51
|
Kurek M, Benaida-Debbache N, Elez Garofulić I, Galić K, Avallone S, Voilley A, Waché Y. Antioxidants and Bioactive Compounds in Food: Critical Review of Issues and Prospects. Antioxidants (Basel) 2022; 11:antiox11040742. [PMID: 35453425 PMCID: PMC9029822 DOI: 10.3390/antiox11040742] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022] Open
Abstract
This review paper gives an insight into the effective delivery mechanisms for health-promoting substances and highlights the challenges of using antioxidants and bioactives in foods. The selection criteria for choosing bioactives and their extraction in bioavailable form with their adequate incorporation techniques and delivery mechanisms are covered. Moreover, an overview of existing methods for determination of bioactivity is given. The importance of scientifically evaluating the effects of foods or food components on consumer health before making claims about the healthiness is aligned. Finally, a scientific perspective on how to respond to the booming demand for health-promoting products is given, and we acknowledge that despite the work done, there are still many challenges that need to be overcome.
Collapse
Affiliation(s)
- Mia Kurek
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia; (I.E.G.); (K.G.)
- Correspondence: ; Tel.: +385-1460-5003
| | - Nadjet Benaida-Debbache
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Ivona Elez Garofulić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia; (I.E.G.); (K.G.)
| | - Kata Galić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia; (I.E.G.); (K.G.)
| | - Sylvie Avallone
- QualiSud, University of Montpellier, 34000 Montpellier, France;
- CIRAD, Institut Universitaire de Technologie d’Avignon, 84029 Avignon, France
| | - Andrée Voilley
- International Joint Research Laboratory “Tropical Bioresources & Biotechnology” UMR PAM, Institut Agro Dijon, Université de Bourgogne, 1 Esplanade Erasme, 21078 Dijon, France; (A.V.); (Y.W.)
- The School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi 100000, Vietnam
| | - Yves Waché
- International Joint Research Laboratory “Tropical Bioresources & Biotechnology” UMR PAM, Institut Agro Dijon, Université de Bourgogne, 1 Esplanade Erasme, 21078 Dijon, France; (A.V.); (Y.W.)
- The School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi 100000, Vietnam
| |
Collapse
|
52
|
Mi Aung W, Songkro S, Songkharak S, Kaewnopparat N, Wungsintaweekul J. Preparation, characterization, and antibacterial activity of plaunotol and plaunoi extracts complexed with hydroxypropyl-β-cyclodextrin. Saudi Pharm J 2022; 30:679-692. [PMID: 35812138 PMCID: PMC9257859 DOI: 10.1016/j.jsps.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/01/2022] [Indexed: 11/03/2022] Open
Abstract
Croton stellatopilosus (Plaunoi) leaves accumulate several diterpenes and possess various pharmacological activities. The present study aimed to prepare, characterize and assess the antibacterial activity of inclusion complexes prepared by mixing plaunotol (PL) or plaunoi extract (PE) with cyclodextrins (CD), including α-CD, β-CD, γ-CD, and hydroxypropyl-β-cyclodextrin (HP-β-CD). The inclusion complexes were characterized using SEM, XRD, DSC, and FT-IR and evaluated for aqueous solubility and thermal stability. The PL and PE lyophilized complexes with HP-β-CD were further evaluated for their antibacterial activity against acne-causing bacteria. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of PL, PE, and the inclusion complexes evaluated using the agar dilution method revealed that the MIC and MBC values of the inclusion complexes were lower than those of PL or PE alone. Interestingly, the complexes had a synergistic activity with clindamycin after testing with checkerboard assay. The hydrogel containing the inclusion complex and clindamycin were assessed for antibacterial activity using the agar well diffusion method. The results indicated that the hydrogels showed significant inhibition of bacterial growth. In conclusion, the prepared solid dispersion of PL or PE with HP-β-CD could enhance antibacterial activity by increasing the drug solubility. The hydrogels containing PL or PE complex and clindamycin could be considered as a candidate for the treatment of acne vulgaris.
