51
|
Pourvali K, Monji H. Obesity and intestinal stem cell susceptibility to carcinogenesis. Nutr Metab (Lond) 2021; 18:37. [PMID: 33827616 PMCID: PMC8028194 DOI: 10.1186/s12986-021-00567-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Background Obesity is a top public health problem associated with an increase in colorectal cancer incidence. Stem cells are the chief cells in tissue homeostasis that self-renew and differentiate into other cells to regenerate the organ. It is speculated that an increase in stem cell pool makes cells susceptible to carcinogenesis. In this review, we looked at the recent investigations linking obesity/high-fat diet-induced obesity to intestinal carcinogenesis with regard to intestinal stem cells and their niche. Findings High-fat diet-induced obesity may rise intestinal carcinogenesis by increased Intestinal stem cells (ISC)/progenitor’s population, stemness, and niche independence through activation of PPAR-δ with fatty acids, hormonal alterations related to obesity, and low-grade inflammation. However, these effects may possibly relate to the interaction between fats and carbohydrates, and not a fatty acid per se. Nonetheless, literature studies are inconsistency in their results, probably due to the differences in the diet components and limitations of genetic models used. Conclusion High-fat diet-induced obesity affects carcinogenesis by changing ISC proliferation and function. However, a well-matched diet and the reliable colorectal cancer models that mimic human carcinogenesis is necessary to clearly elucidate the influence of high-fat diet-induced obesity on ISC behavior.
Collapse
Affiliation(s)
- Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran
| | - Hadi Monji
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran.
| |
Collapse
|
52
|
Bai R, Wu D, Shi Z, Hu W, Li J, Chen Y, Ge W, Yuan Y, Zheng S. Pan-cancer analyses demonstrate that ANKRD6 is associated with a poor prognosis and correlates with M2 macrophage infiltration in colon cancer. Chin J Cancer Res 2021; 33:93-102. [PMID: 33707932 PMCID: PMC7941690 DOI: 10.21147/j.issn.1000-9604.2021.01.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective Ankyrin repeat domain-containing protein 6 (ANKRD6) is an ankyrin repeat-containing protein which is structurally related to vertebrate inversin and Drosophila Diego. However, the correlations between ANKRD6 and tumor-infiltrating immune cells in cancers is not clear. Methods ANKRD6 expression was analyzed by Oncomine, Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA). PrognoScan and GEPIA were used to evaluate the influence of ANKRD6 on clinical prognosis. TIMER and CIBERSORT were used to analyze correlations between ANKRD6 expression levels and tumor immune cell infiltrates. Immunohistochemical analysis of the relationship between ANKRD6 expression and overall survival, as well as the relationship between ANKRD6 expression and M2 macrophage infiltration, was performed. Results High level of ANKRD6 expression was associated with poor prognosis of colon cancer. ANKRD6 expression level was positively correlated with infiltrating levels of CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells in colon cancer by using TIMER. Using CIBERSORT, we found that in plasma cells, CD8+ T cells, CD4+ memory resting T cells, follicular helper T cells and activated natural killer cells were significantly lower in the ANKRD6-high group than in the ANKRD6-low group. M0 and M2 macrophages were significantly higher in the ANKRD6-high group than in the ANKRD6-low group. Immunohistochemistry confirmed that M2 macrophage infiltration in the ANKRD6-high group significantly increased. Conclusions The high ANKRD6 expression is associated with poor prognosis of colon cancer. ANKRD6 expression is positively correlated with M2 macrophage infiltration in colon cancer.
Collapse
Affiliation(s)
- Rui Bai
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Dehao Wu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhong Shi
- Department of Medical Oncology, Institute of Cancer and Basic Medicine (ICBM) Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Wangxiong Hu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Juan Li
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Yuanyuan Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Weiting Ge
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shu Zheng
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
53
|
Sidrat T, Rehman ZU, Joo MD, Lee KL, Kong IK. Wnt/β-catenin Pathway-Mediated PPARδ Expression during Embryonic Development Differentiation and Disease. Int J Mol Sci 2021; 22:ijms22041854. [PMID: 33673357 PMCID: PMC7918746 DOI: 10.3390/ijms22041854] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays a crucial role in early embryonic development. Wnt/β-catenin signaling is a major regulator of cell proliferation and keeps embryonic stem cells (ESCs) in the pluripotent state. Dysregulation of Wnt signaling in the early developmental stages causes several hereditary diseases that lead to embryonic abnormalities. Several other signaling molecules are directly or indirectly activated in response to Wnt/β-catenin stimulation. The crosstalk of these signaling factors either synergizes or opposes the transcriptional activation of β-catenin/Tcf4-mediated target gene expression. Recently, the crosstalk between the peroxisome proliferator-activated receptor delta (PPARδ), which belongs to the steroid superfamily, and Wnt/β-catenin signaling has been reported to take place during several aspects of embryonic development. However, numerous questions need to be answered regarding the function and regulation of PPARδ in coordination with the Wnt/β-catenin pathway. Here, we have summarized the functional activation of the PPARδ in co-ordination with the Wnt/β-catenin pathway during the regulation of several aspects of embryonic development, stem cell regulation and maintenance, as well as during the progression of several metabolic disorders.
Collapse
Affiliation(s)
- Tabinda Sidrat
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.-D.J.)
| | - Zia-Ur Rehman
- Department of Microbiology, Hazara University, Mansehra 21310, Pakistan;
| | - Myeong-Don Joo
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.-D.J.)
| | - Kyeong-Lim Lee
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Korea;
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.-D.J.)
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Korea;
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
54
|
Cha PH, Hwang JH, Kwak DK, Koh E, Kim KS, Choi KY. APC loss induces Warburg effect via increased PKM2 transcription in colorectal cancer. Br J Cancer 2021; 124:634-644. [PMID: 33071283 PMCID: PMC7851388 DOI: 10.1038/s41416-020-01118-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Most cancer cells employ the Warburg effect to support anabolic growth and tumorigenesis. Here, we discovered a key link between Warburg effect and aberrantly activated Wnt/β-catenin signalling, especially by pathologically significant APC loss, in CRC. METHODS Proteomic analyses were performed to evaluate the global effects of KYA1797K, Wnt/β-catenin signalling inhibitor, on cellular proteins in CRC. The effects of APC-loss or Wnt ligand on the identified enzymes, PKM2 and LDHA, as well as Warburg effects were investigated. A linkage between activation of Wnt/β-catenin signalling and cancer metabolism was analysed in tumour of Apcmin/+ mice and CRC patients. The roles of PKM2 in cancer metabolism, which depends on Wnt/β-catenin signalling, were assessed in xenograft-tumours. RESULTS By proteomic analysis, PKM2 and LDHA were identified as key molecules regulated by Wnt/β-catenin signalling. APC-loss caused the increased expression of metabolic genes including PKM2 and LDHA, and increased glucose consumption and lactate secretion. Pathological significance of this linkage was indicated by increased expression of glycolytic genes with Wnt target genes in tumour of Apcmin/+ mice and CRC patients. Warburg effect and growth of xenografted tumours-induced by APC-mutated-CRC cells were suppressed by PKM2-depletion. CONCLUSIONS The β-catenin-PKM2 regulatory axis induced by APC loss activates the Warburg effect in CRC.
Collapse
Affiliation(s)
- Pu-Hyeon Cha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jeong-Ha Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Dong-Kyu Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Eunjin Koh
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, College of Medicine, Yonsei University, Seoul, Korea
| | - Kyung-Sup Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, College of Medicine, Yonsei University, Seoul, Korea
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.
