51
|
Cui Y, Dong H, Ma Y, Zhang D. Strategies for Applying Nonhomologous End Joining-Mediated Genome Editing in Prokaryotes. ACS Synth Biol 2019; 8:2194-2202. [PMID: 31525995 DOI: 10.1021/acssynbio.9b00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emergence of genome editing technology based on the CRISPR/Cas system enabled revolutionary progress in genetic engineering. Double-strand breaks (DSBs), which can be induced by the CRISPR/Cas9 system, cause serious DNA damage that can be repaired by a homologous recombination (HR) system or the nonhomologous end joining (NHEJ) pathway. However, many bacterial species have a very weak HR system. Thus, the NHEJ pathway can be used in prokaryotes. Starting with a brief introduction of the mechanism of the NHEJ pathway, this review focuses on current research and details of applications of NHEJ in eukaryotes, which forms the theoretical basis for the application of the NHEJ system in prokaryotes.
Collapse
|
52
|
Pixley KV, Falck-Zepeda JB, Giller KE, Glenna LL, Gould F, Mallory-Smith CA, Stelly DM, Stewart CN. Genome Editing, Gene Drives, and Synthetic Biology: Will They Contribute to Disease-Resistant Crops, and Who Will Benefit? ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:165-188. [PMID: 31150590 DOI: 10.1146/annurev-phyto-080417-045954] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Genetically engineered crops have been grown for more than 20 years, resulting in widespread albeit variable benefits for farmers and consumers. We review current, likely, and potential genetic engineering (GE) applications for the development of disease-resistant crop cultivars. Gene editing, gene drives, and synthetic biology offer novel opportunities to control viral, bacterial, and fungal pathogens, parasitic weeds, and insect vectors of plant pathogens. We conclude that there will be no shortage of GE applications totackle disease resistance and other farmer and consumer priorities for agricultural crops. Beyond reviewing scientific prospects for genetically engineered crops, we address the social institutional forces that are commonly overlooked by biological scientists. Intellectual property regimes, technology regulatory frameworks, the balance of funding between public- and private-sector research, and advocacy by concerned civil society groups interact to define who uses which GE technologies, on which crops, and for the benefit of whom. Ensuring equitable access to the benefits of genetically engineered crops requires affirmative policies, targeted investments, and excellent science.
Collapse
Affiliation(s)
- Kevin V Pixley
- International Maize and Wheat Improvement Center (CIMMYT), 56237 Texcoco, Mexico;
| | - Jose B Falck-Zepeda
- International Food Policy Research Institute (IFPRI), Washington, DC 20005-3915, USA
| | - Ken E Giller
- Plant Production Systems Group, Wageningen University & Research (WUR), 6700 AK Wageningen, The Netherlands
| | - Leland L Glenna
- Department of Agricultural Economics, Sociology, and Education, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Fred Gould
- Genetic Engineering and Society Center and Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Carol A Mallory-Smith
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843-2474, USA
| | - C Neal Stewart
- Department of Plant Sciences and Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
53
|
Razzaq A, Saleem F, Kanwal M, Mustafa G, Yousaf S, Imran Arshad HM, Hameed MK, Khan MS, Joyia FA. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox. Int J Mol Sci 2019; 20:E4045. [PMID: 31430902 PMCID: PMC6720679 DOI: 10.3390/ijms20164045] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Increasing agricultural productivity via modern breeding strategies is of prime interest to attain global food security. An array of biotic and abiotic stressors affect productivity as well as the quality of crop plants, and it is a primary need to develop crops with improved adaptability, high productivity, and resilience against these biotic/abiotic stressors. Conventional approaches to genetic engineering involve tedious procedures. State-of-the-art OMICS approaches reinforced with next-generation sequencing and the latest developments in genome editing tools have paved the way for targeted mutagenesis, opening new horizons for precise genome engineering. Various genome editing tools such as transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and meganucleases (MNs) have enabled plant scientists to manipulate desired genes in crop plants. However, these approaches are expensive and laborious involving complex procedures for successful editing. Conversely, CRISPR/Cas9 is an entrancing, easy-to-design, cost-effective, and versatile tool for precise and efficient plant genome editing. In recent years, the CRISPR/Cas9 system has emerged as a powerful tool for targeted mutagenesis, including single base substitution, multiplex gene editing, gene knockouts, and regulation of gene transcription in plants. Thus, CRISPR/Cas9-based genome editing has demonstrated great potential for crop improvement but regulation of genome-edited crops is still in its infancy. Here, we extensively reviewed the availability of CRISPR/Cas9 genome editing tools for plant biotechnologists to target desired genes and its vast applications in crop breeding research.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan
| | - Mehak Kanwal
- Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box 128, Faisalabad 38000, Pakistan
| | - Ghulam Mustafa
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan
| | - Sumaira Yousaf
- Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box 128, Faisalabad 38000, Pakistan
| | | | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Sarwar Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan
| | - Faiz Ahmad Joyia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan.
| |
Collapse
|
54
|
Shameer K, Naika MB, Shafi KM, Sowdhamini R. Decoding systems biology of plant stress for sustainable agriculture development and optimized food production. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 145:19-39. [DOI: 10.1016/j.pbiomolbio.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/23/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
|
55
|
Jeena GS, Kumar S, Shukla RK. Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants. PLANT MOLECULAR BIOLOGY 2019; 100:351-365. [PMID: 31030374 DOI: 10.1007/s11103-019-00872-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/05/2019] [Indexed: 05/21/2023]
Abstract
Present review describes the structure, evolution, transport mechanism and physiological functions of SWEETs. Their application using TALENs and CRISPR/CAS9 based genomic editing approach is discussed. Sugars Will Eventually be Exported Transporters (SWEET) proteins were first identified in plants as the novel family of sugar transporters which mediates the translocation of sugars across cell membranes. The SWEET family of sugar transporters is unique in terms of their structure which contains seven predicted transmembrane domains with two internal triple-helix bundles which possibly originate due to prokaryotic gene duplication. SWEETs perform diverse physiological functions such as pollen nutrition, nectar secretion, seed filling, phloem loading, and pathogen nutrition which we have discussed in the present review. We also discuss how transcriptional activator-like effector nucleases (TALENs) and CRISPR/CAS9 genome editing tools are used to engineer SWEET mutants which modulate pathogen resistance in plants and its applications in the field of agriculture. The expression of SWEETs promises to implement insights into many other cellular transport mechanisms. To conclude, the present review highlights the recent aspects which will further develop better understanding of molecular evolution, structure, and function of SWEET transporters in plants.
