51
|
Schiavon M, Pilon-Smits EAH. Selenium Biofortification and Phytoremediation Phytotechnologies: A Review. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:10-19. [PMID: 28177413 DOI: 10.2134/jeq2016.09.0342] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The element selenium (Se) is both essential and toxic for most life forms, with a narrow margin between deficiency and toxicity. Phytotechnologies using plants and their associated microbes can address both of these problems. To prevent Se toxicity due to excess environmental Se, plants may be used to phytoremediate Se from soil or water. To alleviate Se deficiency in humans or livestock, crops may be biofortified with Se. These two technologies may also be combined: Se-enriched plant material from phytoremediation could be used as green fertilizer or as fortified food. Plants may also be used to "mine" Se from seleniferous soils. The efficiency of Se phytoremediation and biofortification may be further optimized. Research in the past decades has provided a wealth of knowledge regarding the mechanisms by which plants take up, metabolize, accumulate, and volatilize Se and the role plant-associated microbes play in these processes. Furthermore, ecological studies have revealed important effects of plant Se on interactions with herbivores, detrivores, pollinators, neighboring vegetation, and the plant microbiome. All this knowledge can be exploited in phytotechnology programs to optimize plant Se accumulation, transformation, volatilization, and/or tolerance via plant breeding, genetic engineering, and tailored agronomic practices.
Collapse
|
52
|
Khoei NS, Lampis S, Zonaro E, Yrjälä K, Bernardi P, Vallini G. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. N Biotechnol 2016; 34:1-11. [PMID: 27717878 DOI: 10.1016/j.nbt.2016.10.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/11/2016] [Accepted: 10/03/2016] [Indexed: 11/30/2022]
Abstract
Microorganisms capable of transforming toxic selenium oxyanions into non-toxic elemental selenium (Se°) may be considered as biocatalysts for the production of selenium nanoparticles (SeNPs), eventually exploitable in different biotechnological applications. Two Burkholderia fungorum strains (B. fungorum DBT1 and B. fungorum 95) were monitored during their growth for both capacity and efficiency of selenite (SeO32-) reduction and elemental selenium formation. Both strains are environmental isolates in origin: B. fungorum DBT1 was previously isolated from an oil refinery drainage, while B. fungorum 95 has been enriched from inner tissues of hybrid poplars grown in a soil contaminated by polycyclic aromatic hydrocarbons. Our results showed that B. fungorum DBT1 is able to reduce 0.5mM SeO32- to Se° when cultured aerobically in liquid medium at 27°C, while B. fungorum 95 can reduce more than 1mM SeO32- to Se° within 96h under the same growth conditions, with the appearance of SeNPs in cultures of both bacterial strains. Biogenic SeNPs were spherical, with pH-dependent charge and an average hydrodynamic diameter of 170nm and 200nm depending on whether they were produced by B. fungorum 95 or B. fungorum DBT1, respectively. Electron microscopy analyses evidenced that Se nanoparticles occurred intracellularly and extracellularly. The mechanism of SeNPs formation can be tentatively attributed to cytoplasmic enzymatic activation mediated by electron donors. Biogenic nanoparticles were then probably released outside the bacterial cells as a consequence of a secretory process or cell lysis. Nevertheless, formation of elemental selenium nanoparticles under aerobic conditions by B. fungorum DBT1 and B. fungorum 95 is likely due to intracellular reduction mechanisms. Biomedical and other high tech sectors might exploit these biogenic nanoparticles in the near future, once fully characterized and tested for their multiple properties.
Collapse
Affiliation(s)
- Nazanin Seyed Khoei
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Emanuele Zonaro
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Kim Yrjälä
- MEM-group, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Paolo Bernardi
- Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
53
|
Redfern LK, Gunsch CK. Endophytic Phytoaugmentation: Treating Wastewater and Runoff Through Augmented Phytoremediation. Ind Biotechnol (New Rochelle N Y) 2016; 12:83-90. [PMID: 27158249 PMCID: PMC4835827 DOI: 10.1089/ind.2015.0016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Limited options exist for efficiently and effectively treating water runoff from agricultural fields and landfills. Traditional treatments include excavation, transport to landfills, incineration, stabilization, and vitrification. In general, treatment options relying on biological methods such as bioremediation have the ability to be applied in situ and offer a sustainable remedial option with a lower environmental impact and reduced long-term operating expenses. These methods are generally considered ecologically friendly, particularly when compared to traditional physicochemical cleanup options. Phytoremediation, which relies on plants to take up and/or transform the contaminant of interest, is another alternative treatment method which has been developed. However, phytoremediation is not widely used, largely due to its low treatment efficiency. Endophytic phytoaugmentation is a variation on phytoremediation that relies on augmenting the phytoremediating plants with exogenous strains to stimulate associated plant-microbe interactions to facilitate and improve remediation efficiency. In this review, we offer a summary of the current knowledge as well as developments in endophytic phytoaugmentation and present some potential future applications for this technology. There has been a limited number of published endophytic phytoaugmentation case studies and much remains to be done to transition lab-scale results to field applications. Future research needs include large-scale endophytic phytoaugmentation experiments as well as the development of more exhaustive tools for monitoring plant-microbe-pollutant interactions.