- CK Biotechnology Inc., Building 117, 50 Yonsei Ro, Seodaemun-Gu, Seoul, Korea.
| |
Collapse
|
55
|
Wu XT, Wang YH, Cai XY, Dong Y, Cui Q, Zhou YN, Yang XW, Lu WF, Zhang M. RNF115 promotes lung adenocarcinoma through Wnt/β-catenin pathway activation by mediating APC ubiquitination. Cancer Metab 2021; 9:7. [PMID: 33509267 PMCID: PMC7842072 DOI: 10.1186/s40170-021-00243-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background Patients with lung adenocarcinoma (LUAD) have high mortality rate and poor prognosis. The LUAD cells display increased aerobic glycolysis, which generates energy required for their survival and proliferation. Deregulation of Wnt/β-catenin signaling pathway induces the metabolism switching and oncogenesis in tumor cells. RING finger protein 115 (RNF115) is an E3 ligase for ubiquitin-mediated degradation. Although the oncogenic functions of RNF115 have been revealed in breast tumor cells, the effect of RNF115 on lung cancer is still not clear. Methods RNF115 expression and its correlation with the features of LUAD patients were analyzed by using public database and our own cohort. The functions of RNF115 in proliferation and energy metabolism in LUAD cells were explored by downregulating or upregulating RNF115 expression. Results We demonstrated that RNF115 was overexpressed in LUAD tissues and its expression was positively correlated with the poor overall survival of LUAD patients. Moreover, RNF115 overexpression inhibited LUAD cell apoptosis and promoted cellular proliferation and metabolism in LUAD cells. On the contrary, RNF115 knockdown displayed reverse effects. Furthermore, the underlying mechanism of the biological function of RNF115 in LUAD was through regulating Wnt/β-catenin pathway via ubiquitination of adenomatous polyposis coli (APC). Conclusion The current study reveals a close association between RNF115 expression and prognostic conditions in LUAD patients and the oncogenic roles of RNF115 in LUAD at the first time. These findings may help establish the foundation for the development of therapeutics strategies and clinical management for lung cancer in future. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00243-y.
Collapse
Affiliation(s)
- Xiao-Ting Wu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Yu-Han Wang
- Department of Integrated Traditional Chinese and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Yue Cai
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Yun Dong
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Qing Cui
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Ya-Ning Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Xi-Wen Yang
- LongHua Hospital Shanghai University of Traditional Chinese Medicine/Oncology Division 2, Shanghai, China
| | - Wen-Feng Lu
- Department of Integrated Traditional Chinese and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China.
| |
Collapse
|
56
|
Fan Q, Xi P, Tian D, Jia L, Cao Y, Zhan K, Sun T, Zhang Y, Wang Q. Ginsenoside Rb1 Facilitates Browning by Repressing Wnt/β-Catenin Signaling in 3T3-L1 Adipocytes. Med Sci Monit 2021; 27:e928619. [PMID: 33503016 PMCID: PMC7849207 DOI: 10.12659/msm.928619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The discovery of browning in white adipose tissue has provided new ideas for treating obesity. Many studies have reported that ginsenoside Rb1 (G-Rb1) has activity against diabetes, inflammation, and obesity, but further investigation is needed on the effect and mechanism of G-Rb1 on browning. MATERIAL AND METHODS We treated 3T3-L1 adipocytes with 0-200 μM G-Rb1, and 0.5 μM Compound 3f and 30 μM SKL2001 were used to activate Wnt/b-catenin signaling. Adipocyte activity was evaluated by Cell Counting Kit-8. Oil Red O staining was used to detect the lipid droplets. Quantitative real-time polymerase chain reaction was used to measure the expression of Cd-137, Cited-1, Txb-1, Prdm-16, and Ucp-1 mRNA. Western blotting was used to measure the expression of Ucp-1, pGSK-3ß (Ser 9), GSK- 3ß, and ß-catenin proteins. The expression of Ucp-1 was also detected with immunofluorescence. RESULTS Adipocyte activity was not affected by 0-100 μM G-Rb1. However, G-Rb1 dose-dependently reduced the accumulation of lipid droplets; increased the expression of Cd-137, Cited-1, Txb-1, Prdm-16, and Ucp-1 mRNA; and increased the expression of Ucp-1, pGSK-3ß (Ser 9), GSK-3ß, and ß-catenin proteins. The accumulation of lipid droplets and the expression of Ucp-1 protein decreased as b-catenin increased. CONCLUSIONS G-Rb1 at various concentrations (0-100 μM) promoted the browning of adipocytes in a dose-dependent manner. Further, we confirmed that activation of Wnt/ß-catenin signaling could inhibit browning. Therefore, the browning promoted by G-Rb1 may be associated with the inhibition of Wnt/ß-catenin signaling.
Collapse
Affiliation(s)
- Qingxin Fan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (mainland).,Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital C. T.), Chengdu, Sichuan, China (mainland)
| | - Pengjiao Xi
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China (mainland)
| | - Derun Tian
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (mainland).,School of Medical Laboratory, Tianjin Medical University, Tianjin, China (mainland)
| | - Lianqun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China (mainland)
| | - Yuan Cao
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China (mainland)
| | - Kaixuan Zhan
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China (mainland)
| | - Tianwei Sun
- Department of Spinal Surgery, Tianjin People's Hospital, Tianjin, China (mainland)
| | - Yinlong Zhang
- Department of Orthopedic Trauma, Tianjin People's Hospital, Tianjin, China (mainland)
| | - Qiming Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (mainland).,Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
57
|
Xu C, Yu H, Yin X, Zhang J, Liu C, Qi H, Liu P. Circular RNA circNINL promotes breast cancer progression through activating β-catenin signaling via miR-921/ADAM9 axis. J Biochem 2021; 169:693-700. [PMID: 33479730 DOI: 10.1093/jb/mvab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/08/2021] [Indexed: 01/22/2023] Open
Abstract
We investigated the expression and functions of circular RNA (circRNA) circNINL and miR-921 in breast cancer (BC) in this study. We found that the expression of circNINL increased while the expression of miR-921 decreased in BC tissues and cell lines, and their anomalous expressions were associated with malignant features and poor prognostic of BC. Then, we demonstrated that circNINL could interact with miR-921 and facilitate BC cells malignant process including proliferation acceleration, migration enhancement and apoptosis evasion via sponging miR-921 in vitro. Further investigations revealed that circNINL/miR-921 axis could mediate the expression of ADAM9 which was a direct target of miR-921. In addition, we exhibited that ADAM9 may activate β-catenin signaling by interacting with E-cadherin. We presented the vital roles of circNINL/miR-921/ADAM9/β-catenin signaling in the progression of BC.
Collapse
Affiliation(s)
- Chuanbo Xu
- Department of General Surgery, The Huangdao District People's Hospital, Qingdao, Shandong, China
| | - Haitao Yu
- Department of General Surgery, The Huangdao District People's Hospital, Qingdao, Shandong, China
| | - Xianghua Yin
- Department of General Surgery, The Huangdao District People's Hospital, Qingdao, Shandong, China
| | - Jishi Zhang
- Department of General Surgery, The Huangdao District People's Hospital, Qingdao, Shandong, China
| | - Chunlin Liu
- Department of General Surgery, The Huangdao District People's Hospital, Qingdao, Shandong, China
| | - Hong Qi
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Peng Liu
- Department of General Surgery, The Huangdao District People's Hospital, Qingdao, Shandong, China
| |
Collapse
|
58
|
Feng Y, Liu S, Zha R, Sun X, Li K, Robling A, Li B, Yokota H. Mechanical Loading-Driven Tumor Suppression Is Mediated by Lrp5-Dependent and Independent Mechanisms. Cancers (Basel) 2021; 13:cancers13020267. [PMID: 33450808 PMCID: PMC7828232 DOI: 10.3390/cancers13020267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Advanced breast cancer and prostate cancer metastasize to varying organs including the bone. We show here that mechanical loading to the knee suppresses tumor growth in the loaded bone and the non-loaded mammary pad. Although lipoprotein receptor-related protein 5 (Lrp5) in osteocytes is necessary to induce loading-driven bone formation, loading-driven tumor suppression is regulated by Lrp5-dependent and independent mechanisms. Lrp5 overexpression in osteocytes enhances tumor suppression, but without Lrp5 in osteocytes, mechanical loading elevates dopamine, chemerin, p53, and TNF-related apoptosis-inducing ligand (TRAIL) and reduces cholesterol and nexin. Their systemic changes contribute to inhibiting tumors without Lrp5. Osteoclast development is also inhibited by the load-driven regulation of chemerin and nexin. Abstract Bone is mechanosensitive and lipoprotein receptor-related protein 5 (Lrp5)-mediated Wnt signaling promotes loading-driven bone formation. While mechanical loading can suppress tumor growth, the question is whether Lrp5 mediates loading-driven tumor suppression. Herein, we examined the effect of Lrp5 using osteocyte-specific Lrp5 conditional knockout mice. All mice presented noticeable loading-driven tumor suppression in the loaded tibia and non-loaded mammary pad. The degree of suppression was more significant in wild-type than knockout mice. In all male and female mice, knee loading reduced cholesterol and elevated dopamine. It reduced tumor-promoting nexin, which was elevated by cholesterol and reduced by dopamine. By contrast, it elevated p53, TNF-related apoptosis-inducing ligand (TRAIL), and chemerin, and they were regulated reversely by dopamine and cholesterol. Notably, Lrp5 overexpression in osteocytes enhanced tumor suppression, and osteoclast development was inhibited by chemerin. Collectively, this study identified Lrp5-dependent and independent mechanisms for tumor suppression. Lrp5 in osteocytes contributed to the loaded bone, while the Lrp5-independent regulation of dopamine- and cholesterol-induced systemic suppression.
