51
|
Soriano A, Carmeli Y, Omrani AS, Moore LSP, Tawadrous M, Irani P. Ceftazidime-Avibactam for the Treatment of Serious Gram-Negative Infections with Limited Treatment Options: A Systematic Literature Review. Infect Dis Ther 2021; 10:1989-2034. [PMID: 34379310 PMCID: PMC8355581 DOI: 10.1007/s40121-021-00507-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION A systematic literature review was undertaken to evaluate real-world use of ceftazidime-avibactam for infections due to aerobic Gram-negative organisms in adults with limited treatment options. METHODS Literature searches retrieved peer-reviewed publications and abstracts from major international infectious disease congresses from January 2015 to February 2021. Results were screened using pre-defined criteria to limit the dataset to relevant publications (notable exclusions were paediatric data and outcomes data for bacteria intrinsically resistant to ceftazidime-avibactam). Data for included publications were subjected to qualitative synthesis. RESULTS Seventy-three relevant publications (62 peer-reviewed articles; 10 abstracts) comprising 1926 patients treated with ceftazidime-avibactam (either alone or combined with other antimicrobials) and 1114 comparator/control patients were identified. All patients were hospitalised for serious illness and most had multiple comorbidities. The most common infections were pneumonia, bacteraemia, and skin/soft tissue, urinary tract, or abdominal infections; smaller numbers of patients with meningitis, febrile neutropenia, osteomyelitis, and cystic fibrosis were also included. Carbapenem-resistant or carbapenemase-producing Enterobacterales (CRE; n = 1718) and carbapenem-resistant, multidrug-resistant (MDR), and extensively drug-resistant Pseudomonas aeruginosa (n = 150) were the most common pathogens. Most publications reported positive outcomes for ceftazidime-avibactam treatment (clinical success rates ranged from 45 to 100% and reported 30-day mortality from 0 to 63%), which were statistically superior versus comparators in some studies. ceftazidime-avibactam resistance emergence occurred infrequently and mostly in Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae strains. CONCLUSION This review provides qualitative evidence of successful use of ceftazidime-avibactam for the treatment of hospitalised patients with CRE and MDR P. aeruginosa infections with limited treatment options.
Collapse
Affiliation(s)
- Alex Soriano
- Division of Infectious Diseases, Hospital Clínic de Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain.
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
| | - Yehuda Carmeli
- Division of Epidemiology, The National Center for Antibiotic Resistance and Infection Control, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ali S Omrani
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Luke S P Moore
- Chelsea & Westminster NHS Foundation Trust, London, UK
- Imperial College Healthcare NHS Trust, London, UK
- Imperial College London, London, UK
| | | | - Paurus Irani
- Global Medical Affairs, Anti-infectives, Pfizer, Tadworth, Surrey, UK
| |
Collapse
|
52
|
Gill CM, Aktaþ E, Alfouzan W, Bourassa L, Brink A, Burnham CAD, Canton R, Carmeli Y, Falcone M, Kiffer C, Marchese A, Martinez O, Pournaras S, Satlin M, Seifert H, Thabit AK, Thomson KS, Villegas MV, Nicolau DP. The ERACE-PA Global Surveillance Program: Ceftolozane/tazobactam and Ceftazidime/avibactam in vitro Activity against a Global Collection of Carbapenem-resistant Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 2021; 40:2533-2541. [PMID: 34291323 PMCID: PMC8590662 DOI: 10.1007/s10096-021-04308-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
The cephalosporin-β-lactamase-inhibitor-combinations, ceftolozane/tazobactam and ceftazidime/avibactam, have revolutionized treatment of carbapenem-resistant Pseudomonas aeruginosa (CR-PA). A contemporary assessment of their in vitro potency against a global CR-PA collection and an assessment of carbapenemase diversity are warranted. Isolates determined as CR-PA by the submitting site were collected from 2019-2021 (17 centers in 12 countries) during the ERACE-PA Global Surveillance Program. Broth microdilution MICs were assessed per CLSI standards for ceftolozane/tazobactam, ceftazidime/avibactam, ceftazidime, and cefepime. Phenotypic carbapenemase testing was conducted (modified carbapenem inactivation method (mCIM)). mCIM positive isolates underwent genotypic carbapenemase testing using the CarbaR, the CarbaR NxG, or whole genome sequencing. The MIC50/90 was reported as well as percent susceptible (CLSI and EUCAST interpretation). Of the 807 isolates, 265 (33%) tested carbapenemase-positive