51
|
ROKADE JAYDIPJAYWANT, SAXENA VISHESHKUMAR, MARAPPAN GOPI, BHANJA SUBRATKUMAR, CHAUDHARY SANDEEPKUMAR, KOLLURI GAUTHAM, MADHESWARAN MONIKA. Effect of dietary betaine supplementation on egg quality, semen quality, hematology, fertility and hatchability in broiler breeders. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i7.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
An experiment was conducted to establish the growth response, egg quality, semen quality, hematological attributes, fertility and hatchability in broiler breeders supplemented with graded levels of betaine. The broiler breeders (CARIBRO-VISHAL) of about 38 weeks divided into four treatments viz. T1 (basal diet), T2 (T1 + 1 g), T3 (T1 + 2 g) and T4 (T1 + 3 g betaine/kg) consisting of 24 female birds and 6 male birds per treatment with three replicates of 8 female and 2 male birds each in completely randomized design. Hen day egg production (HDEP) was significantly increased in betaine supplemented groups. Semen concentration was found to be significantly improved following betaine supplementation with highest increment in T4 group. Mass motility in T3 group during 4th week of experimental trial was found to be significantly increased. In female birds, a significant difference in RBC count, PCV, MCH and MCHC was observed among the treatments during 2nd week of trial. Fertility and hatchability (TES: total eggs set; FES: fertile eggs set) was increased in betaine supplemented groups with highest increment in T4 treatment group. Total embryonic mortality was lowest for T4 treatment group. Thus, it can be concluded that dietary supplementation of betaine at 3 g/kg was helpful in improving the reproductive performance in broiler breeders.
Collapse
|
52
|
Le HH, Shakeri M, Suleria HAR, Zhao W, McQuade RM, Phillips DJ, Vidacs E, Furness JB, Dunshea FR, Artuso-Ponte V, Cottrell JJ. Betaine and Isoquinoline Alkaloids Protect against Heat Stress and Colonic Permeability in Growing Pigs. Antioxidants (Basel) 2020; 9:antiox9101024. [PMID: 33096723 PMCID: PMC7589639 DOI: 10.3390/antiox9101024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Heat stress (HS) compromises productivity of pork production, in part as a result of increased oxidative stress and inflammatory responses, particularly within the gastrointestinal tract. This study aimed to investigate whether plant-derived betaine and isoquinoline alkaloids could ameliorate HS in pigs. Fifty female Large White × Landrace grower pigs, which were acclimated to control (CON), control plus betaine (BET), or control plus isoquinoline alkaloids (IQA) diets for 14 days were then exposed to heat stress or thermoneutral condition. Both BET and IQA partially ameliorated increases in respiration rate (p = 0.013) and rectal temperature (p = 0.001) associated with HS conditions. Heat stress increased salivary cortisol concentrations and reduced plasma creatinine, lactate, and thyroid hormone concentrations. Heat stress increased colon FD4 permeability, which was reduced by IQA (p = 0.030). Heat stress increased inflammation in the jejunum and ileum, as indicated by elevated interleukin-1β (p = 0.022) in the jejunum and interleukin-1β (p = 0.004) and interleukin-8 (p = 0.001) in the ileum. No differences in plasma total antioxidant capacity (TAC) were observed with HS, but betaine increased plasma TAC compared to IQA. Dietary BET increased betaine concentrations in the jejunum, ileum (p < 0.001 for both), plasma, liver, kidney (p < 0.010 for all), urine (p = 0.002) and tended to be higher in muscle (p = 0.084). Betaine concentration was not influenced by HS, but it tended to be higher in plasma and accumulated in the liver. These data suggest that betaine and isoquinoline alkaloids supplementation ameliorated consequences of heat stress in grower pigs and protected against HS induced increases in colonic permeability.
Collapse
Affiliation(s)
- Hieu Huu Le
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (H.A.R.S.); (W.Z.); (D.J.P.); (E.V.); (J.B.F.); (F.R.D.)
