51
|
Li K, Chen Y, Luo Y, Huang F, Zhao C, Cheng F, Xiang X, Pan G. A 22-bp deletion in OsPLS3 gene encoding a DUF266-containing protein is implicated in rice leaf senescence. PLANT MOLECULAR BIOLOGY 2018; 98:19-32. [PMID: 30117035 DOI: 10.1007/s11103-018-0758-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/18/2018] [Indexed: 05/04/2023]
Abstract
Key message The OsPLS3 locus was isolated by map-based cloning that encodes a DUF266-containing protein. OsPLS3 regulates the onset of leaf senescence in rice. Glycosyltransferases (GTs) are one of the most important enzyme groups required for the modification of plant secondary metabolites and play a crucial role in plant growth and development, however the biological functions of most GTs remain elusive. We reported here the identification and characterization of a novel Oryza sativa premature leaf senescence mutant (ospls3). Through map-based cloning strategy, we determined that 22-bp deletion in the OsPLS3 gene encoding a domain of unknown function 266 (DUF266)-containing protein, a member of GT14-like, underlies the premature leaf senescence phenotype in the ospls3 mutant. The OsPLS3 mRNA levels progressively declined with the age-dependent leaf senescence in wild-type rice, implying a negative role of OsPLS3 in regulating leaf senescence. Physiological analysis, and histochemical staining and transmission electron microscopy assays indicated that the ospls3 mutant accumulated higher levels of ethylene and reactive oxygen species than its wild type. Furthermore, the ospls3 mutant showed hypersensitivity to exogenous 1-aminocyclopropane-1-carboxylic acid, H2O2 and high level of cytokinins. Our results indicated that the DUF266-containing gene OsPLS3 plays an important role in the onset of leaf senescence, in part through cytokinin and ethylene signaling in rice.
Collapse
Affiliation(s)
- Kunyu Li
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yaodong Chen
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yanmin Luo
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Fudeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Chaoyue Zhao
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Fangmin Cheng
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xun Xiang
- Experimental Teaching Center, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Gang Pan
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
52
|
Janečková H, Husičková A, Ferretti U, Prčina M, Pilařová E, Plačková L, Pospíšil P, Doležal K, Špundová M. The interplay between cytokinins and light during senescence in detached Arabidopsis leaves. PLANT, CELL & ENVIRONMENT 2018; 41:1870-1885. [PMID: 29744884 DOI: 10.1111/pce.13329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 05/06/2023]
Abstract
Light and cytokinins are known to be the key players in the regulation of plant senescence. In detached leaves, the retarding effect of light on senescence is well described; however, it is not clear to what extent is this effect connected with changes in endogenous cytokinin levels. We have performed a detailed analysis of changes in endogenous content of 29 cytokinin forms in detached leaves of Arabidopsis thaliana (wild-type and 3 cytokinin receptor double mutants). Leaves were kept under different light conditions, and changes in cytokinin content were correlated with changes in chlorophyll content, efficiency of photosystem II photochemistry, and lipid peroxidation. In leaves kept in darkness, we have observed decreased content of the most abundant cytokinin free bases and ribosides, but the content of cis-zeatin increased, which indicates the role of this cytokinin in the maintenance of basal leaf viability. Our findings underscore the importance of light conditions on the content of specific cytokinins, especially N6 -(Δ2 -isopentenyl)adenine. On the basis of our results, we present a scheme summarizing the contribution of the main active forms of cytokinins, cytokinin receptors, and light to senescence regulation. We conclude that light can compensate the disrupted cytokinin signalling in detached leaves.