phenotypically. Of these, 228 (86%) were genotypically positive for a carbapenemase with the most common being VIM followed by GES. In the entire cohort of CR-PA, ceftolozane/tazobactam and ceftazidime/avibactam had MIC50/90 values of 2/ > 64 and 4/64 mg/L, respectively. Ceftazidime/avibactam was the most active agent with 72% susceptibility per CLSI compared with 63% for ceftolozane/tazobactam. For comparison, 46% of CR-PA were susceptible to ceftazidime and cefepime. Against carbapenemase-negative isolates, 88 and 91% of isolates were susceptible to ceftolozane/tazobactam and ceftazidime/avibactam, respectively. Ceftolozane/tazobactam and ceftazidime/avibactam remained highly active against carbapenem-resistant P. aeruginosa, particularly in the absence of carbapenemases. The contemporary ERACE-PA Global Program cohort with 33% carbapenemase positivity including diverse enzymology will be useful to assess therapeutic options in these clinically challenging organisms with limited therapies.
Collapse
Affiliation(s)
- Christian M Gill
- Center for Anti-Infective Research & Development Hartford Hospital, 80 Seymour Street, Hartford, CT, 06102, USA
| | - Elif Aktaþ
- Clinical Microbiology Laboratory, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Wadha Alfouzan
- Laboratory Medicine- Farwania Hospital, Ministry of Health, Kuwait, Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Lori Bourassa
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Adrian Brink
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, National Health Laboratory Services, University of Cape Town, Cape Town , South Africa
| | | | - Rafael Canton
- Servicio de Microbiologia. Hospital Ramón Y Cajal-IRYCIS, Madrid, Spain
| | - Yehuda Carmeli
- National Institute for Infection Control and Antibiotic Resistance, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Marco Falcone
- Infectious Diseases Division, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carlos Kiffer
- Internal Medicine Department and LEMC-Alerta Lab, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | - Anna Marchese
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, and Clinical Microbiology Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Octavio Martinez
- Department of Pathology and Microbiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Spyros Pournaras
- Laboratory of Clinical Microbiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Satlin
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935, Köln, Germany
| | - Abrar K Thabit
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Maria Virginia Villegas
- Grupo de Resistencia Antimicrobiana Y Epidemiología Hospitalaria (RAEH), Universidad El Bosque, Bogotá, Colombia
| | - David P Nicolau
- Center for Anti-Infective Research & Development Hartford Hospital, 80 Seymour Street, Hartford, CT, 06102, USA.
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA.
| |
Collapse
|
53
|
Volpicelli L, Venditti M, Ceccarelli G, Oliva A. Place in Therapy of the Newly Available Armamentarium for Multi-Drug-Resistant Gram-Negative Pathogens: Proposal of a Prescription Algorithm. Antibiotics (Basel) 2021; 10:antibiotics10121475. [PMID: 34943687 PMCID: PMC8698671 DOI: 10.3390/antibiotics10121475] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
The worldwide propagation of antimicrobial resistance represents one of the biggest threats to global health and development. Multi-drug-resistant organisms (MDROs), including carbapenem-resistant non-fermenting Gram-negatives and Enterobacterales, present a heterogeneous and mutating spread. Infections by MDRO are often associated with an unfavorable outcome, especially among critically ill populations. The polymyxins represented the backbone of antibiotic regimens for Gram-negative MDROs in recent decades, but their use presents multiple pitfalls. Luckily, new agents with potent activity against MDROs have become available in recent times and more are yet to come. Now, we have the duty to make the best use of these new therapeutic tools in order not to prematurely compromise their effectiveness and at the same time improve patients’ outcomes. We reviewed the current literature on ceftazidime/avibactam, meropenem/vaborbactam and cefiderocol, focusing on antimicrobial spectrum, on the prevalence and mechanisms of resistance development and on the main in vitro and clinical experiences available so far. Subsequently, we performed a step-by-step construction of a speculative algorithm for a reasoned prescription of these new antibiotics, contemplating both empirical and targeted use. Attention was specifically posed on patients with life-risk conditions and in settings with elevated prevalence of MDRO.