- Faculty of Animal Sciences, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 131004, Vietnam
- Correspondence: (H.H.L.); (J.J.C.)
| | - Majid Shakeri
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (H.A.R.S.); (W.Z.); (D.J.P.); (E.V.); (J.B.F.); (F.R.D.)
| | - Hafiz Ansar Rasul Suleria
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (H.A.R.S.); (W.Z.); (D.J.P.); (E.V.); (J.B.F.); (F.R.D.)
| | - Weicheng Zhao
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (H.A.R.S.); (W.Z.); (D.J.P.); (E.V.); (J.B.F.); (F.R.D.)
| | - Rachel Mai McQuade
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Deborah Jayne Phillips
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (H.A.R.S.); (W.Z.); (D.J.P.); (E.V.); (J.B.F.); (F.R.D.)
| | - Eva Vidacs
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (H.A.R.S.); (W.Z.); (D.J.P.); (E.V.); (J.B.F.); (F.R.D.)
| | - John Barton Furness
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (H.A.R.S.); (W.Z.); (D.J.P.); (E.V.); (J.B.F.); (F.R.D.)
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank Rowland Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (H.A.R.S.); (W.Z.); (D.J.P.); (E.V.); (J.B.F.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | | | - Jeremy James Cottrell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (H.A.R.S.); (W.Z.); (D.J.P.); (E.V.); (J.B.F.); (F.R.D.)
- Correspondence: (H.H.L.); (J.J.C.)
| |
Collapse
|
53
|
Willingham BD, Ragland TJ, Ormsbee MJ. Betaine Supplementation May Improve Heat Tolerance: Potential Mechanisms in Humans. Nutrients 2020; 12:nu12102939. [PMID: 32992781 PMCID: PMC7599524 DOI: 10.3390/nu12102939] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 11/16/2022] Open
Abstract
Betaine has been demonstrated to increase tolerance to hypertonic and thermal stressors. At the cellular level, intracellular betaine functions similar to molecular chaperones, thereby reducing the need for inducible heat shock protein expression. In addition to stabilizing protein conformations, betaine has been demonstrated to reduce oxidative damage. For the enterocyte, during periods of reduced perfusion as well as greater oxidative, thermal, and hypertonic stress (i.e., prolonged exercise in hot-humid conditions), betaine results in greater villi length and evidence for greater membrane integrity. Collectively, this reduces exercise-induced gut permeability, protecting against bacterial translocation and endotoxemia. At the systemic level, chronic betaine intake has been shown to reduce core temperature, all-cause mortality, markers of inflammation, and change blood chemistry in several animal models when exposed to heat stress. Despite convincing research in cell culture and animal models, only one published study exists exploring betaine's thermoregulatory function in humans. If the same premise holds true for humans, chronic betaine consumption may increase heat tolerance and provide another avenue of supplementation for those who find that heat stress is a major factor in their work, or training for exercise and sport. Yet, this remains speculative until data demonstrate such effects in humans.
Collapse
Affiliation(s)
- Brandon D. Willingham
- Institute of Sports Sciences and Medicine, Department of Nutrition, Food, and Exercise Science, Florida State University, Tallahassee, FL 32306, USA; (B.D.W.); (T.J.R.)
| | - Tristan J. Ragland
- Institute of Sports Sciences and Medicine, Department of Nutrition, Food, and Exercise Science, Florida State University, Tallahassee, FL 32306, USA; (B.D.W.); (T.J.R.)
| | - Michael J. Ormsbee
- Institute of Sports Sciences and Medicine, Department of Nutrition, Food, and Exercise Science, Florida State University, Tallahassee, FL 32306, USA; (B.D.W.); (T.J.R.)