Collapse
Affiliation(s)
- Gajendra Singh Jeena
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Sunil Kumar
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Rakesh Kumar Shukla
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India.
| |
Collapse
|
56
|
Zhang T, Zhao Y, Ye J, Cao X, Xu C, Chen B, An H, Jiao Y, Zhang F, Yang X, Zhou G. Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1185-1187. [PMID: 30785668 PMCID: PMC6576088 DOI: 10.1111/pbi.13095] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/20/2019] [Accepted: 02/13/2019] [Indexed: 05/18/2023]
Affiliation(s)
- Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouGuangdongChina
| | - Yaling Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| | - Jiajie Ye
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| | - Xue Cao
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| | - Chenhui Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| | - Hong An
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Yuting Jiao
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| | - Fushun Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| |
Collapse
|
57
|
Kis A, Hamar É, Tholt G, Bán R, Havelda Z. Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1004-1006. [PMID: 30633425 PMCID: PMC6523583 DOI: 10.1111/pbi.13077] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/04/2018] [Accepted: 12/31/2018] [Indexed: 05/18/2023]
Affiliation(s)
- András Kis
- National Agricultural Research and Innovation CentreAgricultural Biotechnology InstituteGödöllőHungary
| | - Éva Hamar
- National Agricultural Research and Innovation CentreAgricultural Biotechnology InstituteGödöllőHungary
- Georgikon FacultyFestetics Doctoral SchoolUniversity of PannoniaKeszthelyHungary
| | - Gergely Tholt
- Plant Protection InstituteCentre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary
- Department of Systematic Zoology and EcologyFaculty of ScienceInstitute of BiologyEötvös Loránd UniversityBudapestHungary
| | - Rita Bán
- Plant Protection InstituteFaculty of Agricultural and Environmental SciencesSzent István UniversityGödöllőHungary
| | - Zoltán Havelda
- National Agricultural Research and Innovation CentreAgricultural Biotechnology InstituteGödöllőHungary
| |
Collapse
|
58
|
Hameed A, Shan-E-Ali Zaidi S, Sattar MN, Iqbal Z, Tahir MN. CRISPR technology to combat plant RNA viruses: A theoretical model for Potato virus Y (PVY) resistance. Microb Pathog 2019; 133:103551. [PMID: 31125685 DOI: 10.1016/j.micpath.2019.103551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/17/2019] [Indexed: 12/26/2022]
Abstract
RNA viruses are the most diverse phytopathogens which cause severe epidemics in important agricultural crops and threaten the global food security. Being obligatory intracellular pathogens, these viruses have developed fine-tuned evading mechanisms and are non-responsive to most of the prophylactic treatments. Additionally, their sprint ability to overcome host defense demands a broad-spectrum and durable mechanism of resistance. In context of CRISPR-Cas discoveries, some variants of Cas effectors have been characterized as programmable RNA-guided RNases in the microbial genomes and could be reprogramed in mammalian and plant cells with guided RNase activity. Recently, the RNA variants of CRISPR-Cas systems have been successfully employed in plants to engineer resistance against RNA viruses. Some variants of CRISPR-Cas9 have been tamed either for directly targeting plant RNA viruses' genome or through targeting the host genes/factors assisting in viral proliferation. The new frontiers in CRISPR-Cas discoveries, and more importantly shifting towards RNA targeting will pyramid the opportunities in plant virus research. The current review highlights the probable implications of CRISPR-Cas system to confer the pathogen-derived or host-mediated resistance against phytopathogenic RNA viruses. Furthermore, a multiplexed CRISPR-Cas13a methodology is proposed here to combat Potato virus Y (PVY); a globally diverse phytopathogen infecting multiple crops.
Collapse
Affiliation(s)
- Amir Hameed
- Akhuwat Faisalabad Institute of Research Science and Technology, Faisalabad, Pakistan; Department of Bioinformatics & Biotechnology, Government College University, Allama Iqbal Road, Faisalabad, Pakistan.
| | | | - Muhammad Naeem Sattar
- Department of Biotechnology, College of Agriculture and Food Science, King Faisal University, Box 400, Al-Ahsa, 3192, Saudi Arabia
| | - Zafar Iqbal
- Department of Plant Pathology, University of Florida, Gainesville, 32611, FL, USA
| | | |
Collapse
|
59
|
Mushtaq M, Sakina A, Wani SH, Shikari AB, Tripathi P, Zaid A, Galla A, Abdelrahman M, Sharma M, Singh AK, Salgotra RK. Harnessing Genome Editing Techniques to Engineer Disease Resistance in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:550. [PMID: 31134108 PMCID: PMC6514154 DOI: 10.3389/fpls.2019.00550] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/10/2019] [Indexed: 05/21/2023]
Abstract
Modern genome editing (GE) techniques, which include clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system, transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs) and LAGLIDADG homing endonucleases (meganucleases), have so far been used for engineering disease resistance in crops. The use of GE technologies has grown very rapidly in recent years with numerous examples of targeted mutagenesis in crop plants, including gene knockouts, knockdowns, modifications, and the repression and activation of target genes. CRISPR/Cas9 supersedes all other GE techniques including TALENs and ZFNs for editing genes owing to its unprecedented efficiency, relative simplicity and low risk of off-target effects. Broad-spectrum disease resistance has been engineered in crops by GE of either specific host-susceptibility genes (S gene approach), or cleaving DNA of phytopathogens (bacteria, virus or fungi) to inhibit their proliferation. This review focuses on different GE techniques that can potentially be used to boost molecular immunity and resistance against different phytopathogens in crops, ultimately leading to the development of promising disease-resistant crop varieties.
Collapse
Affiliation(s)
- Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Aafreen Sakina
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Asif B. Shikari
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prateek Tripathi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Aravind Galla
- Department of Entomology, University of Arkansas, Fayetteville, AR, United States
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Sciences, Aswan University, Aswan, Egypt
| | - Manmohan Sharma
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Anil Kumar Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Romesh Kumar Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| |
Collapse
|
60
|
Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:667-697. [PMID: 30835493 DOI: 10.1146/annurev-arplant-050718-100049] [Citation(s) in RCA: 637] [Impact Index Per Article: 127.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Enhanced agricultural production through innovative breeding technology is urgently needed to increase access to nutritious foods worldwide. Recent advances in CRISPR/Cas genome editing enable efficient targeted modification in most crops, thus promising to accelerate crop improvement. Here, we review advances in CRISPR/Cas9 and its variants and examine their applications in plant genome editing and related manipulations. We highlight base-editing tools that enable targeted nucleotide substitutions and describe the various delivery systems, particularly DNA-free methods, that have linked genome editing with crop breeding. We summarize the applications of genome editing for trait improvement, development of techniques for fine-tuning gene regulation, strategies for breeding virus resistance, and the use of high-throughput mutant libraries. We outline future perspectives for genome editing in plant synthetic biology and domestication, advances in delivery systems, editing specificity, homology-directed repair, and gene drives. Finally, we discuss the challenges and opportunities for precision plant breeding and its bright future in agriculture.
Collapse
Affiliation(s)
- Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Rui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
- University of Chinese Academy of Sciences, Beijing, China 100864
| |
Collapse
|
61
|
Naqvi RZ, Zaidi SSEA, Mukhtar MS, Amin I, Mishra B, Strickler S, Mueller LA, Asif M, Mansoor S. Transcriptomic analysis of cultivated cotton Gossypium hirsutum provides insights into host responses upon whitefly-mediated transmission of cotton leaf curl disease. PLoS One 2019; 14:e0210011. [PMID: 30730891 PMCID: PMC6366760 DOI: 10.1371/journal.pone.0210011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/14/2018] [Indexed: 11/18/2022] Open
Abstract
Cotton is a commercial and economically important crop that generates billions of dollars in annual revenue worldwide. However, cotton yield is affected by a sap-sucking insect Bemisia tabaci (whitefly), and whitefly-borne cotton leaf curl disease (CLCuD). The causative agent of devastating CLCuD is led by the viruses belonging to the genus Begomovirus (family Geminiviridae), collectively called cotton leaf curl viruses. Unfortunately, the extensively cultivated cotton (Gossypium hirsutum) species are highly susceptible and vulnerable to CLCuD. Yet, the concomitant influence of whitefly and CLCuD on the susceptible G. hirsutum transcriptome has not been interpreted. In the present study we have employed an RNA Sequencing (RNA-Seq) transcriptomics approach to explore the differential gene expression in susceptible G. hirsutum variety upon infection with viruliferous whiteflies. Comparative RNA-Seq of control and CLCuD infected plants was done using Illumina HiSeq 2500. This study yielded 468 differentially expressed genes (DEGs). Among them, we identified 220 up and 248 downregulated DEGs involved in disease responses and pathogen defense. We selected ten genes for downstream RT-qPCR analyses on two cultivars, Karishma and MNH 786 that are susceptible to CLCuD. We observed a similar expression pattern of these genes in both susceptible cultivars that was also consistent with our transcriptome data further implying a wider application of our global transcription study on host susceptibility to CLCuD. We next performed weighted gene co-expression network analysis that revealed six modules. This analysis also identified highly co-expressed genes as well as 55 hub genes that co-express with ≥ 50 genes. Intriguingly, most of these hub genes are shown to be downregulated and enriched in cellular processes. Under-expression of such highly co-expressed genes suggests their roles in favoring the virus and enhancing plant susceptibility to CLCuD. We also discuss the potential mechanisms governing the establishment of disease susceptibility. Overall, our study provides a comprehensive differential gene expression analysis of G. hirsutum under whitefly-mediated CLCuD infection. This vital study will advance the understanding of simultaneous effect of whitefly and virus on their host and aid in identifying important G. hirsutum genes which intricate in its susceptibility to CLCuD.