Collapse
Affiliation(s)
- Lauren K Redfern
- Department of Civil and Environmental Engineering, Duke University , Durham, NC
| | - Claudia K Gunsch
- Department of Civil and Environmental Engineering, Duke University , Durham, NC
| |
Collapse
|
54
|
White PJ. Selenium accumulation by plants. ANNALS OF BOTANY 2016; 117:217-35. [PMID: 26718221 PMCID: PMC4724052 DOI: 10.1093/aob/mcv180] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Accepted: 10/19/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. SCOPE This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. CONCLUSIONS The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans.
Collapse
Affiliation(s)
- Philip J White
- Ecological Sciences Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK and Distinguished Scientist Fellowship Program, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
55
|
Ma Y, Zhang C, Oliveira RS, Freitas H, Luo Y. Bioaugmentation with Endophytic Bacterium E6S Homologous to Achromobacter piechaudii Enhances Metal Rhizoaccumulation in Host Sedum plumbizincicola. FRONTIERS IN PLANT SCIENCE 2016; 7:75. [PMID: 26870079 PMCID: PMC4740370 DOI: 10.3389/fpls.2016.00075] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/16/2016] [Indexed: 05/10/2023]
Abstract
Application of hyperaccumulator-endophyte symbiotic systems is a potential approach to improve phytoremediation efficiency, since some beneficial endophytic bacteria are able to detoxify heavy metals, alter metal solubility in soil, and facilitate plant growth. The objective of this study was to isolate multi-metal resistant and plant beneficial endophytic bacteria and to evaluate their role in enhancing plant growth and metal accumulation/translocation. The metal resistant endophytic bacterial strain E6S was isolated from stems of the Zn/Cd hyperaccumulator plant Sedum plumbizincicola growing in metalliferous mine soils using Dworkin and Foster salts minimal agar medium with 1-aminocyclopropane-1-carboxylate (ACC) as the sole nitrogen source, and identified as homologous to Achromobacter piechaudii based on morphological and biochemical characteristics, partial 16S rDNA sequence and phylogenetic analysis. Strain E6S showed high level of resistance to various metals (Cd, Zn, and Pb). Besides utilizing ACC, strain E6S exhibited plant beneficial traits, such as solubilization of phosphate and production of indole-3-acetic acid. Inoculation with E6S significantly increased the bioavailability of Cd, Zn, and Pb in soil. In addition, bacterial cells bound considerable amounts of metal ions in the following order: Zn > Cd >Pb. Inoculation of E6S significantly stimulated plant biomass, uptake and bioaccumulation of Cd, Zn, and Pb. However, E6S greatly reduced the root to shoot translocation of Cd and Zn, indicating that bacterial inoculation assisted the host plant to uptake and store heavy metals in its root system. Inoculation with the endophytic bacterium E6S homologous to A. piechaudii can improve phytostabilization of metalliferous soils due to its effective ability to enhance in situ metal rhizoaccumulation in plants.
Collapse
Affiliation(s)
- Ying Ma
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- *Correspondence: Ying Ma,
| | | | - Rui S. Oliveira
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
- Department of Environmental Health, Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of PortoVila Nova de Gaia, Portugal
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | - Yongming Luo
- Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| |
Collapse
|
56
|
Zhang WH, He LY, Wang Q, Sheng XF. Inoculation with endophytic Bacillus megaterium 1Y31 increases Mn accumulation and induces the growth and energy metabolism-related differentially-expressed proteome in Mn hyperaccumulator hybrid pennisetum. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:513-521. [PMID: 26241871 DOI: 10.1016/j.jhazmat.2015.07.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/14/2015] [Accepted: 07/18/2015] [Indexed: 06/04/2023]
Abstract
In this study, a hydroponic culture experiment was conducted in a greenhouse to investigate the molecular and microbial mechanisms involved in the endophytic Bacillus megaterium 1Y31-enhanced Mn tolerance and accumulation in Mn hyperaccumulator hybrid pennisetum. Strain 1Y31 significantly increased the dry weights (ranging from 28% to 94%) and total Mn uptake (ranging from 23% to 112%) of hybrid pennisetum treated with 0, 2, and 10mM Mn compared to the control. Total 98 leaf differentially expressed proteins were identified between the live and dead bacterial inoculated hybrid pennisetum. The major leaf differentially expressed proteins were involved in energy generation, photosynthesis, response to stimulus, metabolisms, and unknown function. Furthermore, most of the energy generation and photosynthesis-related proteins were up-regulated, whereas most of the response to stimulus and metabolism-related proteins were down-regulated under Mn stress. Notably, the proportion of indole-3-acetic acid (IAA)-producing endophytic bacteria was significantly higher in the bacterial inoculated plants under Mn stress. The results suggested that strain 1Y31 increased the growth and Mn uptake of hybrid pennisetum through increasing the efficiency of photosynthesis and energy metabolism as well as the proportion of plant growth-promoting endophytic bacteria in the plants.