Collapse
|
54
|
Bassetti M, Vena A, Giacobbe DR, Castaldo N. Management of Infections Caused by Multidrug-resistant Gram-negative Pathogens: Recent Advances and Future Directions. Arch Med Res 2021; 52:817-827. [PMID: 34583850 DOI: 10.1016/j.arcmed.2021.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022]
Abstract
During the last decades, the isolation of multidrug-resistant Gram-negative (MDR-GN) bacteria has dramatically increased worldwide and has been associated with significant delays in the administration of adequate antibiotic treatment, resulting in increased morbidity and mortality rates. Given specific challenges to effective therapy with old antibiotics, there is the need to establish adequate clinical and therapeutic recommendations for antibiotic treatment of MDR-GN pathogens. Herein, we will review risk factors for harbouring infections due to MDR-GN bacteria, proposing an algorithm for the choice of empirical treatment when a MDR-GN pathogen is suspected. In addition, we will report our recommendations regarding the first- and second-line treatment options for hospitalized patients with serious infections caused by extended-spectrum β-lactamases producing Enterobacterales, carbapenem-resistant Enterobacterales, MDR Pseudomonas aeruginosa and MDR Acinetobacter baumannii. Recommendations have been specially focused, for each pathogen, on bloodstream infections, nosocomial pneumonia, and urinary tract infections.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
| | - Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nadia Castaldo
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy; Department of Pulmonology, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| |
Collapse
|
55
|
Daikos GL, da Cunha CA, Rossolini GM, Stone GG, Baillon-Plot N, Tawadrous M, Irani P. Review of Ceftazidime-Avibactam for the Treatment of Infections Caused by Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10091126. [PMID: 34572708 PMCID: PMC8467554 DOI: 10.3390/antibiotics10091126] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that causes a range of serious infections that are often challenging to treat, as this pathogen can express multiple resistance mechanisms, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) phenotypes. Ceftazidime–avibactam is a combination antimicrobial agent comprising ceftazidime, a third-generation semisynthetic cephalosporin, and avibactam, a novel non-β-lactam β-lactamase inhibitor. This review explores the potential role of ceftazidime–avibactam for the treatment of P. aeruginosa infections. Ceftazidime–avibactam has good in vitro activity against P. aeruginosa relative to comparator β-lactam agents and fluoroquinolones, comparable to amikacin and ceftolozane–tazobactam. In Phase 3 clinical trials, ceftazidime–avibactam has generally demonstrated similar clinical and microbiological outcomes to comparators in patients with complicated intra-abdominal infections, complicated urinary tract infections or hospital-acquired/ventilator-associated pneumonia caused by P. aeruginosa. Although real-world data are limited, favourable outcomes with ceftazidime–avibactam treatment have been reported in some patients with MDR and XDR P. aeruginosa infections. Thus, ceftazidime–avibactam may have a potentially important role in the management of serious and complicated P. aeruginosa infections, including those caused by MDR and XDR strains.