- Department of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Westville, Durban 4041, South Africa
- Correspondence:
| |
Collapse
|
54
|
Zeitz JO, Fleischmann A, Ehbrecht T, Most E, Friedrichs S, Whelan R, Gessner DK, Failing K, Lütjohann D, Eder K. Effects of supplementation of DL-methionine on tissue and plasma antioxidant status during heat-induced oxidative stress in broilers. Poult Sci 2020; 99:6837-6847. [PMID: 33248599 PMCID: PMC7704969 DOI: 10.1016/j.psj.2020.08.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 01/18/2023] Open
Abstract
Exposure to high ambient temperature has been shown to impair growth performance and to cause oxidative stress in broilers. This study investigated the hypothesis that supplementation with methionine (Met) as DL-Met (DLM) more than the National Research Council recommendations improves growth performance and alleviates oxidative stress in broilers exposed to high ambient temperature. One-day-old male Cobb-500 broilers (n = 68) were allotted to 4 groups and phase-fed 3 basal diets during days 1 to 10, 11 to 21, and 22 to 35. One group was kept under thermoneutral temperature conditions and received the basal diets with Met + cysteine (Cys) concentrations according to recommendations of NRC. The other 3 groups were kept in a room with an increased ambient temperature from week 3 to 5 and were fed either the basal diet or the basal diets supplemented with 2 levels of DLM in which Met + Cys concentrations exceeded NRC recommendations by around 20% (group DLM1) and 40% (group DLM2), respectively. As expected, the broilers exposed to high ambient temperature showed a lower feed intake, lower body weight gains, a higher feed:gain ratio, and biochemical indications of oxidative stress in comparison to broilers kept under thermoneutral temperature conditions. Supplementation of DLM did not improve the growth performance in broilers exposed to high ambient temperature. However, the broilers supplemented with DLM had increased concentrations of glutathione in liver and breast muscle (groups DLM1 and DLM2), increased concentrations of tocopherols in the liver (group DLM2), and reduced concentrations of 7α-hydroxycholesterol and 7-ketocholesterol in heat-processed thigh muscle (groups DLM1 and DLM2) in comparison to the control group exposed to high ambient temperature. Concentrations of thiobarbituric acid-reactive substances and vitamin C in plasma, liver, and muscle were not different between the 3 groups exposed to heat stress. Nevertheless, the study shows that supplementation of DLM in slight excess of the Met concentration required for maximum growth performance improved the antioxidant status in tissues and reduced the susceptibility of muscle toward oxidation in heat-stressed broilers.
Collapse
Affiliation(s)
- Johanna O Zeitz
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany
| | - Anne Fleischmann
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany
| | - Tamara Ehbrecht
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany
| | - Erika Most
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany
| | - Silvia Friedrichs
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Rose Whelan
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | - Denise K Gessner
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany.
| | - Klaus Failing
- Unit of Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Klaus Eder
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
55
|
Shakeri M, Cottrell JJ, Wilkinson S, Le HH, Suleria HAR, Warner RD, Dunshea FR. A Dietary Sugarcane-Derived Polyphenol Mix Reduces the Negative Effects of Cyclic Heat Exposure on Growth Performance, Blood Gas Status, and Meat Quality in Broiler Chickens. Animals (Basel) 2020; 10:ani10071158. [PMID: 32650461 PMCID: PMC7401608 DOI: 10.3390/ani10071158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Heat stress is a main reason of systemic oxidative stress, which compromises broiler meat production and quality. To improve the productivity of poultry meat production, studies have investigated different heat stress amelioration strategies. Among these strategies, low-cost feed supplementations are introduced to potentially reduce the negative effects of heat stress. Previous studies have also investigated the effects of different antioxidants on growth performance and meat quality, while a limited number of studies have been made regarding the impacts of the polyphenols at different doses. Polyphenols with antioxidant properties have positive effects against oxidative stress, and are naturally available in high amounts in plants, which makes them a novel feed supplementation for improving meat production as well as meat quality in heat-stressed broiler chickens. Therefore, this study attempted to investigate the effects of different doses of polyphenols supplementation on growth performance, physiological responses, and meat quality in broiler chickens exposed to cyclic heat stress. Abstract Heat stress (HS) compromises growth performance and meat quality of broiler chickens by interrupting lipid and protein metabolism, resulting in increased oxidative damages. The experiment attempted to investigate whether dietary polyphenols (Polygain (POL)) could ameliorate the aforementioned adverse effects of HS on performance and meat quality. One hundred and twenty one day-old-male chicks were allocated to two temperature conditions, thermoneutral (TN) or HS, and fed with either a control diet (CON) or the CON plus four different doses of POL (2, 4, 6 and 10 g/kg). Heat stress caused respiratory alkalosis as evidenced by increased rectal temperature (p < 0.001) and respiration rate (p < 0.001) due to increased blood pH (p < 0.001). Heat stress decreased final body weight (p = 0.061) and breast muscle water content (p = 0.013) while POL improved both (p = 0.002 and p = 0.003, respectively). Heat stress amplified muscle damages, indicated by increased thiobarbituric acid reactive substances (p < 0.001) and reduced myofibril fragmentation index (p = 0.006) whereas POL improved both (p = 0.037 and p = 0.092, respectively). Heat stress impaired meat tenderness (p < 0.001) while POL improved it (p = 0.003). In conclusion, HS impaired growth performance and meat quality whereas POL ameliorated these responses in a dose-dependent manner, and effects of POL were evident under both temperature conditions.