Collapse
Affiliation(s)
- Yan Feng
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Rongrong Zha
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Xun Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Kexin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Alexander Robling
- Department of Anatomy Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Baiyan Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Correspondence: (B.L.); (H.Y.); Tel.: +86-451-8667-1354 (B.L.); +317-278-5177 (H.Y.); Fax: +86-451-8667-1354 (B.L.); +317-278-2455 (H.Y.)
| | - Hiroki Yokota
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
- Department of Anatomy Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (B.L.); (H.Y.); Tel.: +86-451-8667-1354 (B.L.); +317-278-5177 (H.Y.); Fax: +86-451-8667-1354 (B.L.); +317-278-2455 (H.Y.)
| |
Collapse
|
59
|
Yamada K, Hori Y, Inoue S, Yamamoto Y, Iso K, Kamiyama H, Yamaguchi A, Kimura T, Uesugi M, Ito J, Matsuki M, Nakamoto K, Harada H, Yoneda N, Takemura A, Kushida I, Wakayama N, Kubara K, Kato Y, Semba T, Yokoi A, Matsukura M, Odagami T, Iwata M, Tsuruoka A, Uenaka T, Matsui J, Matsushima T, Nomoto K, Kouji H, Owa T, Funahashi Y, Ozawa Y. E7386, a Selective Inhibitor of the Interaction between β-Catenin and CBP, Exerts Antitumor Activity in Tumor Models with Activated Canonical Wnt Signaling. Cancer Res 2021; 81:1052-1062. [PMID: 33408116 DOI: 10.1158/0008-5472.can-20-0782] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/29/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
The Wnt/β-catenin signaling pathway plays crucial roles in embryonic development and the development of multiple types of cancer, and its aberrant activation provides cancer cells with escape mechanisms from immune checkpoint inhibitors. E7386, an orally active selective inhibitor of the interaction between β-catenin and CREB binding protein, which is part of the Wnt/β-catenin signaling pathway, disrupts the Wnt/β-catenin signaling pathway in HEK293 and adenomatous polyposis coli (APC)-mutated human gastric cancer ECC10 cells. It also inhibited tumor growth in an ECC10 xenograft model and suppressed polyp formation in the intestinal tract of ApcMin /+ mice, in which mutation of Apc activates the Wnt/β-catenin signaling pathway. E7386 demonstrated antitumor activity against mouse mammary tumors developed in mouse mammary tumor virus (MMTV)-Wnt1 transgenic mice. Gene expression profiling using RNA sequencing data of MMTV-Wnt1 tumor tissue from mice treated with E7386 showed that E7386 downregulated genes in the hypoxia signaling pathway and immune responses related to the CCL2, and IHC analysis showed that E7386 induced infiltration of CD8+ cells into tumor tissues. Furthermore, E7386 showed synergistic antitumor activity against MMTV-Wnt1 tumor in combination with anti-PD-1 antibody. In conclusion, E7386 demonstrates clear antitumor activity via modulation of the Wnt/β-catenin signaling pathway and alteration of the tumor and immune microenvironments, and its antitumor activity can be enhanced in combination with anti-PD-1 antibody. SIGNIFICANCE: These findings demonstrate that the novel anticancer agent, E7386, modulates Wnt/β-catenin signaling, altering the tumor immune microenvironment and exhibiting synergistic antitumor activity in combination with anti-PD-1 antibody.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yusaku Hori
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Satoshi Inoue
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yuji Yamamoto
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kentaro Iso
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Hiroshi Kamiyama
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Atsumi Yamaguchi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Takayuki Kimura
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Mai Uesugi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Junichi Ito
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Masahiro Matsuki
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kazutaka Nakamoto
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Hitoshi Harada
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Naoki Yoneda
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Atsushi Takemura
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Ikuo Kushida
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Naomi Wakayama
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kenji Kubara
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yu Kato
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Taro Semba
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Akira Yokoi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | | | | | - Masao Iwata
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Akihiko Tsuruoka
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Toshimitsu Uenaka
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Junji Matsui
- Oncology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | | | - Kenichi Nomoto
- Oncology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | | | - Takashi Owa
- Oncology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | - Yasuhiro Funahashi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan.
| | - Yoichi Ozawa
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan.
| |
Collapse
|
60
|
Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:13. [PMID: 33407720 PMCID: PMC7788901 DOI: 10.1186/s13046-020-01808-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Background Tumour-associated macrophages (TAMs) in the tumour microenvironment (TME) can promote the progression of hepatocellular carcinoma (HCC). Some tumours can be suppressed by targeting Wnt2b in tumour cells. However, the role of Wnt2b in HCC is still unknown. In particular, the role of Wnt2b-mediated signal activation in macrophage polarization in the HCC microenvironment, and the regulatory effect between Wnt and glycolysis in TAMs has not been described. Methods The expression of Wnt2b in TAMs was detected by qPCR and immunofluorescence. Wnt2b/β-catenin interference in HCC-TAMs was performed by lentivirus carrying targeted shRNA or TLR9 agonist. Markers related to macrophage polarization and the changes of key glycolytic enzymes expression were detected by flow cytometry and qPCR. ECAR was analysed by Seahorse analyser. MTT assay, wound healing assay, western blotting were used to evaluate the promoting effect of different HCC-TAMs on the proliferation, migration and EMT of HCC in vitro. Tumour cells and different HCC-TAMs were injected via subcutaneously into immunodeficient mice to assess the effects of CpG ODN, Wnt2b, or β-catenin on HCC-TAMs in tumour growth in vivo. Results Polarization-promoting factors derived from HCC cells upregulated the expression of Wnt2b in macrophages, which promoted the polarization of TAMs to M2-like macrophages by activating Wnt2b/β-catenin/c-Myc signalling. Furthermore, this process was associated with the activation of glycolysis in HCC-TAMs. These HCC-TAMs could promote the development of EMT, proliferation, and migration of HCC. In addition to silencing Wnt2b or β-catenin expression, TLR9 agonist CpG ODN downregulated the level of glycolysis and inhibited the M2 polarization of HCC-TAMs, reversing the tumour-promoting effects of TAMs in vitro and vivo. Conclusions As a potential target for HCC therapy, Wnt2b may play an important regulatory role for the functions of TAMs in the TME. Moreover, the TLR9 agonist CpG ODN might act as a Wnt2b signal inhibitor and can potentially be employed for HCC therapy by disturbing Wnt2b/β-catenin/c-Myc and inhibiting glycolysis in HCC-TAMs.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
61
|
Liu J, Zhang SQ, Chen J, Li ZB, Chen JX, Lu QQ, Han YS, Dai W, Xie C, Li JC. Identifying Prognostic Significance of RCL1 and Four-Gene Signature as Novel Potential Biomarkers in HCC Patients. JOURNAL OF ONCOLOGY 2021; 2021:5574150. [PMID: 34257652 PMCID: PMC8260302 DOI: 10.1155/2021/5574150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/05/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly malignant disease, and it is characterized by rapid progression and low five-year survival rate. At present, there are no effective methods for monitoring the treatment and prognosis of HCC. METHODS The transcriptome and gene expression profiles of HCC were obtained from the Cancer Genome Atlas (TCGA) program, International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. The random forest method was applied to construct a four-gene prognostic model based on RNA terminal phosphate cyclase like 1 (RCL1) expression. The Kaplan-Meier method was performed to evaluate the prognostic value of RCL1, long noncoding RNAs (AC079061, AL354872, and LINC01093), and four-gene signature (SPP1, MYBL2, TRNP1, and FTCD). We examined the relationship between RCL1 expression and immune cells infiltration, tumor mutation burden (TMB), and microsatellite instability (MSI). RESULTS The results of multiple databases indicated that the aberrant expression of RCL1 was associated with clinical outcome, immune cells infiltration, TMB, and MSI in HCC patients. Meanwhile, we found that long noncoding RNAs (AC079061, AL354872, and LINC01093) and RCL1 were significantly coexpressed in HCC patients. We also confirmed that the four-gene signature was an independent prognostic factor for HCC patients. Ferroptosis potential index, immune checkpoint molecules, and clinical feature were found to have obvious correlations with risk score. The area under the receiver operating characteristic curve values for the model were 0.7-0.8 in the training set and the validation set, suggesting high robustness of the four-gene signature. We then built a nomogram for facilitating the use in clinical practice. CONCLUSION Our study demonstrated that RCL1 and a novel four-gene signature can be used as prognostic biomarkers for predicting clinical outcome in HCC patients; and this model may assist in individualized treatment monitoring of HCC patients in clinical practice.