Collapse
Affiliation(s)
- Helena Janečková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Alexandra Husičková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Ursula Ferretti
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Maroš Prčina
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Eva Pilařová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, 78371, Olomouc, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, 78371, Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Pavel Pospíšil
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Karel Doležal
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, 78371, Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Martina Špundová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| |
Collapse
|
53
|
Juranić M, Tucker MR, Schultz CJ, Shirley NJ, Taylor JM, Spriggs A, Johnson SD, Bulone V, Koltunow AM. Asexual Female Gametogenesis Involves Contact with a Sexually-Fated Megaspore in Apomictic Hieracium. PLANT PHYSIOLOGY 2018; 177:1027-1049. [PMID: 29844228 PMCID: PMC6052994 DOI: 10.1104/pp.18.00342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/16/2018] [Indexed: 05/03/2023]
Abstract
Apomixis results in asexual seed formation where progeny are identical to the maternal plant. In ovules of apomictic species of the Hieracium subgenus Pilosella, meiosis of the megaspore mother cell generates four megaspores. Aposporous initial (AI) cells form during meiosis in most ovules. The sexual pathway terminates during functional megaspore (FM) differentiation, when an enlarged AI undergoes mitosis to form an aposporous female gametophyte. Then, the mitotically programmed FM dies along with the three other megaspores by unknown mechanisms. Transcriptomes of laser-dissected AIs, ovule cells, and ovaries from apomicts and AI-deficient mutants were analyzed to understand the pathways involved. The steps leading to AI mitosis and sexual pathway termination were determined using antibodies against arabinogalactan protein epitopes found to mark both sexual and aposporous female gametophyte lineages at inception. At most, four AIs differentiated near developing megaspores. The first expanding AI cell to contact the FM formed a functional AI that underwent mitosis soon after megaspore degeneration. Transcriptome analyses indicated that the enlarged, laser-captured AIs were arrested in the S/G2 phase of the cell cycle and were metabolically active. Further comparisons with AI-deficient mutants showed that AIs were enriched in transcripts encoding homologs of genes involved in, and potentially antagonistic to, known FM specification pathways. We propose that AI and FM cell contact provides cues required for AI mitosis and megaspore degeneration. Specific candidates to further interrogate AI-FM interactions were identified here and include Hieracium arabinogalactan protein family genes.
Collapse
Affiliation(s)
- Martina Juranić
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Urrbrae, South Australia 5064, Australia
| | - Matthew R Tucker
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Carolyn J Schultz
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Neil J Shirley
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia
- Australian Research Council Centre of Excellence in Plant Cell Walls, Wine Innovation Central, University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Jennifer M Taylor
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Black Mountain Laboratories, Black Mountain, Australian Capital Territory 2601, Australia
| | - Andrew Spriggs
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Black Mountain Laboratories, Black Mountain, Australian Capital Territory 2601, Australia
| | - Susan D Johnson
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Urrbrae, South Australia 5064, Australia
| | - Vincent Bulone
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia
- Australian Research Council Centre of Excellence in Plant Cell Walls, Wine Innovation Central, University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Anna M Koltunow
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Urrbrae, South Australia 5064, Australia
| |
Collapse
|
54
|
Poitout A, Crabos A, Petřík I, Novák O, Krouk G, Lacombe B, Ruffel S. Responses to Systemic Nitrogen Signaling in Arabidopsis Roots Involve trans-Zeatin in Shoots. THE PLANT CELL 2018; 30:1243-1257. [PMID: 29764985 PMCID: PMC6048791 DOI: 10.1105/tpc.18.00011] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/19/2018] [Accepted: 05/14/2018] [Indexed: 05/18/2023]
Abstract
Plants face temporal and spatial variation in nitrogen (N) availability. This includes heterogeneity in soil nitrate (NO3-) content. To overcome these constraints, plants modify their gene expression and physiological processes to optimize N acquisition. This plasticity relies on a complex long-distance root-shoot-root signaling network that remains poorly understood. We previously showed that cytokinin (CK) biosynthesis is required to trigger systemic N signaling. Here, we performed split-root experiments and used a combination of CK-related mutant analyses, hormone profiling, transcriptomic analysis, NO3- uptake assays, and root growth measurements to gain insight into systemic N signaling in Arabidopsis thaliana By comparing wild-type plants and mutants affected in CK biosynthesis and ABCG14-dependent root-to-shoot translocation of CK, we revealed an important role for active trans-zeatin (tZ) in systemic N signaling. Both rapid sentinel gene regulation and long-term functional acclimation to heterogeneous NO3- supply, including NO3- transport and root growth regulation, are likely mediated by the integration of tZ content in shoots. Furthermore, shoot transcriptome profiling revealed that glutamate/glutamine metabolism is likely a target of tZ root-to-shoot translocation, prompting an interesting hypothesis regarding shoot-to-root communication. Finally, this study highlights tZ-independent pathways regulating gene expression in shoots as well as NO3- uptake activity in response to total N deprivation.