Collapse
Affiliation(s)
- Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - Syed Shan-e-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Susan Strickler
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - Lukas A. Mueller
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- * E-mail:
| |
Collapse
|
62
|
Schmitt-Keichinger C. Manipulating Cellular Factors to Combat Viruses: A Case Study From the Plant Eukaryotic Translation Initiation Factors eIF4. Front Microbiol 2019; 10:17. [PMID: 30804892 PMCID: PMC6370628 DOI: 10.3389/fmicb.2019.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Genes conferring resistance to plant viruses fall in two categories; the dominant genes that mostly code for proteins with a nucleotide binding site and leucine rich repeats (NBS-LRR), and that directly or indirectly, recognize viral avirulence factors (Avr), and the recessive genes. The latter provide a so-called recessive resistance. They represent roughly half of the known resistance genes and are alleles of genes that play an important role in the virus life cycle. Conversely, all cellular genes critical for the viral infection virtually represent recessive resistance genes. Based on the well-documented case of recessive resistance mediated by eukaryotic translation initiation factors of the 4E/4G family, this review is intended to summarize the possible approaches to control viruses via their host interactors. Classically, resistant crops have been developed through introgression of natural variants of the susceptibility factor from compatible relatives or by random mutagenesis and screening. Transgenic methods have also been applied to engineer improved crops by overexpressing the translation factor either in its natural form or after directed mutagenesis. More recently, innovative approaches like silencing or genome editing have proven their great potential in model and crop plants. The advantages and limits of these different strategies are discussed. This example illustrates the need to identify and characterize more host factors involved in virus multiplication and to assess their application potential in the control of viral diseases.
Collapse
|
63
|
Tripathi JN, Ntui VO, Ron M, Muiruri SK, Britt A, Tripathi L. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Biol 2019; 2:46. [PMID: 30729184 PMCID: PMC6355771 DOI: 10.1038/s42003-019-0288-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Presence of the integrated endogenous banana streak virus (eBSV) in the B genome of plantain (AAB) is a major challenge for breeding and dissemination of hybrids. As the eBSV activates into infectious viral particles under stress, the progenitor Musa balbisiana and its derivants, having at least one B genome, cannot be used as parents for crop improvement. Here, we report a strategy to inactivate the eBSV by editing the virus sequences. The regenerated genome-edited events of Gonja Manjaya showed mutations in the targeted sites with the potential to prevent proper transcription or/and translational into functional viral proteins. Seventy-five percent of the edited events remained asymptomatic in comparison to the non-edited control plants under water stress conditions, confirming inactivation of eBSV into infectious viral particles. This study paves the way for the improvement of B genome germplasm and its use in breeding programs to produce hybrids that can be globally disseminated.
Collapse
Affiliation(s)
| | - Valentine O. Ntui
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Mily Ron
- Department of Plant Biology, University of California, Davis, CA USA
| | - Samwel K. Muiruri
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Anne Britt
- Department of Plant Biology, University of California, Davis, CA USA
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| |
Collapse
|
64
|
Bao A, Burritt DJ, Chen H, Zhou X, Cao D, Tran LSP. The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol 2019; 39:321-336. [PMID: 30646772 DOI: 10.1080/07388551.2018.1554621] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated protein9) system is an RNA-guided genome editing tool that consists of a Cas9 nuclease and a single-guide RNA (sgRNA). By base-pairing with a DNA target sequence, the sgRNA enables Cas9 to recognize and cut a specific target DNA sequence, generating double strand breaks (DSBs) that trigger cell repair mechanisms and mutations at or near the DSBs sites. Since its discovery, the CRISPR/Cas9 system has revolutionized genome editing and is now becoming widely utilized to edit the genomes of a diverse range of crop plants. In this review, we present an overview of the CRISPR/Cas9 system itself, including its mechanism of action, system construction strategies, and the screening methods used to identify mutants containing edited genes. We evaluate recent examples of the use of CRISPR/Cas9 for crop plant improvement, and research into the function(s) of genes involved in determining crop yields, quality, environmental stress tolerance/resistance, regulation of gene transcription and translation, and the construction of mutant libraries and production of transgene-free genome-edited crops. In addition, challenges and future opportunities for the use of the CRISPR/Cas9 system in crop breeding are discussed.
Collapse
Affiliation(s)
- Aili Bao
- a Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Wuhan , China
| | - David J Burritt
- b Department of Botany , University of Otago , Dunedin , New Zealand
| | - Haifeng Chen
- a Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Wuhan , China
| | - Xinan Zhou
- a Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Wuhan , China
| | - Dong Cao
- a Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Wuhan , China
| | - Lam-Son Phan Tran
- c Institute of Research and Development, Duy Tan University , Da Nang, Vietnam.,d Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science , Yokohama , Japan
| |
Collapse
|
65
|
Klimek-Chodacka M, Oleszkiewicz T, Baranski R. Visual Assay for Gene Editing Using a CRISPR/Cas9 System in Carrot Cells. Methods Mol Biol 2019; 1917:203-215. [PMID: 30610638 DOI: 10.1007/978-1-4939-8991-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The development of the Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas9) system has advanced genome editing and has become widely adopted for this purpose in many species. Its efficient use requires the method adjustment and optimization. Here, we show the use of a model carrot callus system for demonstrating gene editing via CRISPR/Cas9 targeted mutagenesis. The system relies on the utilization of carrot tissue accumulating anthocyanin pigments responsible for a deep purple cell color and generation of knockout mutations in the flavanone-3-hydroxylase (F3H) gene in the anthocyanin biosynthesis pathway. F3H mutant cells targeted by Cas9/gRNA complexes are not able to synthesize anthocyanins and remain white, easily visually distinguished from purple wild-type cells. Mutations are either small indels or larger chromosomal deletions that can be identified by restriction fragment analysis and sequencing. This feasible system can also be applied for validating efficiency of CRISPR/Cas9 vectors.