Collapse
Affiliation(s)
- Jun Liu
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Shan-Qiang Zhang
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Jing Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Bin Li
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Jia-Xi Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Qi-Qi Lu
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Yu-Shuai Han
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Wenjie Dai
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Chongwei Xie
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Ji-Cheng Li
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
62
|
Menefee DS, McMasters A, Pan J, Li X, Xiao D, Waigel S, Zacharias W, Rai SN, McMasters KM, Hao H. Age-related transcriptome changes in melanoma patients with tumor-positive sentinel lymph nodes. Aging (Albany NY) 2020; 12:24914-24939. [PMID: 33373316 PMCID: PMC7803563 DOI: 10.18632/aging.202435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
Age is an important factor for determining the outcome of melanoma patients. Sentinel lymph node (SLN) status is also a strong predictor of survival for melanoma. Paradoxically, older melanoma patients have a lower incidence of SLN metastasis but a higher mortality rate when compared with their younger counterparts. The mechanisms that underlie this phenomenon remain unknown. This study uses three independent datasets of RNA samples from patients with melanoma metastatic to the SLN to identify age-related transcriptome changes in SLNs and their association with outcome. Microarray was applied to the first dataset of 97 melanoma patients. NanoString was performed in the second dataset to identify the specific immune genes and pathways that are associated with recurrence in younger versus older patients. qRT-PCR analysis was used in the third dataset of 36 samples to validate the differentially expressed genes (DEGs) from microarray and NanoString. These analyses show that FOS, NR4A, and ITGB1 genes were significantly higher in older melanoma patients with positive SLNs. IRAK3- and Wnt10b-related genes are the major pathways associated with recurrent melanoma in younger and older patients with tumor-positive SLNs, respectively. This study aims to elucidate age-related differences in SLNs in the presence of nodal metastasis.
Collapse
Affiliation(s)
- Derek S Menefee
- The Hiram C. Polk, Jr., MD. Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Austin McMasters
- The Hiram C. Polk, Jr., MD. Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Xiaohong Li
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Deyi Xiao
- The Hiram C. Polk, Jr., MD. Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Sabine Waigel
- Genomics Facility, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Wolfgang Zacharias
- Genomics Facility, University of Louisville School of Medicine, Louisville, KY 40292, USA.,Department of Medicine, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Shesh N Rai
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kelly M McMasters
- The Hiram C. Polk, Jr., MD. Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Hongying Hao
- The Hiram C. Polk, Jr., MD. Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
63
|
The Function of SUMOylation and Its Role in the Development of Cancer Cells under Stress Conditions: A Systematic Review. Stem Cells Int 2020; 2020:8835714. [PMID: 33273928 PMCID: PMC7683158 DOI: 10.1155/2020/8835714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant tumors still pose serious threats to human health due to their high morbidity and mortality. Recurrence and metastasis are the most important factors affecting patient prognosis. Chemotherapeutic drugs and radiation used to treat these tumors mainly interfere with tumor metabolism, destroy DNA integrity, and inhibit protein synthesis. The upregulation of small ubiquitin-like modifier (SUMO) is a prevalent posttranslational modification (PTM) in various cancers and plays a critical role in tumor development. The dysregulation of SUMOylation can protect cancer cells from stresses exerted by external or internal stimuli. SUMOylation is a dynamic process finely regulated by SUMOylation enzymes and proteases to maintain a balance between SUMOylation and deSUMOylation. An increasing number of studies have reported that SUMOylation imbalance may contribute to cancer development, including metastasis, angiogenesis, invasion, and proliferation. High level of SUMOylation is required for cancer cells to survive internal or external stresses. Downregulation of SUMOylation may inhibit the development of cancer, making it an important potential clinical therapeutic target. Some studies have already begun to treat tumors by inhibiting the expression of SUMOylation family members, including SUMO E1 or E2. The tumor cells become more aggressive under internal and external stresses. The prevention of tumor development, metastasis, recurrence, and radiochemotherapy resistance by attenuating SUMOylation requires further exploration. This review focused on SUMOylation in tumor cells to discuss its effects on tumor suppressor proteins and oncoproteins as well as classical tumor pathways to identify new insights for cancer clinical therapy.
Collapse
|
64
|
Li R, Li P, Wang J, Liu J. STIP1 down-regulation inhibits glycolysis by suppressing PKM2 and LDHA and inactivating the Wnt/β-catenin pathway in cervical carcinoma cells. Life Sci 2020; 258:118190. [PMID: 32777299 DOI: 10.1016/j.lfs.2020.118190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/18/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
AIMS Glycolysis is an important process for cervical carcinoma development. Previous studies have indicated that stress-induced phosphoprotein 1 (STIP1) is associated with development of multiple tumors. Nevertheless, the role and mechanism of STIP1 in glycolysis of cervical carcinoma remain unclear. MAIN METHODS The association between STIP1 and survival probability and the correlation between STIP1 expression and pyruvate kinase M2 (PKM2) as well as lactate dehydrogenase isoform A (LDHA) levels in cervical carcinoma were analyzed via The Cancer Genome Atlas (TCGA). The expression of STIP1, PKM2, LDHA, and cytochrome c (Cyt C) was measured via western blot or quantitative reverse transcription polymerase chain reaction. Cell viability and apoptosis were examined via cell counting kit 8 and flow cytometry, respectively. Glycolysis was assessed via detection of glucose consumption and lactate production. The protein involved in the Wnt/β-catenin pathway was measured via western blot. KEY FINDINGS STIP1 abundance was elevated in cervical carcinoma cells. High expression of STIP1 indicated poor survival probability. Knockdown of STIP1 inhibited cervical carcinoma cell viability and promoted apoptosis. STIP1 expression was positively correlated with PKM2 and LDHA levels in cervical carcinoma. Silence of STIP1 inhibited glycolysis and decreased PKM2 and LDHA expression. Down-regulation of STIP1 repressed the Wnt/β-catenin pathway. Overexpression of β-catenin reversed the effect of STIP1 silence on viability, apoptosis, glycolysis, and levels of PKM2 and LDHA. SIGNIFICANCE STIP1 knockdown suppressed glycolysis in cervical carcinoma by inhibiting PKM2 and LDHA expression and activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Rui Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Pin Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, China.
| | - Jin Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, China
| |
Collapse
|
65
|
Zhan T, Chen X, Tian X, Han Z, Liu M, Zou Y, Huang S, Chen A, Cheng X, Deng J, Tan J, Huang X. MiR-331-3p Links to Drug Resistance of Pancreatic Cancer Cells by Activating WNT/β-Catenin Signal via ST7L. Technol Cancer Res Treat 2020; 19:1533033820945801. [PMID: 32924881 PMCID: PMC7493267 DOI: 10.1177/1533033820945801] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Pancreatic cancer is an aggressive type of cancer with poor prognosis, short survival rate, and high mortality. Drug resistance is a major cause of treatment failure in the disease. MiR-331-3p has been reported to play an important role in several cancers. We previously showed that miR-331-3p is upregulated in pancreatic cancer and promotes pancreatic cancer cell proliferation and epithelial-to-mesenchymal transition–mediated metastasis by targeting ST7L. However, it is uncertain whether miR-331-3p is involved in drug resistance. Methods: We investigated the relationship between miR-331-3p and pancreatic cancer drug resistance. As part of this, microRNA mimics or inhibitors were transfected into pancreatic cancer cells. Quantitative polymerase chain reaction was used to detect miR-331-3p expression, and flow cytometry was used to detect cell apoptosis. The Cell Counting Kit-8 assay was used to measure the IC50 values of gemcitabine in pancreatic cancer cells. The expression of multidrug resistance protein 1, multidrug resistance-related protein 1, breast cancer resistance protein, β-Catenin, c-Myc, Cyclin D1, Bcl-2, and Caspase-3 was evaluated by Western blotting. Results: We confirmed that miR-331-3p is upregulated in gemcitabine-treated pancreatic cancer cells and plasma from chemotherapy patients. We also confirmed that miR-331-3p inhibition decreased drug resistance by regulating cell apoptosis and multidrug resistance protein 1, multidrug resistance-related protein 1, and breast cancer resistance protein expression in pancreatic cancer cells, whereas miR-331-3p overexpression had the opposite effect. We further demonstrated that miR-331-3p effects in drug resistance were partially reversed by ST7L overexpression. In addition, overexpression of miR-331-3p activated Wnt/β-catenin signaling in pancreatic cancer cells, and ST7L overexpression restored activation of Wnt/β-catenin signaling. Conclusions: Taken together, our data demonstrate that miR-331-3p contributes to drug resistance by activating Wnt/β-catenin signaling via ST7L in pancreatic cancer cells. These data provide a theoretical basis for new targeted therapies in the future.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Chen
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Xia Tian
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Zheng Han
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Meng Liu
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Yanli Zou
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Shasha Huang
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Aifang Chen
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Xueting Cheng
- Department of Gastroenterology, 89674Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junsheng Deng
- Department of Gastroenterology, 89674Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Tan
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Xiaodong Huang
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
66
|
Beasley GS, Towbin JA. Acquired and modifiable cardiovascular risk factors in patients treated for cancer. J Thromb Thrombolysis 2020; 51:846-853. [PMID: 32918669 DOI: 10.1007/s11239-020-02273-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 11/28/2022]
Abstract
Cardiac mortality is the leading cause of death secondary to malignancy in survivors of cancer. The field of cardio-oncology is dedicated to identifying and, if possible, modifying risk factors that contribute to significant cardiac morbidity and mortality. Many risk factors for the development of cancer-related cardiotoxicity overlap with risk factors in cardiovascular disease such as hypertension, obesity, dyslipidemia, and diabetes among others. These risk factors are usually modifiable while others such as genetics, type of malignancy, and need for chemotherapy are less modifiable. This article summarizes acquired and modifiable risk factors in both pediatric and adult patients treated for cancer.