Collapse
Affiliation(s)
- Majid Shakeri
- Department of Medicine, The University of Washington, Seattle WA 98102, USA
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
- Correspondence: (M.S.); (J.J.C.)
| | - Jeremy J. Cottrell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
- Correspondence: (M.S.); (J.J.C.)
| | | | - Hieu H. Le
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
| | - Robyn D. Warner
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
56
|
Al-Qaisi M, Horst EA, Kvidera SK, McCarthy CS, Mayorga EJ, Abeyta MA, Goetz B, Upah NC, McKilligan DM, Kolstad BW, Timms LL, Baumgard LH. Effects of dietary electrolytes, osmolytes, and energetic compounds on body temperature indices in heat-stressed lactating cows. Res Vet Sci 2020; 132:42-48. [PMID: 32480187 DOI: 10.1016/j.rvsc.2020.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
Objectives were to determine the effects of a product containing electrolytes, osmolytes, and energetic compounds (EOEC) on body temperature indices in heat-stressed (HS) Holstein cows. Lactating cows were assigned to 1 of 2 treatments: 1) a control diet (n = 10) or 2) a control diet supplemented with 113 g/d of EOEC (n = 10; Bovine BlueLite® Pellets; TechMix LLC, Stewart, MN). The trial consisted of 2 experimental periods (P). During P1 (4 d), cows were fed their respective treatments and housed in thermoneutral conditions. During P2 (4 d), HS was artificially induced using an electric heat blanket (EHB). Overall, HS markedly increased vaginal temperature (Tv), rectal temperature (Tr), skin temperature (Ts), and respiration rate (RR) (P < .01). There were no dietary treatment differences in Tv, Tr, or RR; however, during P2 EOEC-supplemented cows had increased Ts (0.8 °C; P = .04). Compared to P1, HS decreased DMI and milk yield (45 and 27%, respectively, P < .01) similarly amongst treatments. Relative to P1, circulating insulin decreased (41%; P = .04) in CON cows, whereas it remained unaffected in EOEC-supplemented cows, resulting in a 2-fold increase in EOEC compared with CON-fed cows (P < .01) during P2. Relative to P1, HS increased circulating non-esterified fatty acids (NEFA; 63%; P < .01). During P2, there tended to be a treatment by day interaction on circulating NEFA, as concentrations decreased from d 2 to 4 of P2 in EOEC-fed cows but continued to increase in CON cows. In summary, feeding EOEC altered some key aspects of energetic metabolism and increased Ts.
Collapse
Affiliation(s)
- Mohmmad Al-Qaisi
- Department of Animal Science, Iowa State University, Ames, IA, USA; Department of Animal Production, The University of Jordan, Amman, Jordan
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Sara K Kvidera
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Megan A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Brady Goetz
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | | | | | - Leo L Timms
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
57
|
Shakeri M, Cottrell JJ, Wilkinson S, Zhao W, Le HH, McQuade R, Furness JB, Dunshea FR. Dietary Betaine Improves Intestinal Barrier Function and Ameliorates the Impact of Heat Stress in Multiple Vital Organs as Measured by Evans Blue Dye in Broiler Chickens. Animals (Basel) 2019; 10:E38. [PMID: 31878074 PMCID: PMC7023412 DOI: 10.3390/ani10010038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023] Open
Abstract
In a 2 × 2 factorial design, 60 male Ross-308 broilers were fed either a control or 1 g/kg betaine diet and housed under thermoneutral (TN) or heat stress (HS) conditions. Broilers were acclimated to diets for 1 week under TN (25 °C), then either kept at TN or HS, where the temperature increased 8 h/day at 33 °C and 16 h/day at 25 °C for up to 10 days. Respiration rate (RR) was measured at four time points, and on each of 1, 2, 3, 7 and 10 days of HS, 12 broilers were injected with 0.5 mg/kg of Evans Blue Dye (EBD) solution to quantify regional changes in tissue damage. Betaine was quantified in tissues, and ileal damage was assessed via morphometry and transepithelial resistance (TER). Heat stress elevated RR (p < 0.001) and resulted in reduced villous height (p = 0.009) and TER (p < 0.001), while dietary betaine lowered RR during HS (p < 0.001), increased betaine distribution into tissues, and improved ileal villous height (p < 0.001) and TER (p = 0.006). Heat stress increased EBD in the muscle and kidney of chickens fed the control diet but not in those receiving betaine. Overall, these data indicate that supplemented betaine is distributed to vital organs and the gastrointestinal tract, where it is associated with improved tolerance of HS. Furthermore, EBD markers help reveal the effects of HS on organs dysfunction.