Collapse
Affiliation(s)
- Magdalena Klimek-Chodacka
- Faculty of Biotechnology and Horticulture, Institute of Plant Biology and Biotechnology, University of Agriculture in Krakow, Krakow, Poland.
| | - Tomasz Oleszkiewicz
- Faculty of Biotechnology and Horticulture, Institute of Plant Biology and Biotechnology, University of Agriculture in Krakow, Krakow, Poland
| | - Rafal Baranski
- Faculty of Biotechnology and Horticulture, Institute of Plant Biology and Biotechnology, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
66
|
Ali Z, Zaidi SSEA, Tashkandi M, Mahfouz MM. A Simplified Method to Engineer CRISPR/Cas9-Mediated Geminivirus Resistance in Plants. Methods Mol Biol 2019; 2028:167-183. [PMID: 31228115 DOI: 10.1007/978-1-4939-9635-3_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Throughout the world, geminiviruses cause devastating losses in economically important crops, including tomato, cotton, cassava, potato, chili, and cucumber; however, control mechanisms such as genetic resistance remain expensive and ineffective. CRISPR/Cas9 is an adaptive immunity mechanism used by prokaryotes to defend against invading nucleic acids of phages and plasmids. The CRISPR/Cas9 system has been harnessed for targeted genome editing in a variety of eukaryotic species, and in plants, CRISPR/Cas9 has been used to modify or introduce many traits, including virus resistance. Recently, we demonstrated that the CRISPR/Cas9 system could be used to engineer plant immunity against geminiviruses by directly targeting the viral genome for degradation. In this chapter, we describe a detailed method for engineering CRISPR/Cas9-mediated resistance against geminiviruses. This method may provide broad, durable viral resistance, as it can target conserved regions of the viral genome and can also be customized to emerging viral variants. Moreover, this method can be used in many crop species, as it requires little or no knowledge of the host plant's genome.
Collapse
Affiliation(s)
- Zahir Ali
- Laboratory for Genome Engineering, Division of Environmental and Biological Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Syed Shan-E-Ali Zaidi
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Manal Tashkandi
- Laboratory for Genome Engineering, Division of Environmental and Biological Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, Division of Environmental and Biological Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
67
|
Mahas A, Ali Z, Tashkandi M, Mahfouz MM. Virus-Mediated Genome Editing in Plants Using the CRISPR/Cas9 System. Methods Mol Biol 2019; 1917:311-326. [PMID: 30610646 DOI: 10.1007/978-1-4939-8991-1_23] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Targeted modification of plant genomes is a powerful strategy for investigating and engineering cellular systems, paving the way for the discovery and development of important, novel agricultural traits. Cas9, an RNA-guided DNA endonuclease from the type II adaptive immune CRISPR system of the prokaryote Streptococcus pyogenes, has gained widespread popularity as a genome-editing tool for use in a wide array of cells and organisms, including model and crop plants. Effective genome engineering requires the delivery of the Cas9 protein and guide RNAs into target cells. However, in planta genome modification faces many hurdles, including the difficulty in efficiently delivering genome engineering reagents to the desired tissues. We recently developed a Tobacco rattle virus (TRV)-mediated genome engineering system for Nicotiana benthamiana. Using this platform, genome engineering reagents can be delivered into all plant parts in a simple, efficient manner, facilitating the recovery of progeny plants with the desired genomic modifications, thus bypassing the need for transformation and tissue culture. This platform expands the utility of the CRISPR/Cas9 system for in planta, targeted genome modification. Here, we provide a detailed protocol explaining the methodologies used to develop and implement TRV-mediated genome engineering in N. benthamiana. The protocol described here can be extended to any other plant species susceptible to systemic infection by TRV. However, this approach is not limited to vectors derived from TRV, as other RNA viruses could be used to develop similar delivery platforms.
Collapse
Affiliation(s)
- Ahmed Mahas
- Laboratory for Genome Engineering, Division of Environmental and Biological Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering, Division of Environmental and Biological Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Manal Tashkandi
- Laboratory for Genome Engineering, Division of Environmental and Biological Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, Division of Environmental and Biological Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
68
|
Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet‐Loedin I, Čermák T, Voytas DF, Choi I, Chadha‐Mohanty P. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1918-1927. [PMID: 29604159 PMCID: PMC6181218 DOI: 10.1111/pbi.12927] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/27/2018] [Accepted: 03/18/2018] [Indexed: 05/03/2023]
Abstract
Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059 V1060 V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV-susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV-resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV-resistant varieties.
Collapse
Affiliation(s)
- Anca Macovei
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
- Present address:
Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Neah R. Sevilla
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Christian Cantos
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
- Present address:
Huck Institute of the Life SciencesPennsylvania State UniversityUniversity ParkPAUSA
| | - Gilda B. Jonson
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Inez Slamet‐Loedin
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Tomáš Čermák
- Department of GeneticsCell Biology & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Daniel F. Voytas
- Department of GeneticsCell Biology & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Il‐Ryong Choi
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Prabhjit Chadha‐Mohanty
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| |
Collapse
|
69
|
Garcia-Ruiz H. Susceptibility Genes to Plant Viruses. Viruses 2018; 10:E484. [PMID: 30201857 PMCID: PMC6164914 DOI: 10.3390/v10090484] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 12/26/2022] Open
Abstract
Plant viruses use cellular factors and resources to replicate and move. Plants respond to viral infection by several mechanisms, including innate immunity, autophagy, and gene silencing, that viruses must evade or suppress. Thus, the establishment of infection is genetically determined by the availability of host factors necessary for virus replication and movement and by the balance between plant defense and viral suppression of defense responses. Host factors may have antiviral or proviral activities. Proviral factors condition susceptibility to viruses by participating in processes essential to the virus. Here, we review current advances in the identification and characterization of host factors that condition susceptibility to plant viruses. Host factors with proviral activity have been identified for all parts of the virus infection cycle: viral RNA translation, viral replication complex formation, accumulation or activity of virus replication proteins, virus movement, and virion assembly. These factors could be targets of gene editing to engineer resistance to plant viruses.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Nebraska Center for Virology, Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| |
Collapse
|
70
|
Zaidi SSEA, Mukhtar MS, Mansoor S. Genome Editing: Targeting Susceptibility Genes for Plant Disease Resistance. Trends Biotechnol 2018; 36:898-906. [PMID: 29752192 DOI: 10.1016/j.tibtech.2018.04.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/08/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
Abstract
Plant pathogens pose a major threat to crop productivity. Typically, phytopathogens exploit plants' susceptibility (S) genes to facilitate their proliferation. Disrupting these S genes may interfere with the compatibility between the host and the pathogens and consequently provide broad-spectrum and durable disease resistance. In the past, genetic manipulation of such S genes has been shown to confer disease resistance in various economically important crops. Recent studies have accomplished this task in a transgene-free system using new genome editing tools, including clustered regularly interspaced palindromic repeats (CRISPR). In this Opinion article, we focus on the use of genome editing to target S genes for the development of transgene-free and durable disease-resistant crop varieties.
Collapse
Affiliation(s)
- Syed Shan-E-Ali Zaidi
- Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium; National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan. http://twitter.com/@SyedShanZaidi
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA. http://twitter.com/@SMukhtarlab
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| |
Collapse
|
71
|
Langner T, Kamoun S, Belhaj K. CRISPR Crops: Plant Genome Editing Toward Disease Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:479-512. [PMID: 29975607 DOI: 10.1146/annurev-phyto-080417-050158] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genome editing by sequence-specific nucleases (SSNs) has revolutionized biology by enabling targeted modifications of genomes. Although routine plant genome editing emerged only a few years ago, we are already witnessing the first applications to improve disease resistance. In particular, CRISPR-Cas9 has democratized the use of genome editing in plants thanks to the ease and robustness of this method. Here, we review the recent developments in plant genome editing and its application to enhancing disease resistance against plant pathogens. In the future, bioedited disease resistant crops will become a standard tool in plant breeding.