Collapse
Affiliation(s)
- George L. Daikos
- Department of Medicine, National and Kapodistrian University of Athens, 115-27 Athens, Greece
- Correspondence: ; Tel.: +30-210-804-9218
| | | | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, I-50134 Florence, Italy;
- Clinical Microbiology and Virology Unit, Careggi University Hospital, I-50134 Florence, Italy
| | | | | | | | | |
Collapse
|
56
|
Luci G, Mattioli F, Falcone M, Di Paolo A. Pharmacokinetics of Non-β-Lactam β-Lactamase Inhibitors. Antibiotics (Basel) 2021; 10:769. [PMID: 34202609 PMCID: PMC8300739 DOI: 10.3390/antibiotics10070769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
The growing emergence of drug-resistant bacterial strains is an issue to treat severe infections, and many efforts have identified new pharmacological agents. The inhibitors of β-lactamases (BLI) have gained a prominent role in the safeguard of beta-lactams. In the last years, new β-lactam-BLI combinations have been registered or are still under clinical evaluation, demonstrating their effectiveness to treat complicated infections. It is also noteworthy that the pharmacokinetics of BLIs partly matches that of β-lactams companions, meaning that some clinical situations, as well as renal impairment and renal replacement therapies, may alter the disposition of both drugs. Common pharmacokinetic characteristics, linear pharmacokinetics across a wide range of doses, and known pharmacokinetic/pharmacodynamic parameters may guide modifications of dosing regimens for both β-lactams and BLIs. However, comorbidities (i.e., burns, diabetes, cancer) and severe changes in individual pathological conditions (i.e., acute renal impairment, sepsis) could make dose adaptation difficult, because the impact of those factors on BLI pharmacokinetics is partly known. Therapeutic drug monitoring protocols may overcome those issues and offer strategies to personalize drug doses in the intensive care setting. Further prospective clinical trials are warranted to improve the use of BLIs and their β-lactam companions in severe and complicated infections.
Collapse
Affiliation(s)
- Giacomo Luci
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (G.L.); (M.F.)
| | - Francesca Mattioli
- Department of Internal Medicine, Pharmacology & Toxicology Unit, University of Genoa, 16100 Genoa, Italy;
| | - Marco Falcone
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (G.L.); (M.F.)
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (G.L.); (M.F.)
| |
Collapse
|
57
|
Oñate J, Pallares Gutiérrez CJ, Esparza G, Jimenez A, Berrio Medina I, Osorio-Pinzón J, Cataño J, Alvarez- Moreno C, Rodriguez J, Guevara F, Mercado M, Zuluaga M, Becerra JS, Alvarez M, Coronel W, Ordonez K, Villegas M. Consensus Recommendations Based on Evidence for Abdominal Sepsis in the Pediatric and Adult Population of Colombia. INFECTIO 2021. [DOI: 10.22354/in.v25i4.954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
58
|
Russo A, Berruti M, Giacobbe DR, Vena A, Bassetti M. Recent molecules in the treatment of severe infections caused by ESBL-producing bacteria. Expert Rev Anti Infect Ther 2021; 19:983-991. [PMID: 33596162 DOI: 10.1080/14787210.2021.1874918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The widespread increase in resistance to β-lactam antibiotics in Enterobacterales currently represents one of the main threats to human health worldwide. The primary mechanisms of resistance are the production of β-lactamase enzymes that are able to hydrolyze β-lactams.Areas covered: we summarize the most recent advances regarding the main characteristics and spectrum of activity of new available antibiotics and strategies for the treatment of ESBL-producing Enterobacterales infections.Expert opinion: ESBL-producing strains are recognized as a worldwide challenge in the treatment of both hospital- and community-acquired infections. Data from the literature point out the high mortality associated with severe infections due to ESBL strains, especially in patients who developed severe sepsis or septic shock, together with the importance of the source of infection and indicators of severity, as determinants of the patient's outcome. Carbapenems are currently considered the first-line therapy, although the diffusion of resistant strains is an evolving problem and is mandatory the introduction in clinical practice of new drug regimens and treatment strategies, based on clinical data, local epidemiology, and microbiology. As a possible carbapenem-sparing strategy, ceftolozane-tazobactam and ceftazidime-avibactam appear the best-available carbapenem-sparing therapies. The definitive role of new drugs should be definitively assessed.