Collapse
Affiliation(s)
- Majid Shakeri
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Victoria 3010, Australia; (M.S.); (J.J.C.); (W.Z.); (H.H.L.)
| | - Jeremy James Cottrell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Victoria 3010, Australia; (M.S.); (J.J.C.); (W.Z.); (H.H.L.)
| | | | - Weicheng Zhao
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Victoria 3010, Australia; (M.S.); (J.J.C.); (W.Z.); (H.H.L.)
| | - Hieu Huu Le
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Victoria 3010, Australia; (M.S.); (J.J.C.); (W.Z.); (H.H.L.)
| | - Rachel McQuade
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville Victoria 3010, Australia;
| | - John Barton Furness
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville Victoria 3010, Australia;
| | - Frank Rowland Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Victoria 3010, Australia; (M.S.); (J.J.C.); (W.Z.); (H.H.L.)
| |
Collapse
|
58
|
Gonzalez-Rivas PA, Chauhan SS, Ha M, Fegan N, Dunshea FR, Warner RD. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci 2019; 162:108025. [PMID: 31841730 DOI: 10.1016/j.meatsci.2019.108025] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/15/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Heat stress is one of the most stressful events in the life of livestock with harmful consequences for animal health, productivity and product quality. Ruminants, pigs and poultry are susceptible to heat stress due to their rapid metabolic rate and growth, high level of production, and species-specific characteristics such as rumen fermentation, sweating impairment, and skin insulation. Acute heat stress immediately before slaughter stimulates muscle glycogenolysis and can result in pale, soft and exudative (PSE) meat characterized by low water holding capacity (WHC). By contrast, animals subjected to chronic heat stress, have reduced muscle glycogen stores resulting in dark, firm and dry (DFD) meat with high ultimate pH and high WHC. Furthermore, heat stress leads to oxidative stress, lipid and protein oxidation, and reduced shelf life and food safety due to bacterial growth and shedding. This review discusses the scientific evidence regarding the effects of heat stress on livestock physiology and metabolism, and their consequences for meat quality and safety.
Collapse
Affiliation(s)
- Paula A Gonzalez-Rivas
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Surinder S Chauhan
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Minh Ha
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Narelle Fegan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
59
|
Osei-Amponsah R, Chauhan SS, Leury BJ, Cheng L, Cullen B, Clarke IJ, Dunshea FR. Genetic Selection for Thermotolerance in Ruminants. Animals (Basel) 2019; 9:E948. [PMID: 31717903 PMCID: PMC6912363 DOI: 10.3390/ani9110948] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Variations in climatic variables (temperature, humidity and solar radiation) negatively impact livestock growth, reproduction, and production. Heat stress, for instance, is a source of huge financial loss to livestock production globally. There have been significant advances in physical modifications of animal environment and nutritional interventions as tools of heat stress mitigation. Unfortunately, these are short-term solutions and may be unsustainable, costly, and not applicable to all production systems. Accordingly, there is a need for innovative, practical, and sustainable approaches to overcome the challenges posed by global warming and climate change-induced heat stress. This review highlights attempts to genetically select and breed ruminants for thermotolerance and thereby sustain production in the face of changing climates. One effective way is to incorporate sustainable heat abatement strategies in ruminant production. Improved knowledge of the physiology of ruminant acclimation to harsh environments, the opportunities and tools available for selecting and breeding thermotolerant ruminants, and the matching of animals to appropriate environments should help to minimise the effect of heat stress on sustainable animal genetic resource growth, production, and reproduction to ensure protein food security.