Collapse
|
53
|
Physicochemical characterization and in vitro evaluation of mesalazine/β-cyclodextrin inclusion complex loaded into chitosan nanoparticles. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Odeh F, Adaileh F, Alshaer W, Nsairat H, Alqudah DA, Jaber AM, Al Bawab A. Synthesis of Mono-Amino Substituted γ-CD: Host-Guest Complexation and In Vitro Cytotoxicity Investigation. Molecules 2022; 27:1683. [PMID: 35268784 PMCID: PMC8911948 DOI: 10.3390/molecules27051683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides which can trap hydrophobic molecules and improve their chemical, physical, and biological properties. γ-CD showed the highest aqueous solubility with the largest cavity diameter among other CD types. The current study describes a direct and easy method for nucleophilic mono-aminos to be substituted with γ-CD and tested for their ability to host the guest curcumin (CUR) as a hydrophobic drug model. The mass spectrometry and NMR analyses showed the successful synthesis of three amino-modified γ-CDs: mono-6-amino-6-deoxy-cyclodextrine (γ-CD-NH2), mono-6-deoxy-6-ethanolamine-γ-cyclodextrine (γ-CD-NHCH2CH2OH), and mono-6-deoxy-6-aminoethylamino)-γ-cyclodextrin (γ-CD-NHCH2CH2NH2). These three amino-modified γ-CDs were proven to be able to host CUR as native γ-CDs with formation constants equal to 6.70 ± 1.02, 5.85 ± 0.80, and 8.98 ± 0.90 mM-1, respectively. Moreover, these amino-modified γ-CDs showed no significant toxicity against human dermal fibroblast cells. In conclusion, the current work describes a mono-substitution of amino-modified γ-CDs that can still host guests and showed low toxicity in human dermal fibroblasts cells. Therefore, the amino-modified γ-CDs can be used as a carrier host and be conjugated with a wide range of molecules for different biomedical applications, especially for active loading methods.
Collapse
Affiliation(s)
- Fadwa Odeh
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan; (F.A.); (A.A.B.)
| | - Fedaa Adaileh
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan; (F.A.); (A.A.B.)
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan;
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; (H.N.); (A.M.J.)
| | - Dana A. Alqudah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan;
| | - Areej M. Jaber
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; (H.N.); (A.M.J.)
| | - Abeer Al Bawab
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan; (F.A.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
55
|
Cid-Samamed A, Rakmai J, Mejuto JC, Simal-Gandara J, Astray G. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chem 2022; 384:132467. [PMID: 35219231 DOI: 10.1016/j.foodchem.2022.132467] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 01/19/2023]
Abstract
This review offers a vision of the chemical behaviour of natural ingredients, synthetic drugs and other related compounds complexed using cyclodextrins. The review takes care of different sections related to i) the inclusion complexes formation with cyclodextrins, ii) the determination of the inclusion formation constant, iii) the most used methods to prepare host inclusion in the non-polar cavity of cyclodextrins and iv) the analytical techniques to evidence host inclusion. The review provides different literature that shows the application of cyclodextrins to improve physical, chemical, and biological characteristics of food compounds including solubility, stability and their elimination/masking. Moreover, the review also offers examples of commercial food/supplement products of cyclodextrins to indicate that cyclodextrins can be used to generate biotechnological substances with innovative properties and improve the development of food products.
Collapse
Affiliation(s)
- Antonio Cid-Samamed
- Universidade de Vigo, Departamento de Química Física, Facultade de Ciencias, Ourense 32004, España.