Collapse
Affiliation(s)
- Alessandro Russo
- Policlinico Umberto I," Sapienza"University of Rome, Rome, Italy
| | - Marco Berruti
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | - Antonio Vena
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Matteo Bassetti
- Department of Health Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
59
|
Is Ceftazidime/Avibactam an Option for Serious Infections Due to Extended-Spectrum-β-Lactamase- and AmpC-Producing Enterobacterales?: a Systematic Review and Meta-analysis. Antimicrob Agents Chemother 2020; 65:AAC.01052-20. [PMID: 33046493 DOI: 10.1128/aac.01052-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Carbapenem-sparing regimens are needed for the treatment of infections caused by extended-spectrum-β-lactamase (ESBL)- and AmpC-producing members of the Enterobacterales We sought to compare the clinical efficacy of ceftazidime/avibactam and carbapenems against ESBL- and AmpC-producing Enterobacterales species. A systematic review and meta-analysis of randomized controlled trials comparing ceftazidime/avibactam with carbapenems for the treatment of ESBL- and AmpC-producing Enterobacterales was conducted. Five randomized controlled trials (RCTs) with ESBL- and AmpC-specific outcome data were compiled. Of the 246 patients infected with an ESBL-producing microorganism in the ceftazidime/avibactam arm, 224 (91%) had a clinical response at test of cure (TOC), versus 240 of 271 (89%) patients in the carbapenem arm (risk ratio [RR], 1.02; 95% confidence interval [CI], 0.97 to 1.08; P = 0.45; I 2 = 0%). Clinical response rates for AmpC producers in the ceftazidime/avibactam and carbapenem arms were 32/40 (80%) and 37/42 (88%), respectively (RR, 0.91; 95% CI, 0.76 to 1.10; P = 0.35; I 2 = 0%). Microbiological response and mortality rates were not reported specifically for ESBL/AmpC producers. Ceftazidime/avibactam may be a carbapenem-sparing option for the treatment of mild to moderate complicated urinary tract and intra-abdominal infections caused by ESBL-producing Enterobacterales species, and the data are too limited to provide any conclusive recommendations for the AmpC producers. Care should be taken before extrapolating this to severe infections, given that the representation of this population in the reviewed studies was negligible. Ceftazidime/avibactam is a costly drug active against carbapenem-resistant microorganisms and should be used judiciously to preserve its activity against them.
Collapse
|
60
|
Bassetti M, Giacobbe DR, Robba C, Pelosi P, Vena A. Treatment of extended-spectrum β-lactamases infections: what is the current role of new β-lactams/β-lactamase inhibitors? Curr Opin Infect Dis 2020; 33:474-481. [PMID: 33060469 DOI: 10.1097/qco.0000000000000685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The widespread diffusion of extended-spectrum β-lactamases (ESBLs)-producing Enterobacteriales currently represents a major threat for public health worldwide. Carbapenems are currently considered the first-line choice for serious ESBL infections. However, the dramatic global increase in ESBL prevalence has led to a significant overuse of carbapenems that has promoted the selection and spread of carbapenemases, which might further prejudicated our ability to treat infections due to multidrug-resistant pathogens. Therefore, strategies to limit the use of carbapenems should be implemented. RECENT FINDINGS Although piperacillin-tazobactam should no longer be considered an alternative to carbapenems for definitive treatment of bloodstream infections due to ESBL-producing strains, it might still represent an alternative for step-down therapy or for low-to-moderate severity infection originating from urinary or biliary sources and when piperacillin-tazobactam minimum inhibitory concentration of 4 mg/l or less. Ceftazidime-avibactam and ceftolozane-tazobactam are both carbapenem sparing agents that appear interesting alternatives for treatment of serious ESBL infections. New β-lactams/β-lactamase inhibitors (BL/BLI), including cefepime-enmetazobactam, ceftaroline fosamil-avibactam, aztreonam-avibactam and cefepime-zidebactam, are also promising agents for treatment of ESBL infections, but further clinical data are needed to establish their efficacy relative to carbapenems. The role of carbapenems/β-lactamase inhibitors remain to be clarified. SUMMARY New BL/BLI have distinctive specificities and limitations that require further investigations. Future randomized clinical trials are required to define the best strategy for their administering for ESBL infections.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences
- Department of Health Sciences (DISSAL), University of Genoa
| | - Daniele R Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences
| |
Collapse
|
61
|