Collapse
Affiliation(s)
- Richard Osei-Amponsah
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
- Department of Animal Science, University of Ghana, Legon, Accra, Ghana
| | - Surinder S. Chauhan
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Brian J. Leury
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Long Cheng
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Brendan Cullen
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Iain J. Clarke
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| |
Collapse
|
60
|
Growth Performance and Characterization of Meat Quality of Broiler Chickens Supplemented with Betaine and Antioxidants under Cyclic Heat Stress. Antioxidants (Basel) 2019; 8:antiox8090336. [PMID: 31443527 PMCID: PMC6769705 DOI: 10.3390/antiox8090336] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Heat stress (HS) causes oxidative stress, which compromises broiler performance and meat quality. The aim of this study was to determine whether dietary antioxidants could be used as an amelioration strategy. Seventy-two day-old-male Ross-308 chicks were exposed to either thermoneutral or cyclical heat stress conditions. Diets were either control commercial diet (CON), CON plus betaine (BET), or with a combination of betaine, selenized yeast, and vitamin E (BET + AOX). Heat stress increased the rectal temperature (p < 0.001), respiration rate (p < 0.001), decreased blood pCO2 (p = 0.002), and increased blood pH (p = 0.02), which indicated the HS broilers had respiratory alkalosis. Final body weight was decreased by HS (p < 0.001), whereas it was improved with BET (p = 0.05). Heat stress reduced cooking loss (p = 0.007) and no effect on drip loss, while BET decreased the drip loss (p = 0.01). Heat stress reduced the myofibril fragmentation index (p < 0.001) and increased thiobarbituric acid reactive substances (p < 0.001), while these were improved with the combination of BET + AOX (p = 0.003). In conclusion, BET overall improved growth rates and product quality in this small university study, whereas some additional benefits were provided by AOX on product quality in both TN and HS broilers.
Collapse
|
61
|
Liu W, Yuan Y, Sun C, Balasubramanian B, Zhao Z, An L. Effects of Dietary Betaine on Growth Performance, Digestive Function, Carcass Traits, and Meat Quality in Indigenous Yellow-Feathered Broilers under Long-Term Heat Stress. Animals (Basel) 2019; 9:ani9080506. [PMID: 31370305 PMCID: PMC6720770 DOI: 10.3390/ani9080506] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Heat stress, one of the major problems in tropical and subtropical regions, adversely affects poultry production. This study was designed to evaluate the effects of dietary betaine on growth performance, digestive function, carcass traits, and meat quality in indigenous yellow-feathered broilers subjected to long-term heat stress. The results demonstrated that long-term heat exposure reduced the growth performance, digestive function, and carcass yield, and dietary betaine supplementation partially alleviated the adverse effects of heat stress on these parameters. These findings are useful for development of anti-heat stress feed additives in indigenous yellow-feathered broilers. Abstract Heat stress has a profound effect on poultry health and productivity. The present study evaluated whether feeding betaine could ameliorate long-term heat stress-induced impairment of productive performance in indigenous yellow-feathered broilers. A total of 240 five-week-old male broilers were randomly allocated to five treatments with six replicates of eight broilers each. The five treatments included a thermoneutral zone control group (TN, fed basal diet), a heat stress control group (HS, fed basal diet), and an HS control group supplemented 500, 1000, 2000 mg/kg betaine, respectively. The TN group was raised at 26 ± 1 °C during the whole study, HS groups exposed to 32 ± 1 °C for 8 h/day from 9:00 am to 17:00 pm. The results showed that heat stress decreased the body weight gain (BWG) and feed intake of broilers during 1–5, 6–10, and 1–10 weeks (p < 0.05). Dietary betaine tended to improve the BWG and feed intake of broilers under 5 weeks of heat stress (linear, p < 0.10), and betaine supplementation linearly increased the BWG and feed intake during 6–10 and 1–10 weeks (p < 0.05). Additionally, nitrogen retention was reduced by 5 weeks and 10 weeks of heat stress (p < 0.05), whereas dietary betaine could improve nitrogen retention in heat stressed broilers after both 5 and 10 weeks of heat stress (linear, p < 0.05). Moreover, this study observed that the trypsin activity of jejunum was decreased by 5 weeks of heat stress (p < 0.05), whereas betaine supplementation had quadratic effects on trypsin activity of jejunum in heat stressed broilers (p < 0.05). Furthermore, 10 weeks of heat stress induced a reduction of villus height of the duodenum and jejunum (p < 0.05), and decreased the villus height to crypt depth ratio of the jejunum (p < 0.05). Supplementation with betaine ameliorated the adverse effects of heat stress on these parameters (p < 0.05). Compared with the TN group, 10 weeks of heat stress reduced carcass and breast yield (p < 0.05) and betaine supplementation improved carcass and breast yield of heat stressed broilers (linear, p < 0.05). In conclusion, dietary supplementation of betaine could reduce the detrimental effects of long-term heat stress on growth performance, digestive function, and carcass traits in indigenous yellow-feathered broilers.