Collapse
Affiliation(s)
- Thorsten Langner
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Khaoula Belhaj
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
72
|
Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A. The Enhancement of Plant Disease Resistance Using CRISPR/Cas9 Technology. FRONTIERS IN PLANT SCIENCE 2018; 9:1245. [PMID: 30197654 PMCID: PMC6117396 DOI: 10.3389/fpls.2018.01245] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/06/2018] [Indexed: 05/03/2023]
Abstract
Genome editing technologies have progressed rapidly and become one of the most important genetic tools in the implementation of pathogen resistance in plants. Recent years have witnessed the emergence of site directed modification methods using meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). Recently, CRISPR/Cas9 has largely overtaken the other genome editing technologies due to the fact that it is easier to design and implement, has a higher success rate, and is more versatile and less expensive. This review focuses on the recent advances in plant protection using CRISPR/Cas9 technology in model plants and crops in response to viral, fungal and bacterial diseases. As regards the achievement of viral disease resistance, the main strategies employed in model species such as Arabidopsis and Nicotiana benthamiana, which include the integration of CRISPR-encoding sequences that target and interfere with the viral genome and the induction of a CRISPR-mediated targeted mutation in the host plant genome, will be discussed. Furthermore, as regards fungal and bacterial disease resistance, the strategies based on CRISPR/Cas9 targeted modification of susceptibility genes in crop species such as rice, tomato, wheat, and citrus will be reviewed. After spending years deciphering and reading genomes, researchers are now editing and rewriting them to develop crop plants resistant to specific pests and pathogens.
Collapse
Affiliation(s)
- Virginia M. G. Borrelli
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittoria Brambilla
- Department of Agricultural and Environmental Sciences – Production, Territory, Agroenergy, University of Milan, Milan, Italy
| | - Peter Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Lyon, France
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
73
|
Zhang T, Zheng Q, Yi X, An H, Zhao Y, Ma S, Zhou G. Establishing RNA virus resistance in plants by harnessing CRISPR immune system. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1415-1423. [PMID: 29327438 PMCID: PMC6041442 DOI: 10.1111/pbi.12881] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 05/04/2023]
Abstract
Recently, CRISPR-Cas (clustered, regularly interspaced short palindromic repeats-CRISPR-associated proteins) system has been used to produce plants resistant to DNA virus infections. However, there is no RNA virus control method in plants that uses CRISPR-Cas system to target the viral genome directly. Here, we reprogrammed the CRISPR-Cas9 system from Francisella novicida to confer molecular immunity against RNA viruses in Nicotiana benthamiana and Arabidopsis plants. Plants expressing FnCas9 and sgRNA specific for the cucumber mosaic virus (CMV) or tobacco mosaic virus (TMV) exhibited significantly attenuated virus infection symptoms and reduced viral RNA accumulation. Furthermore, in the transgenic virus-targeting plants, the resistance was inheritable and the progenies showed significantly less virus accumulation. These data reveal that the CRISPR/Cas9 system can be used to produce plant that stable resistant to RNA viruses, thereby broadening the use of such technology for virus control in agricultural field.
Collapse
Affiliation(s)
- Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| | - Qiufeng Zheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| | - Xin Yi
- Key Laboratory of Pesticide and Chemical BiologyMinistry of EducationCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| | - Hong An
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Yaling Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| | - Siqi Ma
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlCollege of AgricultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| |
Collapse
|
74
|
Abstract
Maize lethal necrosis (MLN) is a disease of maize caused by coinfection of maize with maize chlorotic mottle virus (MCMV) and one of several viruses from the Potyviridae, such as sugarcane mosaic virus, maize dwarf mosaic virus, Johnsongrass mosaic virus or wheat streak mosaic virus. The coinfecting viruses act synergistically to result in frequent plant death or severely reduce or negligible yield. Over the past eight years, MLN has emerged in sub-Saharan East Africa, Southeast Asia, and South America, with large impacts on smallholder farmers. Factors associated with MLN emergence include multiple maize crops per year, the presence of maize thrips ( Frankliniella williamsi), and highly susceptible maize crops. Soil and seed transmission of MCMV may also play significant roles in development and perpetuation of MLN epidemics. Containment and control of MLN will likely require a multipronged approach, and more research is needed to identify and develop the best measures.
Collapse
Affiliation(s)
- Margaret G Redinbaugh
- Department of Plant Pathology, Ohio State University, Wooster, Ohio 44691, USA; .,United States Department of Agriculture, Agricultural Research Service, Wooster, Ohio 44691, USA;
| | - Lucy R Stewart
- Department of Plant Pathology, Ohio State University, Wooster, Ohio 44691, USA; .,United States Department of Agriculture, Agricultural Research Service, Wooster, Ohio 44691, USA;
| |
Collapse
|
75
|
Basu S, Rabara RC, Negi S, Shukla P. Engineering PGPMOs through Gene Editing and Systems Biology: A Solution for Phytoremediation? Trends Biotechnol 2018; 36:499-510. [DOI: 10.1016/j.tibtech.2018.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/17/2023]
|
76
|
Hübner A, Petersen B, Keil GM, Niemann H, Mettenleiter TC, Fuchs W. Efficient inhibition of African swine fever virus replication by CRISPR/Cas9 targeting of the viral p30 gene (CP204L). Sci Rep 2018; 8:1449. [PMID: 29362418 PMCID: PMC5780455 DOI: 10.1038/s41598-018-19626-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/05/2018] [Indexed: 12/30/2022] Open
Abstract
African swine fever is a devastating viral disease of domestic and wild pigs against which no vaccine or therapy is available. Therefore, we applied the CRISPR (clustered regularly interspaced short palindromic repeats) – Cas9 nuclease system to target the double-stranded DNA genome of African swine fever virus (ASFV). To this end, a permissive wild boar lung (WSL) cell line was modified by stable transfection with a plasmid encoding Cas9 and a guide RNA targeting codons 71 to 78 of the phosphoprotein p30 gene (CP204L) of ASFV. Due to targeted Cas9 cleavage of the virus genome, plaque formation of ASFV was completely abrogated and virus yields were reduced by four orders of magnitude. The specificity of these effects could be demonstrated by using a natural ASFV isolate and escape mutants possessing nucleotide exchanges within the target sequence, which were not inhibited in the Cas9-expressing cell line. Growth of the cell line was not affected by transgene expression which, as well as virus inhibition, proved to be stable over at least 50 passages. Thus, CRISPR-Cas9 mediated targeting of the ASFV p30 gene is a valid strategy to convey resistance against ASF infection, which may also be applied in its natural animal host.