Collapse
Affiliation(s)
- Gary S Beasley
- Department of Pediatrics, Division of Cardiology Le Bonheur Children's Hospital and The Heart Institute, University of Tennessee Health Science Center, College of Medicine, 49 N. Dunlap Street, 3rd Floor, Faculty Office Building, Memphis, TN, 38105, USA. .,Cardio-Hema-Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jeffrey A Towbin
- Department of Pediatrics, Division of Cardiology Le Bonheur Children's Hospital and The Heart Institute, University of Tennessee Health Science Center, College of Medicine, 49 N. Dunlap Street, 3rd Floor, Faculty Office Building, Memphis, TN, 38105, USA.,Cardio-Hema-Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
67
|
He Z, Wang C, Xue H, Zhao R, Li G. Identification of a Metabolism-Related Risk Signature Associated With Clinical Prognosis in Glioblastoma Using Integrated Bioinformatic Analysis. Front Oncol 2020; 10:1631. [PMID: 33042807 PMCID: PMC7523182 DOI: 10.3389/fonc.2020.01631] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Altered metabolism of glucose, lipid and glutamine is a prominent hallmark of cancer cells. Currently, cell heterogeneity is believed to be the main cause of poor prognosis of glioblastoma (GBM) and is closely related to relapse caused by therapy resistance. However, the comprehensive model of genes related to glucose-, lipid- and glutamine-metabolism associated with the prognosis of GBM remains unclear, and the metabolic heterogeneity of GBM still needs to be further explored. Based on the expression profiles of 1,395 metabolism-related genes in three datasets of TCGA/CGGA/GSE, consistent cluster analysis revealed that GBM had three different metabolic status and prognostic clusters. Combining univariate Cox regression analysis and LASSO-penalized Cox regression machine learning methods, we identified a 17-metabolism-related genes risk signature associated with GBM prognosis. Kaplan-Meier analysis found that obtained signature could differentiate the prognosis of high- and low-risk patients in three datasets. Moreover, the multivariate Cox regression analysis and receiver operating characteristic curves indicated that the signature was an independent prognostic factor for GBM and had a strong predictive power. The above results were further validated in the CGGA and GSE13041 datasets, and consistent results were obtained. Gene set enrichment analysis (GSEA) suggested glycolysis gluconeogenesis and oxidative phosphorylation were significantly enriched in high- and low-risk GBM. Lastly Connectivity Map screened 54 potential compounds specific to different subgroups of GBM patients. Our study identified a novel metabolism-related gene signature, in addition the existence of three different metabolic status and two opposite biological processes in GBM were recognized, which revealed the metabolic heterogeneity of GBM. Robust metabolic subtypes and powerful risk prognostic models contributed a new perspective to the metabolic exploration of GBM.
Collapse
Affiliation(s)
- Zheng He
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Chengcheng Wang
- Department of Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| |
Collapse
|
68
|
Varghese E, Samuel SM, Líšková A, Samec M, Kubatka P, Büsselberg D. Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer. Cancers (Basel) 2020; 12:E2252. [PMID: 32806533 PMCID: PMC7464784 DOI: 10.3390/cancers12082252] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
Breast cancer (BC) is the most prevalent cancer in women. BC is heterogeneous, with distinct phenotypical and morphological characteristics. These are based on their gene expression profiles, which divide BC into different subtypes, among which the triple-negative breast cancer (TNBC) subtype is the most aggressive one. The growing interest in tumor metabolism emphasizes the role of altered glucose metabolism in driving cancer progression, response to cancer treatment, and its distinct role in therapy resistance. Alterations in glucose metabolism are characterized by increased uptake of glucose, hyperactivated glycolysis, decreased oxidative phosphorylation (OXPHOS) component, and the accumulation of lactate. These deviations are attributed to the upregulation of key glycolytic enzymes and transporters of the glucose metabolic pathway. Key glycolytic enzymes such as hexokinase, lactate dehydrogenase, and enolase are upregulated, thereby conferring resistance towards drugs such as cisplatin, paclitaxel, tamoxifen, and doxorubicin. Besides, drug efflux and detoxification are two energy-dependent mechanisms contributing to resistance. The emergence of resistance to chemotherapy can occur at an early or later stage of the treatment, thus limiting the success and outcome of the therapy. Therefore, understanding the aberrant glucose metabolism in tumors and its link in conferring therapy resistance is essential. Using combinatory treatment with metabolic inhibitors, for example, 2-deoxy-D-glucose (2-DG) and metformin, showed promising results in countering therapy resistance. Newer drug designs such as drugs conjugated to sugars or peptides that utilize the enhanced expression of tumor cell glucose transporters offer selective and efficient drug delivery to cancer cells with less toxicity to healthy cells. Last but not least, naturally occurring compounds of plants defined as phytochemicals manifest a promising approach for the eradication of cancer cells via suppression of essential enzymes or other compartments associated with glycolysis. Their benefits for human health open new opportunities in therapeutic intervention, either alone or in combination with chemotherapeutic drugs. Importantly, phytochemicals as efficacious instruments of anticancer therapy can suppress events leading to chemoresistance of cancer cells. Here, we review the current knowledge of altered glucose metabolism in contributing to resistance to classical anticancer drugs in BC treatment and various ways to target the aberrant metabolism that will serve as a promising strategy for chemosensitizing tumors and overcoming resistance in BC.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Alena Líšková
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| |
Collapse
|
69
|
Ghandadi M, Valadan R, Mohammadi H, Akhtari J, Khodashenas S, Ashari S. Wnt-β-catenin Signaling Pathway, the Achilles' Heels of Cancer Multidrug Resistance. Curr Pharm Des 2020; 25:4192-4207. [PMID: 31721699 DOI: 10.2174/1381612825666191112142943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Most of the anticancer chemotherapies are hampered via the development of multidrug resistance (MDR), which is the resistance of tumor cells against cytotoxic effects of multiple chemotherapeutic agents. Overexpression and/or over-activation of ATP-dependent drug efflux transporters is a key mechanism underlying MDR development. Moreover, enhancement of drug metabolism, changes in drug targets and aberrant activation of the main signaling pathways, including Wnt, Akt and NF-κB are also responsible for MDR. METHODS In this study, we have reviewed the roles of Wnt signaling in MDR as well as its potential therapeutic significance. Pubmed and Scopus have been searched using Wnt, β-catenin, cancer, MDR and multidrug resistance as keywords. The last search was done in March 2019. Manuscripts investigating the roles of Wnt signaling in MDR or studying the modulation of MDR through the inhibition of Wnt signaling have been involved in the study. The main focus of the manuscript is regulation of MDR related transporters by canonical Wnt signaling pathway. RESULT AND CONCLUSION Wnt signaling has been involved in several pathophysiological states, including carcinogenesis and embryonic development. Wnt signaling is linked to various aspects of MDR including P-glycoprotein and multidrug resistance protein 1 regulation through its canonical pathways. Aberrant activation of Wnt/β- catenin signaling leads to the induction of cancer MDR mainly through the overexpression and/or over-activation of MDR related transporters. Accordingly, Wnt/β-catenin signaling can be a potential target for modulating cancer MDR.