Collapse
Affiliation(s)
- Wenchao Liu
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yilin Yuan
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chenyu Sun
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, China
| | | | - Zhihui Zhao
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Lilong An
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
62
|
Avian Stress-Related Transcriptome and Selenotranscriptome: Role during Exposure to Heavy Metals and Heat Stress. Antioxidants (Basel) 2019; 8:antiox8070216. [PMID: 31295914 PMCID: PMC6680911 DOI: 10.3390/antiox8070216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022] Open
Abstract
Selenium, through incorporation into selenoproteins, is one of the key elements of the antioxidant system. Over the past few years there has been increased interest in exploring those molecular mechanisms in chicken, responsible for the development of this protection system. In more detail, Cd/Pb poisoning and heat stress increase oxidation, mRNA levels of inflammatory proteins, and apoptotic proteins. Selenium seems to enhance the antioxidant status and alleviates these effects via upregulation of antioxidant proteins and other molecular effects. In this review, we analyze avian transcriptome key elements with particular emphasis on interactions with heavy metals and on relation to heat stress.
Collapse
|
63
|
Amiri M, Ghasemi HA, Hajkhodadadi I, Khaltabadi Farahani AH. Efficacy of guanidinoacetic acid at different dietary crude protein levels on growth performance, stress indicators, antioxidant status, and intestinal morphology in broiler chickens subjected to cyclic heat stress. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114208] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
64
|
Jorquera-Chavez M, Fuentes S, Dunshea FR, Jongman EC, Warner RD. Computer vision and remote sensing to assess physiological responses of cattle to pre-slaughter stress, and its impact on beef quality: A review. Meat Sci 2019; 156:11-22. [PMID: 31121361 DOI: 10.1016/j.meatsci.2019.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Pre-slaughter stress is well-known to affect meat quality of beef carcasses and methods have been developed to assess this stress. However, development of more practical and less invasive methods are required in order to assess the response of cattle to pre-slaughter stressors, which will potentially also assist with the prediction of beef quality. This review outlines the importance of pre-slaughter stress as well as existing and emerging technologies for quantification of the pre-slaughter stress. The review includes; i) indicators of meat quality and how they are affected by pre-slaughter stress in cattle, ii) contact techniques that have been commonly used to measure stress indicators in animals, iii) remotely sensed imagery techniques recently used as non-invasive methods to monitor physiological and behavioural parameters and iv) potential implementation of remotely sensed imagery data to perform contactless assessment of physiological measurements, which could be related to the pre-slaughter stress, as well as to the indicators of beef quality. Relevance to industry, conclusions and recommendations for research are included.
Collapse
Affiliation(s)
- Maria Jorquera-Chavez
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Sigfredo Fuentes
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ellen C Jongman
- Animal Welfare Science Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
65
|
Drobny A, Meloh H, Wächtershäuser E, Hellmann B, Mueller AS, van der Klis JD, Fitzenberger E, Wenzel U. Betaine-rich sugar beet molasses protects from homocysteine-induced reduction of survival in Caenorhabditis elegans. Eur J Nutr 2019; 59:779-786. [PMID: 30863895 DOI: 10.1007/s00394-019-01944-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/06/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE Homocysteine (Hcy) in humans represents a blood-borne biomarker which predicts the risk of age-related diseases and mortality. Using the nematode Caenorhabditis elegans, we tested whether feeding betaine-rich sugar beet molasses affects the survival under heat stress in the presence of Hcy, in spite of a gene loss in betaine-homocysteine methyltransferase. METHODS Knockdown of the genes relevant for remethylation or transsulfuration of Hcy was achieved by RNA interference (RNAi). Survival assay was conducted under heat stress at 37 °C and Hcy levels were determined by enzyme-linked immunosorbent assay. RESULTS Addition of 500 mg/l betaine-rich sugar beet molasses (SBM) prevented the survival reduction that was caused by exposure to Hcy at 37 °C. Although SBM was no longer capable of reducing Hcy levels under RNAi versus homologues for 5, 10-methylenetetrahydrofolate reductase or cystathionine-β-synthase, it still enabled the survival extension by SBM under exposure to Hcy. In contrast, RNAi for the small heat shock protein hsp-16.2 or the foxo transcription factor daf-16 both prevented the extension of survival by betaine-rich molasses in the presence of Hcy. CONCLUSIONS Our studies demonstrate that betaine-rich SBM is able to prevent survival reduction caused by Hcy in C. elegans in dependence on hsp-16.2 and daf-16 but independent of the remethylation pathway.