Collapse
Affiliation(s)
- Alexandra Hübner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald-Insel Riems, Germany
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 31535, Neustadt, Germany
| | - Günther M Keil
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald-Insel Riems, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 31535, Neustadt, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
77
|
Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A. The Enhancement of Plant Disease Resistance Using CRISPR/Cas9 Technology. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30197654 DOI: 10.3389/fpls.2018.01245.s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Genome editing technologies have progressed rapidly and become one of the most important genetic tools in the implementation of pathogen resistance in plants. Recent years have witnessed the emergence of site directed modification methods using meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). Recently, CRISPR/Cas9 has largely overtaken the other genome editing technologies due to the fact that it is easier to design and implement, has a higher success rate, and is more versatile and less expensive. This review focuses on the recent advances in plant protection using CRISPR/Cas9 technology in model plants and crops in response to viral, fungal and bacterial diseases. As regards the achievement of viral disease resistance, the main strategies employed in model species such as Arabidopsis and Nicotiana benthamiana, which include the integration of CRISPR-encoding sequences that target and interfere with the viral genome and the induction of a CRISPR-mediated targeted mutation in the host plant genome, will be discussed. Furthermore, as regards fungal and bacterial disease resistance, the strategies based on CRISPR/Cas9 targeted modification of susceptibility genes in crop species such as rice, tomato, wheat, and citrus will be reviewed. After spending years deciphering and reading genomes, researchers are now editing and rewriting them to develop crop plants resistant to specific pests and pathogens.
Collapse
Affiliation(s)
- Virginia M G Borrelli
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittoria Brambilla
- Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy, University of Milan, Milan, Italy
| | - Peter Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Lyon, France
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
78
|
Mahas A, Neal Stewart C, Mahfouz MM. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation. Biotechnol Adv 2018; 36:295-310. [DOI: 10.1016/j.biotechadv.2017.11.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/03/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
|
79
|
Naqvi RZ, Zaidi SSEA, Akhtar KP, Strickler S, Woldemariam M, Mishra B, Mukhtar MS, Scheffler BE, Scheffler JA, Jander G, Mueller LA, Asif M, Mansoor S. Transcriptomics reveals multiple resistance mechanisms against cotton leaf curl disease in a naturally immune cotton species, Gossypium arboreum. Sci Rep 2017; 7:15880. [PMID: 29162860 PMCID: PMC5698292 DOI: 10.1038/s41598-017-15963-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
Cotton leaf curl disease (CLCuD), caused by cotton leaf curl viruses (CLCuVs), is among the most devastating diseases in cotton. While the widely cultivated cotton species Gossypium hirsutum is generally susceptible, the diploid species G. arboreum is a natural source for resistance against CLCuD. However, the influence of CLCuD on the G. arboreum transcriptome and the interaction of CLCuD with G. arboreum remains to be elucidated. Here we have used an RNA-Seq based study to analyze differential gene expression in G. arboreum under CLCuD infestation. G. arboreum plants were infested by graft inoculation using a CLCuD infected scion of G. hirsutum. CLCuD infested asymptomatic and symptomatic plants were analyzed with RNA-seq using an Illumina HiSeq. 2500. Data analysis revealed 1062 differentially expressed genes (DEGs) in G. arboreum. We selected 17 genes for qPCR to validate RNA-Seq data. We identified several genes involved in disease resistance and pathogen defense. Furthermore, a weighted gene co-expression network was constructed from the RNA-Seq dataset that indicated 50 hub genes, most of which are involved in transport processes and might have a role in the defense response of G. arboreum against CLCuD. This fundamental study will improve the understanding of virus-host interaction and identification of important genes involved in G. arboreum tolerance against CLCuD.
Collapse
Affiliation(s)
- Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
| | - Syed Shan-E-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
- AgroBioChem Department, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
| | - Khalid Pervaiz Akhtar
- Nuclear Institute for Agriculture & Biology (NIAB), Jhang Road, Faisalabad, Punjab, Pakistan
| | - Susan Strickler
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
| | - Melkamu Woldemariam
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
| | - Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit (USDA-ARS), Stoneville, MS, USA
| | - Jodi A Scheffler
- Crop Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Stoneville, MS, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
| | - Lukas A Mueller
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Punjab, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Punjab, Pakistan.
| |
Collapse
|
80
|
Jeon S, Lim JM, Lee HG, Shin SE, Kang NK, Park YI, Oh HM, Jeong WJ, Jeong BR, Chang YK. Current status and perspectives of genome editing technology for microalgae. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:267. [PMID: 29163669 PMCID: PMC5686953 DOI: 10.1186/s13068-017-0957-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/04/2017] [Indexed: 05/25/2023]
Abstract
Genome editing techniques are critical for manipulating genes not only to investigate their functions in biology but also to improve traits for genetic engineering in biotechnology. Genome editing has been greatly facilitated by engineered nucleases, dubbed molecular scissors, including zinc-finger nuclease (ZFN), TAL effector endonuclease (TALEN) and clustered regularly interspaced palindromic sequences (CRISPR)/Cas9. In particular, CRISPR/Cas9 has revolutionized genome editing fields with its simplicity, efficiency and accuracy compared to previous nucleases. CRISPR/Cas9-induced genome editing is being used in numerous organisms including microalgae. Microalgae have been subjected to extensive genetic and biological engineering due to their great potential as sustainable biofuel and chemical feedstocks. However, progress in microalgal engineering is slow mainly due to a lack of a proper transformation toolbox, and the same problem also applies to genome editing techniques. Given these problems, there are a few reports on successful genome editing in microalgae. It is, thus, time to consider the problems and solutions of genome editing in microalgae as well as further applications of this exciting technology for other scientific and engineering purposes.
Collapse
Affiliation(s)
- Seungjib Jeon
- Advanced Biomass Research and Development Center (ABC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Jong-Min Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Sung-Eun Shin
- LG Chem, 188 Munji-ro, Yuseong-gu, Daejeon, 34122 Republic of Korea
| | - Nam Kyu Kang
- Advanced Biomass Research and Development Center (ABC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Byeong-ryool Jeong
- Advanced Biomass Research and Development Center (ABC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Yong Keun Chang
- Advanced Biomass Research and Development Center (ABC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
81
|
Opportunities for genome editing in vegetable crops. Emerg Top Life Sci 2017; 1:193-207. [DOI: 10.1042/etls20170033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022]
Abstract
Vegetables include high-value crops with health-promoting effects and reduced environmental impact. The availability of genomic and biotechnological tools in certain species, coupled with the recent development of new breeding techniques based on precise editing of DNA, provides unique opportunities to finally take advantage of the past decades of detailed genetic analyses, thus making improvement of traits related to quality and stress tolerance achievable in a reasonable time frame. Recent reports of such approaches in vegetables illustrate the feasibility of obtaining multiple homozygous mutations in a single generation, heritable by the progeny, using stable or transient transformation approaches, which may not rely on the integration of unwanted foreign DNA. Application of these approaches to currently non-sequenced/tissue culture recalcitrant crops will contribute to meet the challenges posed by the increase in population and climate change.
Collapse
|
82
|
Fuchs M. Pyramiding resistance-conferring gene sequences in crops. Curr Opin Virol 2017; 26:36-42. [DOI: 10.1016/j.coviro.2017.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/26/2022]
|
83
|
Zubair M, Zaidi SSEA, Shakir S, Amin I, Mansoor S. An Insight into Cotton Leaf Curl Multan Betasatellite, the Most Important Component of Cotton Leaf Curl Disease Complex. Viruses 2017; 9:E280. [PMID: 28961220 PMCID: PMC5691632 DOI: 10.3390/v9100280] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 01/18/2023] Open
Abstract
Cotton leaf curl disease (CLCuD) is one of the most economically important diseases and is a constraint to cotton production in major producers, Pakistan and India. CLCuD is caused by monopartite plant viruses belonging to the family Geminiviridae (genus Begomovirus), in association with an essential, disease-specific satellite, Cotton leaf curl Multan betasatellite (CLCuMuB) belonging to a newly-established family Tolecusatellitidae (genus Betasatellite). CLCuMuB has a small genome (ca. 1350 nt) with a satellite conserved region, an adenine-rich region and a single gene that encodes for a multifunctional βC1 protein. CLCuMuB βC1 protein has a major role in pathogenicity and symptom determination, and alters several host cellular functions like autophagy, ubiquitination, and suppression of gene silencing, to assist CLCuD infectivity. Efficient trans-replication ability of CLCuMuB with several monopartite and bipartite begomoviruses, is also associated with the rapid evolution and spread of CLCuMuB. In this article we comprehensively reviewed the role of CLCuMuB in CLCuD, focusing on the βC1 functions and its interactions with host proteins.