Collapse
Affiliation(s)
- Morteza Ghandadi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran.,Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hamidreza Mohammadi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of toxicology and pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Akhtari
- Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran.,Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shabanali Khodashenas
- Department of Medical Biotechnology, Faculty of Medical Sciences, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sorour Ashari
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of toxicology and pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
70
|
Saranyadevi S, Shanthi V. Molecular simulation strategies for the discovery of selective inhibitors of β-catenin. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620500224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tumor dissemination and relapse in lung cancer were found to be due to the existence of cancer stem cells. In particular, the [Formula: see text]-catenin pathway is found to be one of the crucial pathways in maintaining the stem-like properties of the cells. Thus, targeting the [Formula: see text]-catenin family of proteins is a significant therapeutic route in the treatment of lung cancer. Therefore, in the present study, a pharmacophore-based drug repurposing approach was accomplished to pinpoint potent [Formula: see text]-catenin inhibitors from the DrugBank database. Primarily, ligand-based pharmacophore hypothesis (AAHHR) was generated using existing [Formula: see text]-catenin inhibitors available in the literature and utilized for library screening. Subsequently, the inhibitory activity of the screened compounds was examined by the hierarchical docking process and the Prime MM-GBSA algorithm. Moreover, quantum chemical calculations and molecular dynamics simulations were executed to analyze the inhibitory effects of the screened hit molecule. The results indicate that hit molecule, DB08047 was found to possess better binding free energy, favorable ligand strain energy, satisfactory pharmacokinetic properties and superior free energy landscape profile. Eventually, the pIC[Formula: see text] values of the lead compounds were predicted by the AutoQSAR algorithm. It is noteworthy to mention that DB08047 was found to possess pyrazole scaffolds which could downregulate [Formula: see text]-catenin pathway and thus facilitate the controlled cell growth/inhibit tumor growth.
Collapse
Affiliation(s)
- S. Saranyadevi
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - V. Shanthi
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
71
|
Podralska M, Ciesielska S, Kluiver J, van den Berg A, Dzikiewicz-Krawczyk A, Slezak-Prochazka I. Non-Coding RNAs in Cancer Radiosensitivity: MicroRNAs and lncRNAs as Regulators of Radiation-Induced Signaling Pathways. Cancers (Basel) 2020; 12:E1662. [PMID: 32585857 PMCID: PMC7352793 DOI: 10.3390/cancers12061662] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a cancer treatment that applies high doses of ionizing radiation to induce cell death, mainly by triggering DNA double-strand breaks. The outcome of radiotherapy greatly depends on radiosensitivity of cancer cells, which is determined by multiple proteins and cellular processes. In this review, we summarize current knowledge on the role of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in determining the response to radiation. Non-coding RNAs modulate ionizing radiation response by targeting key signaling pathways, including DNA damage repair, apoptosis, glycolysis, cell cycle arrest, and autophagy. Additionally, we indicate miRNAs and lncRNAs that upon overexpression or inhibition alter cellular radiosensitivity. Current data indicate the potential of using specific non-coding RNAs as modulators of cellular radiosensitivity to improve outcome of radiotherapy.
Collapse
Affiliation(s)
- Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | | | | |
Collapse
|
72
|
Silva-Pavez E, Tapia JC. Protein Kinase CK2 in Cancer Energetics. Front Oncol 2020; 10:893. [PMID: 32626654 PMCID: PMC7315807 DOI: 10.3389/fonc.2020.00893] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Protein kinase CK2 (formerly known as casein kinase 2) is abnormally elevated in many cancers. This may increase tumor aggressiveness through CK2-dependent phosphorylation of key proteins in several signaling pathways. In this work, we have compiled evidence from the literature to suggest that CK2 also modulates a metabolic switch characteristic of cancer cells that enhances resistance to death, due to either drugs or to a microenvironment deficient in oxygen or nutrients. Concurrently, CK2 may help to preserve mitochondrial activity in a PTEN-dependent manner. PTEN, widely recognized as a tumor suppressor, is another CK2 substrate in the PI3K/Akt signaling pathway that promotes cancer viability and aerobic glycolysis. Given that CK2 can regulate Akt as well as two of its main effectors, namely mTORC1 and β-catenin, we comprehensively describe how CK2 may modulate cancer energetics by regulating expression of key targets and downstream processes, such as HIF-1 and autophagy, respectively. Thus, the specific inhibition of CK2 may lead to a catastrophic death of cancer cells, which could become a feasible therapeutic strategy to beat this devastating disease. In fact, ATP-competitive inhibitors, synthetic peptides and antisense oligonucleotides have been designed as CK2 inhibitors, some of them used in preclinical models of cancer, of which TBB and silmitasertib are widely known. We will finish by discussing a hypothetical scenario in which cancer cells are "addicted" to CK2; i.e., in which many proteins that regulate signaling pathways and metabolism-linked processes are highly dependent on this kinase.
Collapse
Affiliation(s)
- Eduardo Silva-Pavez
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Julio C Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
73
|
Vora SM, Fassler JS, Phillips BT. Centrosomes are required for proper β-catenin processing and Wnt response. Mol Biol Cell 2020; 31:1951-1961. [PMID: 32583737 PMCID: PMC7525817 DOI: 10.1091/mbc.e20-02-0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is central to metazoan development and routinely dysregulated in cancer. Wnt/β-catenin signaling initiates transcriptional reprogramming upon stabilization of the transcription factor β-catenin, which is otherwise posttranslationally processed by a destruction complex and degraded by the proteasome. Since various Wnt signaling components are enriched at centrosomes, we examined the functional contribution of centrosomes to Wnt signaling, β-catenin regulation, and posttranslational modifications. In HEK293 cells depleted of centrosomes we find that β-catenin synthesis and degradation rates are unaffected but that the normal accumulation of β-catenin in response to Wnt signaling is attenuated. This is due to accumulation of a novel high-molecular-weight form of phosphorylated β-catenin that is constitutively degraded in the absence of Wnt. Wnt signaling operates by inhibiting the destruction complex and thereby reducing destruction complex–phosphorylated β-catenin, but high-molecular-weight β-catenin is unexpectedly increased by Wnt signaling. Therefore these studies have identified a pool of β-catenin effectively shielded from regulation by Wnt. We present a model whereby centrosomes prevent inappropriate β-catenin modifications that antagonize normal stabilization by Wnt signals.
Collapse
Affiliation(s)
- Setu M Vora
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
| | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
| |
Collapse
|
74
|
Li H, Feng Z, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells. Theranostics 2020; 10:7053-7069. [PMID: 32641978 PMCID: PMC7330842 DOI: 10.7150/thno.41388] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Lipids, the basic components of the cell membrane, execute fundamental roles in almost all the cell activities including cell-cell recognition, signalling transduction and energy supplies. Lipid metabolism is elementary for life sustentation that balances activity between synthesis and degradation. An accumulating amount of data has indicated abnormal lipid metabolism in cancer stem cells (CSCs), and that the alteration of lipid metabolism exerts a great impact on CSCs' properties such as the capability of self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. CSCs' formation and maintenance cannot do without the regulation of fatty acids and cholesterol. In normal cells and embryonic development, fatty acids and cholesterol metabolism are regulated by some important signalling pathways (such as Hedgehog, Notch, Wnt signalling pathways); these signalling pathways also play crucial roles in initiating and/or maintaining CSCs' properties, and such signalling is shown to be commonly modulated by the abnormal lipid metabolism in CSCs; on the other hand, the altered lipid metabolism in turn modifies the cell signalling and generates additional impacts on CSCs. Metabolic rewiring is considered as an ideal hallmark of CSCs, and metabolic alterations would be promising therapeutic targets of CSCs for aggressive tumors. In this review, we summarize the most updated findings of lipid metabolic abnormalities in CSCs and prospect the potential applications of targeting lipid metabolism for anticancer treatment.