Collapse
Affiliation(s)
- Wen-Hui Zhang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin-Yan He
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qi Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xia-Fang Sheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
57
|
Çakır Ö, Turgut-Kara N, Arı Ş, Zhang B. De Novo Transcriptome Assembly and Comparative Analysis Elucidate Complicated Mechanism Regulating Astragalus chrysochlorus Response to Selenium Stimuli. PLoS One 2015; 10:e0135677. [PMID: 26431547 PMCID: PMC4592229 DOI: 10.1371/journal.pone.0135677] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/26/2015] [Indexed: 11/18/2022] Open
Abstract
Astragalus species are medicinal plants that are used in the world for years. Some Astragalus species are known for selenium accumulation and tolerance and one of them is Astragalus chrysochlorus, a secondary selenium accumulator. In this study, we employed Illumina deep sequencing technology for the first time to de novo assemble A. chrysochlorus transcriptome and identify the differentially expressed genes after selenate treatment. Totally, 59,656 unigenes were annotated with different databases and 53,960 unigenes were detected in NR database. Transcriptome in A. chrysochlorus is closer to Glycine max than other plant species with 43,1 percentage of similarity. Annotated unigenes were also used for gene ontology enrichment and pathway enrichment analysis. The most significant genes and pathways were ABC transporters, plant pathogen interaction, biosynthesis of secondary metabolites and carbohydrate metabolism. Our results will help to enlighten the selenium accumulation and tolerance mechanisms, respectively in plants.
Collapse
Affiliation(s)
- Özgür Çakır
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Vezneciler Istanbul, Turkey
- Department of Biology, East Carolina University, Greenville, NC 27858, United States of America
- * E-mail:
| | - Neslihan Turgut-Kara
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Vezneciler Istanbul, Turkey
| | - Şule Arı
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Vezneciler Istanbul, Turkey
- Research and Application Center for Biotechnology and Genetic Engineering, Istanbul University, 34134, Istanbul, Turkey
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, United States of America
| |
Collapse
|
58
|
Furini A, Manara A, DalCorso G. Editorial: Environmental phytoremediation: plants and microorganisms at work. FRONTIERS IN PLANT SCIENCE 2015; 6:520. [PMID: 26217369 PMCID: PMC4493365 DOI: 10.3389/fpls.2015.00520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/26/2015] [Indexed: 05/29/2023]
|
59
|
Staicu L, Ackerson C, Cornelis P, Ye L, Berendsen R, Hunter W, Noblitt S, Henry C, Cappa J, Montenieri R, Wong A, Musilova L, Sura-de Jong M, van Hullebusch E, Lens P, Reynolds R, Pilon-Smits E. Pseudomonas moraviensis
subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata
, is capable of efficient selenite reduction to elemental selenium under aerobic conditions. J Appl Microbiol 2015; 119:400-10. [DOI: 10.1111/jam.12842] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 11/29/2022]
Affiliation(s)
- L.C. Staicu
- Biology Department; Colorado State University; Fort Collins CO USA
- UNESCO-IHE Institute for Water Education; Delft The Netherlands
- Université Paris-Est, Laboratoire Géomatériaux et Environnement, UPEM; Marne-la-Vallée, Cedex 2 France
| | - C.J. Ackerson
- Chemistry Department; Colorado State University; Fort Collins CO USA
| | - P. Cornelis
- VIB Department of Structural Biology; Department of Bioengineering Sciences; Research Group Microbiology; Vrije Universiteit; Brussels Belgium
| | - L. Ye
- VIB Department of Structural Biology; Department of Bioengineering Sciences; Research Group Microbiology; Vrije Universiteit; Brussels Belgium
| | - R.L. Berendsen
- Plant-Microbe Interactions; Department of Biology; Faculty of Science; Utrecht University; Utrecht The Netherlands
| | | | - S.D. Noblitt
- Chemistry Department; Colorado State University; Fort Collins CO USA
| | - C.S. Henry
- Chemistry Department; Colorado State University; Fort Collins CO USA
| | - J.J. Cappa
- UNESCO-IHE Institute for Water Education; Delft The Netherlands
| | | | - A.O. Wong
- Chemistry Department; Colorado State University; Fort Collins CO USA
| | - L. Musilova
- Biochemistry and Microbiology Department; Institute of Chemical Technology in Prague; Prague Czech Republic
| | - M. Sura-de Jong
- Biochemistry and Microbiology Department; Institute of Chemical Technology in Prague; Prague Czech Republic
| | - E.D. van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement, UPEM; Marne-la-Vallée, Cedex 2 France
| | - P.N.L. Lens
- UNESCO-IHE Institute for Water Education; Delft The Netherlands
| | - R.J.B. Reynolds
- Biology Department; Colorado State University; Fort Collins CO USA
| | | |
Collapse
|