Collapse
Affiliation(s)
- Muhammad Zubair
- National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650 Islamabad, Pakistan.
| | - Syed Shan-E-Ali Zaidi
- National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650 Islamabad, Pakistan.
- AgroBioChem Department, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Sara Shakir
- National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan.
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA.
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan.
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan.
| |
Collapse
|
84
|
Globus R, Qimron U. A technological and regulatory outlook on CRISPR crop editing. J Cell Biochem 2017; 119:1291-1298. [PMID: 28731201 DOI: 10.1002/jcb.26303] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022]
Abstract
Generating plants with increased yields while maintaining low production and maintenance costs is highly important since plants are the major food source for humans and animals, as well as important producers of chemicals, pharmaceuticals, and fuels. Gene editing approaches, particularly the CRISPR-Cas system, are the preferred methods for improving crops, enabling quick, robust, and accurate gene manipulation. Nevertheless, new breeds of genetically modified crops have initiated substantial debates concerning their biosafety, commercial use, and regulation. Here, we discuss the challenges facing genetic engineering of crops by CRISPR-cas, and highlight the pros and cons of using this tool.
Collapse
Affiliation(s)
- Rea Globus
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
85
|
Michelmore R, Coaker G, Bart R, Beattie G, Bent A, Bruce T, Cameron D, Dangl J, Dinesh-Kumar S, Edwards R, Eves-van den Akker S, Gassmann W, Greenberg JT, Hanley-Bowdoin L, Harrison RJ, Harvey J, He P, Huffaker A, Hulbert S, Innes R, Jones JDG, Kaloshian I, Kamoun S, Katagiri F, Leach J, Ma W, McDowell J, Medford J, Meyers B, Nelson R, Oliver R, Qi Y, Saunders D, Shaw M, Smart C, Subudhi P, Torrance L, Tyler B, Valent B, Walsh J. Foundational and Translational Research Opportunities to Improve Plant Health. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:515-516. [PMID: 28398839 PMCID: PMC5810936 DOI: 10.1094/mpmi-01-17-0010-cr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reader Comments | Submit a Comment The white paper reports the deliberations of a workshop focused on biotic challenges to plant health held in Washington, D.C. in September 2016. Ensuring health of food plants is critical to maintaining the quality and productivity of crops and for sustenance of the rapidly growing human population. There is a close linkage between food security and societal stability; however, global food security is threatened by the vulnerability of our agricultural systems to numerous pests, pathogens, weeds, and environmental stresses. These threats are aggravated by climate change, the globalization of agriculture, and an over-reliance on nonsustainable inputs. New analytical and computational technologies are providing unprecedented resolution at a variety of molecular, cellular, organismal, and population scales for crop plants as well as pathogens, pests, beneficial microbes, and weeds. It is now possible to both characterize useful or deleterious variation as well as precisely manipulate it. Data-driven, informed decisions based on knowledge of the variation of biotic challenges and of natural and synthetic variation in crop plants will enable deployment of durable interventions throughout the world. These should be integral, dynamic components of agricultural strategies for sustainable agriculture.
Collapse
Affiliation(s)
- Richard Michelmore
- 1 The Genome Center and Departments of Plant Sciences, Molecular & Cellular Biology, and Medical Microbiology & Immunology, University of California, Davis, CA, U.S.A
| | - Gitta Coaker
- 2 Department of Plant Pathology, University of California, Davis, CA, U.S.A
| | | | | | - Andrew Bent
- 5 University of Wisconsin, Madison, WI, U.S.A
| | | | | | - Jeffery Dangl
- 8 University of North Carolina, Chapel Hill, NC, U.S.A
| | | | - Rob Edwards
- 10 University of Newcastle, Newcastle upon Tyne, U.K
| | | | | | | | | | | | | | - Ping He
- 17 Texas A&M University, College Station, TX, U.S.A
| | | | - Scot Hulbert
- 19 Washington State University, Pullman, WA, U.S.A
| | - Roger Innes
- 20 Indiana University, Bloomigton, IN, U.S.A
| | | | | | | | | | - Jan Leach
- 24 Colorado State University, Fort Collins, CO, U.S.A
| | - Wenbo Ma
- 22 University of California, Riverside, CA, U.S.A
| | | | | | | | | | | | - Yiping Qi
- 29 East Carolina University, Greenville, NC, U.S.A
| | | | | | | | | | - Lesley Torrance
- 33 University of St. Andrews and James Hutton Institute, Fife, U.K
| | - Bret Tyler
- 34 Oregon State University, Corvallis, OR, U.S.A.; and
| | | | - John Walsh
- 35 University of Warwick, Wellesbourne, U.K
| |
Collapse
|
86
|
Weeks DP. Gene Editing in Polyploid Crops: Wheat, Camelina, Canola, Potato, Cotton, Peanut, Sugar Cane, and Citrus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:65-80. [PMID: 28712501 DOI: 10.1016/bs.pmbts.2017.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyploid crops make up a significant portion of the major food and fiber crops of the world and include wheat, potato, cotton, apple, peanut, citrus, and brassica oilseeds such as rape, canola, and Camelina. The presence of three sets of chromosomes in triploids, four sets in tetraploids, and six sets in hexaploids present significant challenges to conventional plant breeding and, potentially, to efficient use of rapidly emerging gene and genome-editing systems such as zinc finger nucleases, single-stranded oligonucleotides, TALE effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9). However, recent studies with each of these techniques in several polyploid crops have demonstrated facile editing of some or all of the genes targeted for modification on homeologous chromosomes. These modifications have allowed improvements in food nutrition, seed oil composition, disease resistance, weed protection, plant breeding procedures, and food safety. Plants and plant products exhibiting useful new traits created through gene editing but lacking foreign DNA may face reduced regulatory restrictions. Such plants can be obtained either by simply selecting for null segregants that have lost their editing transgenes during plant breeding or, even more attractively, by delivery of biodegradable Cas9/sgRNA ribonucleoprotein complexes (i.e., no DNA) into plant cells where they are expressed only transiently but allow for efficient gene editing-a system that has been recently demonstrated in at least two polyploid crops. Such systems that create precise mutations but leave no transgene footprint hold potential promise for assisting with the elimination or great diminution of regulatory processes that presently burden approvals of conventional transgenic crops.