Collapse
|
75
|
Wei B, Wang Y, Wang J, Cai X, Xu L, Wu J, Wang Y, Liu W, Gu Y, Guo W, Xu Q. Apatinib suppresses tumor progression and enhances cisplatin sensitivity in esophageal cancer via the Akt/β-catenin pathway. Cancer Cell Int 2020; 20:198. [PMID: 32514243 PMCID: PMC7254695 DOI: 10.1186/s12935-020-01290-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background Esophageal cancer is the sixth leading cause of cancer-related mortality worldwide, which is partially due to limited progress of therapy. Apatinib, an inhibitor of VEGFR2, has a promising antitumor effect on malignancies. However, the underlying mechanism of its antitumor effect on esophageal cancer remains poorly understood. Materials and methods Eighteen pairs of frozen esophageal cancer and their para-cancer samples and 25 paraffin specimens from advanced esophageal cancer patients treated with cisplatin-based regimen were collected. The effects of apatinib on cell growth, cell apoptosis, cell cycle and invasion/migration of esophageal cancer cells were assessed. Bioinformatics, luciferase reporter, immunoprecipitation and immunofluorescence assays were conducted for mechanic investigation. Quantitative RT-PCR, western blotting and immunohistochemistry were used to measure the expression of functional genes. Xenograft tumor growth of mice was performed. Results We found that VEGFR2 was highly expressed in esophageal cancer and associated with poor efficacy of cisplatin-based treatment. Apatinib displayed profound actions against tumor cell growth of human esophageal cancer via promoting cell apoptosis and cell cycle arrest. Also, apatinib displayed the inhibitory effects on cell migration and invasion. Moreover, apatinib strongly suppressed the growth of esophageal cancer xenografts in mice. The effects of apatinib on esophageal cancer were partially dependent on its block of the VEGFR2/Akt/β-catenin pathway. Specifically, apatinib induced the degradation of β-catenin and decreased its transcriptional activity through Akt/GSK-3β repression. Further in vitro and in vivo studies revealed that low dose apatinib had a synergistic antitumor effect with cisplatin on esophageal cancer. Conclusion Our study indicates that apatinib suppresses tumor progression and enhances cisplatin sensitivity in esophageal cancer by deactivating the Akt/β-catenin pathway. These findings provide a theoretical foundation for using apatinib as an effective therapeutic drug for esophageal cancer.
Collapse
Affiliation(s)
- Bin Wei
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China.,Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yuanyuan Wang
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Jiawei Wang
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Xiaomin Cai
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Lingyan Xu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Jingjing Wu
- Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Ying Wang
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
| |
Collapse
|
76
|
Koustas E, Sarantis P, Papavassiliou AG, Karamouzis MV. The Resistance Mechanisms of Checkpoint Inhibitors in Solid Tumors. Biomolecules 2020; 10:E666. [PMID: 32344837 PMCID: PMC7277892 DOI: 10.3390/biom10050666] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/08/2023] Open
Abstract
The emergence of cancer immunotherapy has already shown some remarkable results, having changed the treatment strategy in clinical practice for solid tumors. Despite these promising long-term responses, patients seem to lack the ability to respond to immune checkpoint inhibitors, thus demonstrating a primary resistance to immunotherapy. Moreover, a significant number of patients who initially respond to treatment eventually acquire resistance to immunotherapy. Both resistance mechanisms are a result of a complex interaction among different molecules, pathways, and cellular processes. Several resistance mechanisms, such as tumor microenvironment modification, autophagy, genetic and epigenetic alterations, tumor mutational burden, neo-antigens, and modulation of gut microbiota have already been identified, while more continue to be uncovered. In this review, we discuss the latest milestones in the field of immunotherapy, resistance mechanisms against this type of therapy as well as putative therapeutic strategies to overcome resistance in solid tumors.
Collapse
Affiliation(s)
- Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
| | - Athanasios G. Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
- First Department of Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
77
|
Zhang J, Lu J, Chen Y, Li H, Lin L. WHSC1 promotes wnt/β-catenin signaling in a FoxM1-dependent manner facilitating proliferation, invasion and epithelial-mesenchymal transition in breast cancer. J Recept Signal Transduct Res 2020; 40:410-418. [PMID: 32314642 DOI: 10.1080/10799893.2020.1747490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objectives: Wolf-Hirschhorn syndrome candidate gene-1 (WHSC1) is highly expressed in various malignant tumors. We investigated the correlation and regulatory pathway of WHSC1 in the progression of breast cancer (BC).Methods: The expression and distribution of WHSC1 in the BC tissues and cell lines were determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical staining. Spearman correlation analysis demonstrated the correlation between WHSC1 high expression level and the clinical characteristics of BC patients. The effects of WHSC1 on the proliferation, apoptosis, migration and invasion of BC cells were analyzed by cell transfection, MTT, colony formation, scratch assay, and transwell. Furthermore, the expression of Forkhead box M1 (FoxM1) and the location of β-catenin were detected by qRT-PCR and western blot.Results: Firstly, WHSC1 expression was up-regulated in BC tissues and cell lines. The high expression of WHSC1 in BC is associated with the tumor size (p = 0.027), metastasis (p = 0.018) and pathological stages (p = 0.025) of the BC patients. The knockdown of WHSC1 inhibited the growth, proliferation migration, invasion and EMT of BC cell lines. Furthermore, WHSC1 could promote the expression of FoxM1 in BC cells and tissues. WHSC1 enhanced the expression of FoxM1, and promoted the nuclear localization of β-catenin, and thus activated the downstream genes expression of Wnt/β-catenin signaling pathway to regulate the development of BC.Conclusion: In summary, our study elucidates the correlation and specific regulatory mechanism between WHSC1 and the progression of BC, thus implying that WHSC1 may function as molecular diagnosis, prognosis and molecular targeted therapy of BC.
Collapse
Affiliation(s)
- Jinfan Zhang
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| | - Jingyu Lu
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| | - Yu Chen
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| | - Hang Li
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| | - Lisheng Lin
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| |
Collapse
|
78
|
Yan X, Zhang H, Ke J, Zhang Y, Dai C, Zhu M, Jiang F, Zhu H, Zhang L, Zuo X, Li W, Yin X, Wan X. Progesterone receptor inhibits the proliferation and invasion of endometrial cancer cells by up regulating Krüppel-like factor 9. Transl Cancer Res 2020; 9:2220-2230. [PMID: 35117582 PMCID: PMC8798504 DOI: 10.21037/tcr.2020.03.53] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Background Krüppel-like factor 9 (KLF9) is one of the most important members of the KLF family, and is abnormally expressed in many tumors. However, the detailed function of KLF9 in endometrial cancer (EC) was barely investigated. Methods In this study, a total of 52 paired EC tissues were recruited to detect the KLF9 expression. Then a serial of phenotypic experiments and mechanism researches were performed. Results The results showed that KLF9 expression was decreased in EC tissues, and the reduced expression of KLF9 is associated with highly metastatic capacity of EC cells. KLF9 could inhibit the proliferation and invasion of EC cells by inhibiting the Wnt/β-catenin signaling pathway. Progesterone receptor (PR) could bind to KLF9 promoter and a positive correlation between KLF9 and PR expression was witnessed. Conclusions Taken together, the reduction of KLF9 induced by PR might participate in the development of EC and targeting KLF9 may provide a novel strategy for EC management.