Bassetti M, Vena A, Battaglini D, Pelosi P, Giacobbe DR. The role of new antimicrobials for Gram-negative infections in daily clinical practice. Curr Opin Infect Dis 2020; 33:495-500. [PMID: 33009142 DOI: 10.1097/qco.0000000000000686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW To discuss a possible clinical reasoning for treating resistant Gram-negative bacteria (GNB) infections in daily clinical practice, as well as developing a research agenda for the field. RECENT FINDINGS Novel agents, both belonging to β-lactams and to other classes of antimicrobials, have recently become available, likely replacing polymyxins or polymyxin-based combination regimens as the preferred choices for the first-line treatment of severe resistant GNB infections in the near future. SUMMARY The peculiar characteristics of novel agents for severe resistant GNB infections have abruptly made the structure of previous therapeutic algorithms somewhat obsolete, in view of the differential activity of most of them against different classes of carbapenemases. Furthermore, other agents showing activity against resistant GNB are in late phase of clinical development. Optimizing the use of novel agents in order both to guarantee the best available treatment to patients and to delay the emergence and spread of resistance is an important task that cannot be postponed, especially considering the unavailability of well tolerated and fully efficacious options for treating resistant GNB infections that we faced in the last 15 years.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences
- Department of Health Sciences, Universiy of Genoa
| | - Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences
| |
Collapse
|
62
|
Kuang H, Zhong C, Wang Y, Ye H, Ao K, Zong Z, Lv X. Clinical characteristics and outcomes of patients with multidrug-resistant Gram-negative bacterial infections treated with ceftazidime/avibactam. J Glob Antimicrob Resist 2020; 23:404-407. [PMID: 33217561 DOI: 10.1016/j.jgar.2020.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/07/2020] [Accepted: 10/28/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate the clinical characteristics and outcomes of patients with infections caused by multidrug-resistant Gram-negative bacteria (MDR-GNB) treated with ceftazidime/avibactam (CAZ/AVI) during the period September 2019 to June 2020 since CAZ/AVI had been marketed in China. METHODS A total of 20 MDR-GNB-infected patients were retrospectively identified using the electronic medical record system in West China Hospital. RESULTS The mean age of the 20 patients was 54.5 ± 17.37 years and 14 (70%) were male. Pneumonia (n = 12; 60%), complicated intra-abdominal infection (n = 10; 50%), and bloodstream infection (n = 7; 35%) were the most common infection sources. Klebsiella pneumoniae (55% 18/33) was the predominant pathogen. The 14-day clinical cure rate was 45%. The 14-day and 30-day mortality rates were 25% and 55%, respectively. No significant difference was found in 30-day mortality between treatment with CAZ/AVI monotherapy and combination regimens (P > 0.05). Three patients suffered from adverse drug reactions such as diarrhoea. CONCLUSION No significant difference was found between the effectiveness of CAZ/AVI in the clinical failure and cure groups as salvage treatment of MDR-GNB infection.
Collapse
Affiliation(s)
- Huan Kuang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Cejun Zhong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanfang Wang
- Laboratory of Clinical Microbiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Ye
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Keping Ao
- Laboratory of Clinical Microbiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoju Lv
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
63
|
Unresolved issues in the identification and treatment of carbapenem-resistant Gram-negative organisms. Curr Opin Infect Dis 2020; 33:482-494. [PMID: 33009141 DOI: 10.1097/qco.0000000000000682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Carbapenem-resistant organisms (CROs), including Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacterales, are a threat worldwide. This review will cover mechanisms of resistance within CROs and challenges with identification and treatment of these organisms while pointing out unresolved issues and ongoing challenges. RECENT FINDINGS The treatment of CROs has expanded through newer therapeutic options. Guided utilization through genotypic and phenotypic testing is necessary in order for these drugs to target the appropriate mechanisms of resistance and select optimal antibiotic therapy. SUMMARY Identification methods and treatment options need to be precisely understood in order to limit the spread and maximize outcomes of CRO infections.
Collapse
|
64
|
Treatment of Bloodstream Infections Due to Gram-Negative Bacteria with Difficult-to-Treat Resistance. Antibiotics (Basel) 2020; 9:antibiotics9090632. [PMID: 32971809 PMCID: PMC7558339 DOI: 10.3390/antibiotics9090632] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022] Open
Abstract
The rising incidence of bloodstream infections (BSI) due to Gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) has been recognized as a global emergency. The aim of this review is to provide a comprehensive assessment of the mechanisms of antibiotic resistance, epidemiology and treatment options for BSI caused by GNB with DTR, namely extended-spectrum Beta-lactamase-producing Enterobacteriales; carbapenem-resistant Enterobacteriales; DTR Pseudomonas aeruginosa; and DTR Acinetobacter baumannii.