Collapse
|
87
|
Khatodia S, Bhatotia K, Tuteja N. Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops. Bioengineered 2017; 8:274-279. [PMID: 28581909 PMCID: PMC5470520 DOI: 10.1080/21655979.2017.1297347] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 01/08/2023] Open
Abstract
Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9) system of targeted genome editing has already revolutionized the plant science research. This is a RNA guided programmable endonuclease based system composed of 2 components, the Cas9 nuclease and an engineered guide RNA targeting any DNA sequence of the form N20-NGG for novel genome editing applications. The CRISPR/Cas9 technology of targeted genome editing has been recently applied for imparting virus resistance in plants. The robustness, wide adaptability, and easy engineering of this system has proved its potential as an antiviral tool for plants. Novel DNA free genome editing by using the preassembled Cas9/gRNA ribonucleoprotein complex for development of virus resistance in any plant species have been prospected for the future. Also, in this review we have discussed the reports of CRISPR/Cas9 mediated virus resistance strategy against geminiviruses by targeting the viral genome and transgene free strategy against RNA viruses by targeting the host plant factors. In conclusion, CRISPR/Cas9 technology will provide a more durable and broad spectrum viral resistance in agriculturally important crops which will eventually lead to public acceptance and commercialization in the near future.
Collapse
Affiliation(s)
- Surender Khatodia
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India
| | - Kirti Bhatotia
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity University, Noida, India
| |
Collapse
|
88
|
Zaidi SSEA, Tashkandi M, Mahfouz MM. Engineering Molecular Immunity Against Plant Viruses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:167-186. [PMID: 28712496 DOI: 10.1016/bs.pmbts.2017.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genomic engineering has been used to precisely alter eukaryotic genomes at the single-base level for targeted gene editing, replacement, fusion, and mutagenesis, and plant viruses such as Tobacco rattle virus have been developed into efficient vectors for delivering genome-engineering reagents. In addition to altering the host genome, these methods can target pathogens to engineer molecular immunity. Indeed, recent studies have shown that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems that target the genomes of DNA viruses can interfere with viral activity and limit viral symptoms in planta, demonstrating the utility of this system for engineering molecular immunity in plants. CRISPR/Cas9 can efficiently target single and multiple viral infections and confer plant immunity. Here, we discuss the use of site-specific nucleases to engineer molecular immunity against DNA and RNA viruses in plants. We also explore how to address the potential challenges encountered when producing plants with engineered resistance to single and mixed viral infections.
Collapse
Affiliation(s)
- Syed Shan-E-Ali Zaidi
- Laboratory for Genome Engineering, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Manal Tashkandi
- Laboratory for Genome Engineering, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
89
|
Zaidi SSEA, Mansoor S. Viral Vectors for Plant Genome Engineering. FRONTIERS IN PLANT SCIENCE 2017; 8:539. [PMID: 28443125 PMCID: PMC5386974 DOI: 10.3389/fpls.2017.00539] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/27/2017] [Indexed: 05/19/2023]
Abstract
Recent advances in genome engineering (GE) has made it possible to precisely alter DNA sequences in plant cells, providing specifically engineered plants with traits of interest. Gene targeting efficiency depends on the delivery-method of both sequence-specific nucleases and repair templates, to plant cells. Typically, this is achieved using Agrobacterium mediated transformation or particle bombardment, both of which transform only a subset of cells in treated tissues. The alternate in planta approaches, stably integrating nuclease-encoding cassettes and repair templates into the plant genome, are time consuming, expensive and require extra regulations. More efficient GE reagents delivery methods are clearly needed if GE is to become routine, especially in economically important crops that are difficult to transform. Recently, autonomously replicating virus-based vectors have been demonstrated as efficient means of delivering GE reagents in plants. Both DNA viruses (Bean yellow dwarf virus, Wheat dwarf virus and Cabbage leaf curl virus) and RNA virus (Tobacco rattle virus) have demonstrated efficient gene targeting frequencies in model plants (Nicotiana benthamiana) and crops (potato, tomato, rice, and wheat). Here we discuss the recent advances using viral vectors for plant genome engineering, the current limitations and future directions.
Collapse
Affiliation(s)
- Syed Shan-e-Ali Zaidi
- Molecular Virology and Gene Silencing Laboratory, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Shahid Mansoor
- Molecular Virology and Gene Silencing Laboratory, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| |
Collapse
|
90
|
Zubair M, Zaidi SSEA, Shakir S, Farooq M, Amin I, Scheffler JA, Scheffler BE, Mansoor S. Multiple begomoviruses found associated with cotton leaf curl disease in Pakistan in early 1990 are back in cultivated cotton. Sci Rep 2017; 7:680. [PMID: 28386113 PMCID: PMC5429635 DOI: 10.1038/s41598-017-00727-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/10/2017] [Indexed: 11/09/2022] Open
Abstract
The first epidemic of cotton leaf curl disease (CLCuD) in early 1990's in the Indian subcontinent was associated with several distinct begomoviruses along with a disease-specific betasatellite. Resistant cotton varieties were introduced in late 1990's but soon resistance was broken and was associated with a single recombinant begomovirus named Burewala strain of Cotton leaf curl Kokhran virus that lacks a full complement of a gene encoding a transcription activator protein (TrAP). In order to understand the ongoing changes in CLCuD complex in Pakistan, CLCuD affected plants from cotton fields at Vehari were collected. Illumina sequencing was used to assess the diversity of CLCuD complex. At least three distinct begomoviruses characterized from the first epidemic; Cotton leaf curl Multan virus, Cotton leaf curl Kokhran virus and Cotton leaf curl Alabad virus, several distinct species of alphasatellites and cotton leaf curl Multan betasatellite were found associated with CLCuD. These viruses were also cloned and sequenced through Sanger sequencing to confirm the identity of the begomoviruses and that all clones possessed a full complement of the TrAP gene. A new strain of betasatellite was identified here and named CLCuMuBVeh. The implications of these findings in efforts to control CLCuD are discussed.
Collapse
Affiliation(s)
- Muhammad Zubair
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Syed Shan-E-Ali Zaidi
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Sara Shakir
- Centre for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Farooq
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Jodi A Scheffler
- USDA-ARS, Crop Genetics Research Unit, 141 Experiment Station Rd, Stoneville, MS, 38776, USA
| | - Brian E Scheffler
- USDA-ARS, Genomics and Bioinformatics Research Unit, 141 Experiment Station Rd, Stoneville, MS, 38776, USA
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.
| |
Collapse
|
91
|
Cardi T, D’Agostino N, Tripodi P. Genetic Transformation and Genomic Resources for Next-Generation Precise Genome Engineering in Vegetable Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:241. [PMID: 28275380 PMCID: PMC5319998 DOI: 10.3389/fpls.2017.00241] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/08/2017] [Indexed: 05/22/2023]
Abstract
In the frame of modern agriculture facing the predicted increase of population and general environmental changes, the securement of high quality food remains a major challenge to deal with. Vegetable crops include a large number of species, characterized by multiple geographical origins, large genetic variability and diverse reproductive features. Due to their nutritional value, they have an important place in human diet. In recent years, many crop genomes have been sequenced permitting the identification of genes and superior alleles associated with desirable traits. Furthermore, innovative biotechnological approaches allow to take a step forward towards the development of new improved cultivars harboring precise genome modifications. Sequence-based knowledge coupled with advanced biotechnologies is supporting the widespread application of new plant breeding techniques to enhance the success in modification and transfer of useful alleles into target varieties. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system, zinc-finger nucleases, and transcription activator-like effector nucleases represent the main methods available for plant genome engineering through targeted modifications. Such technologies, however, require efficient transformation protocols as well as extensive genomic resources and accurate knowledge before they can be efficiently exploited in practical breeding programs. In this review, we revise the state of the art in relation to availability of such scientific and technological resources in various groups of vegetables, describe genome editing results obtained so far and discuss the implications for future applications.
Collapse
Affiliation(s)
- Teodoro Cardi
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca per l’orticoltura, Pontecagnano FaianoItaly
| | | | | |
Collapse
|