Collapse
Affiliation(s)
- Arthur Poitout
- BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| | - Amandine Crabos
- BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| | - Ivan Petřík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Ondrej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Gabriel Krouk
- BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| | - Benoît Lacombe
- BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| | - Sandrine Ruffel
- BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| |
Collapse
|
55
|
Ni J, Shah FA, Liu W, Wang Q, Wang D, Zhao W, Lu W, Huang S, Fu S, Wu L. Comparative transcriptome analysis reveals the regulatory networks of cytokinin in promoting the floral feminization in the oil plant Sapium sebiferum. BMC PLANT BIOLOGY 2018; 18:96. [PMID: 29848288 PMCID: PMC5975670 DOI: 10.1186/s12870-018-1314-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/18/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Sapium sebiferum, whose seeds contain high level of fatty acids, has been considered as one of the most important oil plants. However, the high male to female flower ratio limited the seed yield improvement and its industrial potentials. Thus, the study of the sex determination in S. sebiferum is of significant importance in increasing the seed yield. RESULTS In this study, we demonstrated that in S. sebiferum, cytokinin (CK) had strong feminization effects on the floral development. Exogenous application with 6-benzylaminopurine (6-BA) or thidiazuron (TDZ) significantly induced the development of female flowers and increased the fruit number. Interestingly, the feminization effects of cytokinin were also detected on the androecious genotype of S. sebiferum which only produce male flowers. To further investigate the mechanism underlying the role of cytokinin in the flower development and sex differentiation, we performed the comparative transcriptome analysis of the floral buds of the androecious plants subjected to 6-BA. The results showed that there were separately 129, 352 and 642 genes differentially expressed at 6 h, 12 h and 24 h after 6-BA treatment. Functional analysis of the differentially expressed genes (DEGs) showed that many genes are related to the hormonal biosynthesis and signaling, nutrients translocation and cell cycle. Moreover, there were twenty one flowering-related genes identified to be differentially regulated by 6-BA treatment. Specifically, the gynoecium development-related genes SPATULA (SPT), KANADI 2 (KAN2), JAGGED (JAG) and Cytochrome P450 78A9 (CYP79A9) were significantly up-regulated, whereas the expression of PISTILLATA (PI), TATA Box Associated Factor II 59 (TAFII59) and MYB Domain Protein 108 (MYB108) that were important for male organ development was down-regulated in response to 6-BA treatment, demonstrating that cytokinin could directly target the floral organ identity genes to regulate the flower sex. CONCLUSIONS Our work demonstrated that cytokinin is a potential regulator in female flower development in S. sebiferum. The transcriptome analysis of the floral sex transition from androecious to monoecious in response to cytokinin treatment on the androecious S. sebiferum provided valuable information related to the mechanism of sex determination in the perennial woody plants.
Collapse
Affiliation(s)
- Jun Ni
- Key laboratory of high magnetic field and Ion beam physical biology,Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China
| | - Faheem Afzal Shah
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui China
| | - Wenbo Liu
- Key laboratory of high magnetic field and Ion beam physical biology,Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China
| | - Qiaojian Wang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui China
| | - Dongdong Wang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui China
| | - Weiwei Zhao
- Key laboratory of high magnetic field and Ion beam physical biology,Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China
| | - Weili Lu
- Key laboratory of high magnetic field and Ion beam physical biology,Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China
| | - Shengwei Huang
- Key laboratory of high magnetic field and Ion beam physical biology,Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China
| | - Songling Fu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui China
| | - Lifang Wu
- Key laboratory of high magnetic field and Ion beam physical biology,Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China
| |
Collapse
|
56
|
Romanov GA, Lomin SN, Schmülling T. Cytokinin signaling: from the ER or from the PM? That is the question! THE NEW PHYTOLOGIST 2018; 218:41-53. [PMID: 29355964 DOI: 10.1111/nph.14991] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/02/2017] [Indexed: 05/06/2023]
Abstract
Content Summary 47 I. Introduction 47 II. Historical outline 48 III. Recent developments 49 IV. Towards an integrative concept for cytokinin receptor signaling 54 Acknowledgements 57 References 57 SUMMARY: Cytokinin signaling plays an important role in plant growth and development, and therefore its molecular characteristics are under extensive study. One characteristic is the subcellular localization of cytokinin signal initiation. This localization determines both the pathway for hormone delivery to the receptor, as well as molecular aspects of signal transfer to the primary cellular targets. Subcellular sites for the onset of cytokinin signaling are still uncertain and experimental data are in part controversial. A few years ago, cytokinin receptors were shown to be localized predominantly in the membrane of the endoplasmic reticulum (ER) and to possess some features, such as their pH activity profile, typical for intracellular proteins. Very recently, new data corroborating the functionality of ER-located cytokinin receptors were reported. However, other work argued for cytokinin perception to occur at the plasma membrane (PM). Here, we discuss in detail these partially conflicting data and present an integrative model for cytokinin perception and signaling. In our opinion, the prevailing evidence argues for the ER being the predominant site of cytokinin signal perception but also that signal initiation at the PM might be relevant in some circumstances as well. The roles of these pathways in long-distance, paracrine and autocrine cytokinin signaling are discussed.