Collapse
|
65
|
Erken HY, Nusran G, Karagüven D, Yilmaz O, Kuru T. No Decrease in Infection Rate with the Use of Local Vancomycin Powder After Partial Hip Replacement in Elderly Patients with Comorbidities. Cureus 2020; 12:e10296. [PMID: 33047086 PMCID: PMC7540078 DOI: 10.7759/cureus.10296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Introduction The goal of this study was to evaluate the effects of local intra-wound vancomycin powder (VP) administration to decrease surgical site infections (SSIs), particularly in elderly patients with comorbidities, after having undergone partial hip replacement in the treatment of intertrochanteric (ITF) or femoral neck fractures (FNF). Methods We retrospectively reviewed patients who underwent partial hip replacement in the treatment of ITF or FNF in one year. We divided the patients into two groups. The non vancomycin-treated group received standard systemic prophylaxis only (1 gr cefazolin IV), while the vancomycin-treated group received 1 gr of VP in the surgical wound just before surgical closure in addition to the systemic prophylaxis. We included patients of 64 years or older who also had one or more comorbidities. We compared the post-operative SSI rates between the non vancomycin-treated group and the vancomycin-treated group. Results A total of 93 patients were included in the study. We detected post-operative wound infection in six patients (6.4%). The rate of SSI was found to be 5.7% in the vancomycin-treated group and 6.9% in the non vancomycin-treated group respectively, which showed no statistically significant difference (p:0.498). The incidence of SSI was statistically higher in the patients who had a follow-up in the post-operative intensive care unit than the patients who had not any follow-up in the intensive care unit. Conclusion Local application of VP in the surgical wound was found to be ineffective in reducing the incidence of SSI after partial hip replacement in elderly patients with comorbidities.
Collapse
Affiliation(s)
- H Yener Erken
- Orthopaedics and Traumatology, Canakkale Onsekiz Mart University, Canakkale, TUR
| | - Gurdal Nusran
- Orthopaedics and Traumatology, Canakkale Onsekiz Mart University, Canakkale, TUR
| | | | - Onur Yilmaz
- Orthopaedics and Traumatology, Canakkale Onsekiz Mart University, Canakkale, TUR
| | - Tolgahan Kuru
- Orthopaedics and Traumatology, Canakkale Onsekiz Mart University, Canakkale, TUR
| |
Collapse
|
66
|
De Angelis G, Del Giacomo P, Posteraro B, Sanguinetti M, Tumbarello M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int J Mol Sci 2020; 21:ijms21145090. [PMID: 32708513 PMCID: PMC7404273 DOI: 10.3390/ijms21145090] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite being members of gut microbiota, Enterobacteriaceae are associated with many severe infections such as bloodstream infections. The β-lactam drugs have been the cornerstone of antibiotic therapy for such infections. However, the overuse of these antibiotics has contributed to select β-lactam-resistant Enterobacteriaceae isolates, so that β-lactam resistance is nowadays a major concern worldwide. The production of enzymes that inactivate β-lactams, mainly extended-spectrum β-lactamases and carbapenemases, can confer multidrug resistance patterns that seriously compromise therapeutic options. Further, β-lactam resistance may result in increases in the drug toxicity, mortality, and healthcare costs associated with Enterobacteriaceae infections. Here, we summarize the updated evidence about the molecular mechanisms and epidemiology of β-lactamase-mediated β-lactam resistance in Enterobacteriaceae, and their potential impact on clinical outcomes of β-lactam-resistant Enterobacteriaceae infections.
Collapse
Affiliation(s)
- Giulia De Angelis
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Paola Del Giacomo
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Brunella Posteraro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Mario Tumbarello
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
67
|
Stewardship of Antibiotics for Multidrug-Resistant Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9040206. [PMID: 32344546 PMCID: PMC7235789 DOI: 10.3390/antibiotics9040206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Nearly one year ago, we wrote the following introductory note for authors willing to submit their paper to our Special Issue entitled "Stewardship of Antibiotics for Multidrug-Resistant Gram-Negative Bacteria" in Antibiotics: [...].
Collapse
|