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok 10900, Thailand.
| | - Juan Carlos Mejuto
- Universidade de Vigo, Departamento de Química Física, Facultade de Ciencias, Ourense 32004, España.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Ourense E-32004, Spain.
| | - Gonzalo Astray
- Universidade de Vigo, Departamento de Química Física, Facultade de Ciencias, Ourense 32004, España.
| |
Collapse
|
56
|
Abdel-Moneim A, Ramadan H. Novel strategies to oral delivery of insulin: Current progress of nanocarriers for diabetes management. Drug Dev Res 2021; 83:301-316. [PMID: 34859477 DOI: 10.1002/ddr.21903] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/30/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus is one of the most serious public health problems in the world. Repeated daily injections of subcutaneous insulin is the standard treatment for patients with type 1 diabetes mellitus; however, subcutaneous insulin injections can potentially cause local discomfort, patient noncompliance, hypoglycemia, failure to regulate glucose homeostasis, infections, and fat deposits at the injection sites. In recent years, numerous attempts have been made to produce safe and efficient nanoparticles for oral insulin delivery. Oral administration is considered the most effective alternative route to insulin injection, but it is accompanied by several challenges related to enzymatic proteolysis, digestive breakdown, and absorption barriers. A number of natural and synthetic polymeric, lipid-based, and inorganic nanoparticles have been investigated for use. Although improvements have recently been made in potential oral insulin delivery systems, these require further investigation before clinical trials are conducted. In this review, new approaches to oral insulin delivery for diabetes treatment are discussed, including polymeric, lipid-based, and inorganic nanoparticles, as well as the clinical trials performed for this purpose.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hanaa Ramadan
- Histology and Molecular Cytology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
57
|
Shi Y, Liu JB, Deng J, Zou DZ, Wu JJ, Cao YH, Yin J, Ma YS, Da F, Li W. The role of ceRNA-mediated diagnosis and therapy in hepatocellular carcinoma. Hereditas 2021; 158:44. [PMID: 34758879 PMCID: PMC8582193 DOI: 10.1186/s41065-021-00208-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide due to its high degree of malignancy, high incidence, and low survival rate. However, the underlying mechanisms of hepatocarcinogenesis remain unclear. Long non coding RNA (lncRNA) has been shown as a novel type of RNA. lncRNA by acting as ceRNA can participate in various biological processes of HCC cells, such as tumor cell proliferation, migration, invasion, apoptosis and drug resistance by regulating downstream target gene expression and cancer-related signaling pathways. Meanwhile, lncRNA can predict the efficacy of treatment strategies for HCC and serve as a potential target for the diagnosis and treatment of HCC. Therefore, lncRNA serving as ceRNA may become a vital candidate biomarker for clinical diagnosis and treatment. In this review, the epidemiology of HCC, including morbidity, mortality, regional distribution, risk factors, and current treatment advances, was briefly discussed, and some biological functions of lncRNA in HCC were summarized with emphasis on the molecular mechanism and clinical application of lncRNA-mediated ceRNA regulatory network in HCC. This paper can contribute to the better understanding of the mechanism of the influence of lncRNA-mediated ceRNA networks (ceRNETs) on HCC and provide directions and strategies for future studies.
Collapse
Affiliation(s)
- Yi Shi
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China.,Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Da-Zhi Zou
- Department of Spine Surgery, Longhui County People's Hospital, Longhui, 422200, Hunan, China
| | - Jian-Jun Wu
- Nantong Haimen Yuelai Health Centre, Haimen, 226100, China
| | - Ya-Hong Cao
- Department of Respiratory, Nantong Traditional Chinese Medicine Hospital, Nantong, 226019, Jiangsu Province, China
| | - Jie Yin
- Department of General Surgery, Haian people's Hospital, Haian, 226600, Jiangsu, China
| | - Yu-Shui Ma
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.