Collapse
Affiliation(s)
- Georgy A Romanov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, Moscow, 127276, Russia
| | - Sergey N Lomin
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, Moscow, 127276, Russia
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, Berlin, D-14195, Germany
| |
Collapse
|
57
|
Mayta ML, Lodeyro AF, Guiamet JJ, Tognetti VB, Melzer M, Hajirezaei MR, Carrillo N. Expression of a Plastid-Targeted Flavodoxin Decreases Chloroplast Reactive Oxygen Species Accumulation and Delays Senescence in Aging Tobacco Leaves. FRONTIERS IN PLANT SCIENCE 2018; 9:1039. [PMID: 30065745 PMCID: PMC6056745 DOI: 10.3389/fpls.2018.01039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/26/2018] [Indexed: 05/02/2023]
Abstract
Leaf senescence is a concerted physiological process involving controlled degradation of cellular structures and reallocation of breakdown products to other plant organs. It is accompanied by increased production of reactive oxygen species (ROS) that are proposed to signal cell death, although both the origin and the precise role of ROS in the execution of this developmental program are still poorly understood. To investigate the contribution of chloroplast-associated ROS to natural leaf senescence, we used tobacco plants expressing a plastid-targeted flavodoxin, an electron shuttle flavoprotein present in prokaryotes and algae. When expressed in plants, flavodoxin specifically prevents ROS formation in chloroplasts during stress situations. Senescence symptoms were significantly mitigated in these transformants, with decreased accumulation of chloroplastic ROS and differential preservation of chlorophylls, carotenoids, protein contents, cell and chloroplast structures, membrane integrity and cell viability. Flavodoxin also improved maintenance of chlorophyll-protein complexes, photosynthetic electron flow, CO2 assimilation, central metabolic routes and levels of bioactive cytokinins and auxins in aging leaves. Delayed induction of senescence-associated genes indicates that the entire genetic program of senescence was affected by flavodoxin. The results suggest that ROS generated in chloroplasts are involved in the regulation of natural leaf senescence.
Collapse
Affiliation(s)
- Martín L. Mayta
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Anabella F. Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan J. Guiamet
- Instituto de Fisiología Vegetal (INFIVE–UNLP/CONICET), La Plata, Argentina
| | - Vanesa B. Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Seeland, Germany
| | - Mohammad R. Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Seeland, Germany
- *Correspondence: Mohammad R. Hajirezaei, Néstor Carrillo,
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- *Correspondence: Mohammad R. Hajirezaei, Néstor Carrillo,
| |
Collapse
|
58
|
Vondrakova Z, Dobrev PI, Pesek B, Fischerova L, Vagner M, Motyka V. Profiles of Endogenous Phytohormones Over the Course of Norway Spruce Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1283. [PMID: 30237806 PMCID: PMC6136392 DOI: 10.3389/fpls.2018.01283] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/16/2018] [Indexed: 05/19/2023]
Abstract
Conifer somatic embryogenesis (SE) is a process driven by exogenously supplied plant growth regulators (PGRs). Exogenous PGRs and endogenous phytohormones trigger particular ontogenetic events. Complex mechanisms involving a number of endogenous phytohormones control the differentiation of cells and tissues, as well as the establishment of structures and organs. Most of the mechanisms and hormonal functions in the SE of conifers have not yet been described. With the aim to better understand these mechanisms, we provided detailed analysis of the spectrum of endogenous phytohormones over the course of SE in Norway spruce (Picea abies). Concentrations of endogenous phytohormones including auxins, cytokinins (CKs), abscisic acid (ABA), jasmonates, and salicylic acid (SA) in somatic P. abies embryos were analyzed by HPLC-ESI-MS/MS. The results revealed that the concentrations of particular phytohormone classes varied substantially between proliferation, maturation, desiccation, and germination. Endogenous ABA showed a maximum concentration at the maturation stage, which reflected the presence of exogenous ABA in the medium and demonstrated its efficient perception by the embryos as a prerequisite for their further development. Auxins also had concentration maxima at the maturation stage, suggesting a role in embryo polarization. Endogenous jasmonates were detected in conifer somatic embryos for the first time, and reached maxima at germination. According to our knowledge, we have presented evidence for the involvement of the non-indole auxin phenylacetic acid, cis-zeatin- and dihydrozeatin-type CKs and SA in SE for the first time. The presented results represent the currently most comprehensive overview of plant hormone levels in embryos throughout the whole process of conifer SE. The differences in concentrations of various classes of phytohormones over the proliferation, maturation, desiccation, and germination in somatic P. abies embryos clearly indicate correlations between endogenous phytohormone profiles and particular developmental stages of the SE of conifers.
Collapse
Affiliation(s)
- Zuzana Vondrakova
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Bedrich Pesek
- Laboratory of Mass Spectrometry, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Lucie Fischerova
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Vagner
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Vaclav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Vaclav Motyka,
| |
Collapse
|