51
|
Ma Q, Yi R, Li L, Liang Z, Zeng T, Zhang Y, Huang H, Zhang X, Yin X, Cai Z, Mu Y, Cheng Y, Zeng Q, Li X, Nian H. GsMATE encoding a multidrug and toxic compound extrusion transporter enhances aluminum tolerance in Arabidopsis thaliana. BMC PLANT BIOLOGY 2018; 18:212. [PMID: 30268093 PMCID: PMC6162897 DOI: 10.1186/s12870-018-1397-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/27/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Multidrug and toxic compound extrusion (MATE) transporters, which exist widely in plants, function as crucial regulators in plant resistance to aluminum (Al) toxicity by inducing citrate efflux. However, the functions of most MATE family members in soybean (Glycine soja) remain to be elucidated. RESULTS Expression pattern analysis showed that GsMATE was constitutively expressed in different soybean organs, with the highest level in root compared with those in stem, leaf and cotyledon. In addition, Al stress induced expression of GsMATE in soybean. Temporal analysis indicated that GsMATE expression was greatly enhanced by increasing concentrations of aluminum [Al3+] after short exposure, reaching the high levels detected in the BW69 (Al-resistant) and the JW81 (Al-sensitive) lines of Glycine soja of wild soybean at 6 h and 8 h, respectively. Furthermore, transient GsMATE expression in Arabidopsis protoplasts showed that GsMATE protein localized to the plasma membrane. Overexpression of GsMATE on an Arabidopsis columbia-0 (Col-0) background resulted in increased Al tolerance in transgenic plants. Analysis of hematoxylin staining showed that the roots of GsMATE transgenic lines were stained less intensely than those of the wild-type exposured to the same AlCl3 concentrations. Therefore, GsMATE enhanced the resistance of transgenic plants to Al toxicity by reducing Al accumulation in Arabidopsis roots. CONCLUSIONS In summary, our results indicate that GsMATE is responsive to aluminum stress and may participate in the regulation of sensitivity to Al toxicity in Arabidopsis. In addition, the GsMATE protein is an Al-induced citrate transporter of the MATE family and exerts an essential role in Al tolerance in Glycine soja.
Collapse
Affiliation(s)
- Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Rong Yi
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Lu Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Zhongyi Liang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Tingting Zeng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Yu Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - He Huang
- The Experimental Teaching Center of Public Basic Courses, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Xiao Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Xiangli Yin
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Yinghui Mu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Qiaoying Zeng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Guangdong Provincial Bioengineering Institute, Guangzhou, Guangdong 510316 People’s Republic of China
| | - Xiuping Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Guangdong AIB Polytechnic, Guangzhou, Guangdong 510316 People’s Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| |
Collapse
|
52
|
Parra-Almuna L, Diaz-Cortez A, Ferrol N, Mora MDLL. Aluminium toxicity and phosphate deficiency activates antioxidant systems and up-regulates expression of phosphate transporters gene in ryegrass (Lolium perenne L.) plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:445-454. [PMID: 30077920 DOI: 10.1016/j.plaphy.2018.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 05/28/2023]
Abstract
Soil acidity, associated with aluminium (Al) toxicity and low phosphorus (P) availability, is considered the most important problem for agricultural production. Even though the Al-P interaction has been widely investigated, the impact of P-nutrition on Al-toxicity still remains controversial and poorly understood. To elucidate further insights into the underlying mechanisms of this interaction in ryegrass (Lolium perenne L.), P uptake, antioxidant responses and the gene expression of phosphate transporters were determined. Two ryegrass cultivars with different Al resistances, the Al-tolerant Nui cultivar and the Al-sensitive Expo cultivar were hydroponically grown under low (16 μM) and optimal (100 μM) P doses for 16 days. After P treatments, plants were exposed to Al doses (0 and 200 μM) under acidic conditions (pH 4.8) for 24 h. Al and P accumulation were higher in the roots of Nui than that of Expo. Moreover, lower Al accumulation was found in shoots of Nui independent of P supplies. Oxidative stress induced by Al-toxicity and P-deficiency was more severe in the Al-sensitive Expo. Expression levels of L. perenne phosphate transporters were higher in Nui than they were in Expo. While LpPHT1 expression was up-regulated by P deficiency and Al toxicity in both cultivars, LpPHT4 expression only increased in the Al-tolerant cultivar. This report shows that the higher Al-tolerance of Nui can be attributed to a greater antioxidant system under both P conditions. The observation of higher P and Al accumulation in roots of Nui might indicate that the Al-tolerance of Nui is a consequence of Al immobilization by P mediated by the high expression of phosphate transporters.
Collapse
Affiliation(s)
- Leyla Parra-Almuna
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco, Chile; Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco, Chile
| | - Andrea Diaz-Cortez
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco, Chile
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Maria de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|