| | - Fu Da
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Wen Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
58
|
Sharma A, Kumar D, Dahiya K, Hawthorne S, Jha SK, Jha NK, Nand P, Girgis S, Raj S, Srivastava R, Goswami VK, Gregoriou Y, El-Zahaby SA, Ojha S, Dureja H, Gupta G, Singh S, Chellappan DK, Dua K. Advances in pulmonary drug delivery targeting microbial biofilms in respiratory diseases. Nanomedicine (Lond) 2021; 16:1905-1923. [PMID: 34348474 DOI: 10.2217/nnm-2021-0057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The increasing burden of respiratory diseases caused by microbial infections poses an immense threat to global health. This review focuses on the various types of biofilms that affect the respiratory system and cause pulmonary infections, specifically bacterial biofilms. The article also sheds light on the current strategies employed for the treatment of such pulmonary infection-causing biofilms. The potential of nanocarriers as an effective treatment modality for pulmonary infections is discussed, along with the challenges faced during treatment and the measures that may be implemented to overcome these. Understanding the primary approaches of treatment against biofilm infection and applications of drug-delivery systems that employ nanoparticle-based approaches in the disruption of biofilms are of utmost interest which may guide scientists to explore the vistas of biofilm research while determining suitable treatment modalities for pulmonary respiratory infections.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Kajal Dahiya
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Susan Hawthorne
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Samuel Girgis
- School of Pharmacy, University of Sunderland, Chester Road, Sunderland, SR1 3SD, UK
| | - Sibi Raj
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Rashi Srivastava
- Institute of Engineering & Technology, Lucknow, Uttar Pradesh, 226021, India
| | - Vineet Kumar Goswami
- Department of Biological Sciences, School of Basic & Applied Sciences, G.D. Goenka University, Education City, Sohna Road, Gurugram, Haryana, 122103, India
| | - Yiota Gregoriou
- Department of Biological Sciences, Faculty of Pure & Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Sally A El-Zahaby
- Department of Pharmaceutics & Pharmaceutical Technology, Pharos University in Alexandria, Egypt
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, PO Box-17666, United Arab Emirates University, Al Ain, UAE
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, 302017, India
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
59
|
Sharma A, Kumar D, Dahiya K, Hawthorne S, Jha SK, Jha NK, Nand P, Girgis S, Raj S, Srivastava R, Goswami VK, Gregoriou Y, El-Zahaby SA, Ojha S, Dureja H, Gupta G, Singh S, Chellappan DK, Dua K. Advances in pulmonary drug delivery targeting microbial biofilms in respiratory diseases. Nanomedicine (Lond) 2021. [DOI: https://doi.org/10.2217/nnm-2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increasing burden of respiratory diseases caused by microbial infections poses an immense threat to global health. This review focuses on the various types of biofilms that affect the respiratory system and cause pulmonary infections, specifically bacterial biofilms. The article also sheds light on the current strategies employed for the treatment of such pulmonary infection-causing biofilms. The potential of nanocarriers as an effective treatment modality for pulmonary infections is discussed, along with the challenges faced during treatment and the measures that may be implemented to overcome these. Understanding the primary approaches of treatment against biofilm infection and applications of drug-delivery systems that employ nanoparticle-based approaches in the disruption of biofilms are of utmost interest which may guide scientists to explore the vistas of biofilm research while determining suitable treatment modalities for pulmonary respiratory infections.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Kajal Dahiya
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Susan Hawthorne
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Samuel Girgis
- School of Pharmacy, University of Sunderland, Chester Road, Sunderland, SR1 3SD, UK
| | - Sibi Raj
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Rashi Srivastava
- Institute of Engineering & Technology, Lucknow, Uttar Pradesh, 226021, India
| | - Vineet Kumar Goswami
- Department of Biological Sciences, School of Basic & Applied Sciences, G.D. Goenka University, Education City, Sohna Road, Gurugram, Haryana, 122103, India
| | - Yiota Gregoriou
- Department of Biological Sciences, Faculty of Pure & Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Sally A El-Zahaby
- Department of Pharmaceutics & Pharmaceutical Technology, Pharos University in Alexandria, Egypt
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, PO Box-17666, United Arab Emirates University, Al Ain, UAE
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, 302017, India
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|