben Jeurissen
- iMec/Vision Lab, Faculty of Science, University of Antwerp, Antwerp, Belgium
| | - Steven Jillings
- Lab for Equilibrium Investigations and Aerospace, Faculty of Science, University of Antwerp, Antwerp, Belgium
- Coma Science Group, GIGA Consciousness Research Centre, Neurology Department, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness Research Centre, Neurology Department, University Hospital of Liège, Liège, Belgium
| | - Jan Sijbers
- iMec/Vision Lab, Faculty of Science, University of Antwerp, Antwerp, Belgium
| | | | - Ludmila Chernikova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ivan Naumov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila Kornilova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Floris L. Wuyts
- Lab for Equilibrium Investigations and Aerospace, Faculty of Science, University of Antwerp, Antwerp, Belgium
| | - Elena Tomilovskaya
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Inessa Kozlovskaya
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
75
|
Hides J, Hodges P, Lambrecht G. State-of-the-Art Exercise Concepts for Lumbopelvic and Spinal Muscles - Transferability to Microgravity. Front Physiol 2019; 10:837. [PMID: 31333494 PMCID: PMC6620527 DOI: 10.3389/fphys.2019.00837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Low back pain (LBP) is the leading cause of disability worldwide. Over the last three decades, changes to key recommendations in clinical practice guidelines for management of LBP have placed greater emphasis on self-management and utilization of exercise programs targeting improvements in function. Recommendations have also suggested that physical treatments for persistent LBP should be tailored to the individual. This mini review will draw parallels between changes, which occur to the neuromuscular system in microgravity and conditions such as LBP which occur on Earth. Prolonged exposure to microgravity is associated with both LBP and muscle atrophy of the intrinsic muscles of the spine, including the lumbar multifidus. The finding of atrophy of spinal muscles has also commonly been reported in terrestrial LBP sufferers. Studying astronauts provides a unique perspective and valuable model for testing the effectiveness of exercise interventions, which have been developed on Earth. One such approach is motor control training, which is a broad term that can include all the sensory and motor aspects of spinal motor function. There is evidence to support the use of this exercise approach, but unlike changes seen in muscles of LBP sufferers on Earth, the changes induced by exposure to microgravity are rapid, and are relatively consistent in nature. Drawing parallels between changes which occur to the neuromuscular system in the absence of gravity and which exercises best restore size and function could help health professionals tailor improved interventions for terrestrial populations.
Collapse
Affiliation(s)
- Julie Hides
- School of Allied Health Sciences, Griffith University, Nathan, QLD, Australia.,Mater Back Stability Research Clinic, Mater Health, South Brisbane, QLD, Australia
| | - Paul Hodges
- School of Health and Rehabilitation Sciences, NHMRC Centre of Clinical Research Excellence on Spinal Pain, Injury and Health, The University of Queensland, Brisbane, QLD, Australia
| | - Gunda Lambrecht
- European Space Agency Space-Medicine Office, European Astronaut Centre, Cologne, Germany.,Germany Praxis fur Physiotherapie und Osteopathische Techniken, Siegburg, Germany
| |
Collapse
|