Collapse
Affiliation(s)
- Alice Drobny
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Hedda Meloh
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Eike Wächtershäuser
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Bernhard Hellmann
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Andreas S Mueller
- Delacon Biotechnik GmbH, Weissenwolffstraße 14, 4221, Steyregg, Austria
| | | | - Elena Fitzenberger
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Uwe Wenzel
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
66
|
Betaine Improves Milk Yield in Grazing Dairy Cows Supplemented with Concentrates at High Temperatures. Animals (Basel) 2019; 9:ani9020057. [PMID: 30781822 PMCID: PMC6406857 DOI: 10.3390/ani9020057] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/26/2019] [Accepted: 02/10/2019] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Heat events during summer can result in dramatic reductions in milk production in grazing dairy cows as they attempt to reduce their accumulated heat load. Therefore, there is interest in dietary manipulations that can decrease heat production or increase heat dissipation. One of the actions of sugar beet-derived betaine is to act as an osmolyte and reduce intracellular ion pumping and heat production. Therefore, this study was conducted to investigate the effects of dietary betaine supplementation on milk and milk component production in grazing dairy cows during hot periods in summer. Abstract Betaine is an organic osmolyte sourced from sugar beet that accumulates in plant cells undergoing osmotic stress. Since the accumulation of betaine lowers the energy requirements of animals and, therefore, metabolic heat production, the aim of this experiment was to investigate if betaine supplementation improved milk yield in grazing dairy cows in summer. One hundred and eighteen Friesian × Holstein cows were paired on days in milk and, within each pair, randomly allocated to a containing treatment of either 0 or 2 g/kg natural betaine in their concentrate ration for approximately 3 weeks during February/March 2015 (summer in Australia). The mean maximum February temperature was 30 °C. Cows were allocated approximately 14 kg dry matter pasture and 7.5 kg of concentrate pellets (fed in the milking shed) per cow per day and were milked through an automatic milking system three times per day. Betaine supplementation increased average daily milk yield by over 6% (22.0 vs. 23.4 kg/day, p < 0.001) with the response increasing as the study progressed as indicated by the interaction (p < 0.001) between betaine and day. Milk fat % (p = 0.87), milk protein % (p = 0.90), and milk somatic cell count (p = 0.81) were unchanged by dietary betaine. However, betaine supplementation increased milk protein yield (677 vs. 719 g/day, p < 0.001) and fat yield (874 vs. 922 g/day, p < 0.001) with responses again being more pronounced as the study progressed. In conclusion, dietary betaine supplementation increased milk and component yield during summer in grazing dairy cows.
Collapse
|
67
|
Lynch GS, Koopman R. Overcoming nature’s paradox in skeletal muscle to optimise animal production. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an19361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nature’s paradox in skeletal muscle describes the seemingly mutually exclusive relationship between muscle fibre size and oxidative capacity. In mammals, there is a constraint on the size at which mitochondria-rich, high O2-dependent oxidative fibres can attain before they become anoxic or adapt to a glycolytic phenotype, being less reliant on O2. This implies that a muscle fibre can hypertrophy at the expense of its endurance capacity. Adaptations to activity (exercise) generally obey this relationship, with optimal muscle endurance generally being linked to an enhanced proportion of small, slow oxidative fibres and muscle strength (force and/or power) being linked to an enhanced proportion of large, fast glycolytic fibres. This relationship generally constrains not only the physiological limits of performance (e.g. speed and endurance), but also the capacity to manipulate muscle attributes such as fibre size and composition, with important relevance to the livestock and aquaculture industries for producing specific muscle traits such as (flesh) quality, texture and taste. Highly glycolytic (white) muscles have different traits than do highly oxidative (red) muscles and so the ability to manipulate muscle attributes to produce flesh with specific traits has important implications for optimising meat production and quality. Understanding the biological regulation of muscle size, and phenotype and the capacity to manipulate signalling pathways to produce specific attributes, has important implications for promoting ethically sustainable and profitable commercial livestock and aquaculture practices and for developing alternative food sources, including ‘laboratory meat’ or ‘clean meat’. This review describes the exciting potential of manipulating muscle attributes relevant to animal production, through traditional nutritional and pharmacological approaches and through viral-mediated strategies that could theoretically push the limits of muscle fibre growth, adaptation and plasticity.
Collapse
|