Collapse
Affiliation(s)
- Xiaofang Yan
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200000, China.,Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Huilin Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200000, China.,Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210000, China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200000, China
| | - Yongli Zhang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200080, China
| | - Chenyun Dai
- Department of Translation Medicine, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 210000, China
| | - Mei Zhu
- Department of Translation Medicine, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 210000, China
| | - Feizhou Jiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Hongdi Zhu
- Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Ling Zhang
- Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Xin Zuo
- Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Weiling Li
- Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Xiufeng Yin
- Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Xiaoping Wan
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200000, China.,Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200080, China
| |
Collapse
|
79
|
Zhan T, Zhu Q, Han Z, Tan J, Liu M, Liu W, Chen W, Chen X, Chen X, Deng J, Tian X, Huang X. miR-455-3p Functions as a Tumor Suppressor by Restraining Wnt/β-Catenin Signaling via TAZ in Pancreatic Cancer. Cancer Manag Res 2020; 12:1483-1492. [PMID: 32161500 PMCID: PMC7051256 DOI: 10.2147/cmar.s235794] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
Background Pancreatic cancer (PC) is a highly invasive tumor with a poor prognosis, short overall survival rate and few chemotherapeutic choices. Despite the importance of finding ways to treat pancreatic cancer, the mechanisms of tumor progression have not been fully elucidated. microRNA-455-3p (miR-455-3p) has been reported to play an important role in several cancers, but its function in pancreatic cancer remains unclear. Methods To investigate the biological functions, miRNAs mimics or inhibitors were transfected into pancreatic cancer cells. Flow cytometry was used to detect cell apoptosis. Wound healing and Transwell assays were employed to observe cell invasion and migration abilities. The expression of Bcl-2, Bax, caspase-3, E-cadherin, N-cadherin, Snail, β-Catenin, c-Myc and Cyclin D1 were evaluated by qPCR and Western blot. Results We confirmed that inhibition of miR-455-3p decreases cell apoptosis and increases cell migration, invasion and EMT of pancreatic cancer, whereas forced overexpression of miR-455-3p has the opposite effect. Furthermore, we demonstrated that the tumor suppression effects of miR-455-3p were partially reversed by TAZ overexpression. In addition, miR-455-3p led to inactivation of Wnt/β-catenin signaling in pancreatic cancer cells, and TAZ overexpression restored the inhibition of Wnt/β-catenin signaling. Conclusion Taken together, our data demonstrated that miR-455-3p functions as an important tumor suppressor that suppresses the Wnt/β-catenin signaling pathway via TAZ to inhibit tumor progression in pancreatic cancer. We conclude that the miR-455-3p/TAZ/Wnt axis may be a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Qingxi Zhu
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Zheng Han
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Jie Tan
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Meng Liu
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Weijie Liu
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Wei Chen
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Xiaoli Chen
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Xueting Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Junsheng Deng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Xia Tian
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Xiaodong Huang
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| |
Collapse
|
80
|
Suryawanshi A, Hussein MS, Prasad PD, Manicassamy S. Wnt Signaling Cascade in Dendritic Cells and Regulation of Anti-tumor Immunity. Front Immunol 2020; 11:122. [PMID: 32132993 PMCID: PMC7039855 DOI: 10.3389/fimmu.2020.00122] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/16/2020] [Indexed: 01/26/2023] Open
Abstract
Dendritic cells (DCs) control the strength and quality of antigen-specific adaptive immune responses. This is critical for launching a robust immunity against invading pathogens while maintaining a state of tolerance to self-antigens. However, this also represents a fundamental barrier to anti-tumor immune responses and cancer immunotherapy. DCs in the tumor microenvironment (TME) play a key role in this process. The factors in the TME and signaling networks that program DCs to a regulatory state are not fully understood. Recent advances point to novel mechanisms by which the canonical Wnt signaling cascade in DCs regulates immune suppression, and the same pathway in tumors is associated with the evasion of anti-tumor immunity. Here, we review these recent advances in the context of the pleiotropic effects of the Wnts in shaping anti-tumor immune responses by modulating DC functions. In addition, we will discuss how Wnt/β-catenin pathway in DCs can be targeted for successful cancer immunotherapy.
Collapse
Affiliation(s)
- Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Mohamed S Hussein
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Santhakumar Manicassamy
- Georgia Cancer Center, Augusta University, Augusta, GA, United States.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
81
|
Pizarro G, Pinto MP, Muñoz-Medel M, Cordova-Delgado M, Bravo ML, Nervi B, Sánchez C, Ibañez C, Peña J, Walbaum B, Madrid J, Briones J, Koch E, Valbuena J, Gonzalez S, Gejman R, Acevedo F, Mondaca S, Garrido M, Vines E, Galindo H. Complete Response to Immunotherapy Plus Chemotherapy After an Unusual Clinical Response to Afatinib and Stereotactic Radiosurgery in a Patient With Metastatic EGFR-Mutant Non-Small-Cell Lung Cancer. Clin Lung Cancer 2020; 21:e250-e254. [PMID: 32088114 DOI: 10.1016/j.cllc.2020.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/27/2019] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Affiliation(s)
- Gonzalo Pizarro
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio P Pinto
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matías Muñoz-Medel
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel Cordova-Delgado
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Loreto Bravo
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bruno Nervi
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - César Sánchez
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Ibañez
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Peña
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamín Walbaum
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Madrid
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Briones
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Erica Koch
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jose Valbuena
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Gonzalez
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roger Gejman
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Acevedo
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Mondaca
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Garrido
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eugenio Vines
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hector Galindo
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
82
|
Seo HA, Moeng S, Sim S, Kuh HJ, Choi SY, Park JK. MicroRNA-Based Combinatorial Cancer Therapy: Effects of MicroRNAs on the Efficacy of Anti-Cancer Therapies. Cells 2019; 9:cells9010029. [PMID: 31861937 PMCID: PMC7016872 DOI: 10.3390/cells9010029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
The susceptibility of cancer cells to different types of treatments can be restricted by intrinsic and acquired therapeutic resistance, leading to the failure of cancer regression and remission. To overcome this problem, a combination therapy has been proposed as a fundamental strategy to improve therapeutic responses; however, resistance is still unavoidable. MicroRNA (miRNAs) are associated with cancer therapeutic resistance. The modulation of dysregulated miRNA levels through miRNA-based therapy comprising a replacement or inhibition approach has been proposed to sensitize cancer cells to other anti-cancer therapies. The combination of miRNA-based therapy with other anti-cancer therapies (miRNA-based combinatorial cancer therapy) is attractive, due to the ability of miRNAs to target multiple genes associated with the signaling pathways controlling therapeutic resistance. In this article, we present an overview of recent findings on the role of therapeutic resistance-related miRNAs in different types of cancer. We review the feasibility of utilizing dysregulated miRNAs in cancer cells and extracellular vesicles as potential candidates for miRNA-based combinatorial cancer therapy. We also discuss innate properties of miRNAs that need to be considered for more effective combinatorial cancer therapy.
Collapse
Affiliation(s)
- Hyun Ah Seo
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
| | - Sokviseth Moeng
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
| | - Seokmin Sim
- Generoath, Seachang-ro, Mapo-gu, Seoul 04168, Korea;
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
- Correspondence: or ; Tel.: +82-33-248-2114
| |
Collapse
|
83
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Resveratrol targeting the Wnt signaling pathway: A focus on therapeutic activities. J Cell Physiol 2019; 235:4135-4145. [PMID: 31637721 DOI: 10.1002/jcp.29327] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 12/16/2022]
Abstract
Wingless-type MMTV integration site (Wnt) signaling pathway is considered as an important pathway regulating a variety of biological processes such as tissue formation and homeostasis, cell proliferation, cell migration, cell differentiation, and embryogenesis. Impairment in the Wnt signaling pathway is associated with pathological conditions, particularly cancer. So, modulation of this pathway can be considered as a promising strategy and several drugs have been developed in line with this strategy. Resveratrol (Res) is a naturally occurring nutraceutical compound exclusively found in different fruits and nuts such as grape, peanut, and pistachio. This compound has favorable biological and therapeutic activities such as antioxidant, anti-inflammatory, antitumor, hepatoprotective, cardioprotective, and antidiabetic. At the present review, we demonstrate how Res modulates Wnt signaling pathway to exert its pharmacological effects.
Collapse
Affiliation(s)
| | - Zahra Ahmadi
- Department of Basic Science, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
84
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. MicroRNAs mediate the anti-tumor and protective effects of ginsenosides. Nutr Cancer 2019; 72:1264-1275. [PMID: 31608663 DOI: 10.1080/01635581.2019.1675722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRs(, as short non-coding RNAs, regulate important biological processes and mainly are associated with regulation of gene expression. The miRs are beneficial targets for diagnosis of various disorders, particularly cancer, since their expression profile undergoes alterations in pathological conditions. The numerous drugs have been designed with the capability of targeting miRs for treating pathological conditions. On the other hand, the application of naturally occurring compounds has been increased due to their minimal side effects and valuable biological and therapeutic activities. Ginsenosides are able to act as anti-tumor agents via either increasing or decreasing the expression level of miRs. Ginsenosides affect the expression profile of miRNAs to induce their protective impacts. Angiogenesis as a key factor in the progression of cancer can be suppressed by ginsenosides which is mediated by miR regulation. The aim of this review is to shed some light on the protective and anti-tumor activities of ginsenosides mediated by miRNAs.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Veterinary Medicine, Department of Basic Science, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Science, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
85
|
Becker J, Wilting J. WNT Signaling in Neuroblastoma. Cancers (Basel) 2019; 11:cancers11071013. [PMID: 31331081 PMCID: PMC6679057 DOI: 10.3390/cancers11071013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023] Open
Abstract
The term WNT (wingless-type MMTV integration site family) signaling comprises a complex molecular pathway consisting of ligands, receptors, coreceptors, signal transducers and transcriptional modulators with crucial functions during embryonic development, including all aspects of proliferation, morphogenesis and differentiation. Its involvement in cancer biology is well documented. Even though WNT signaling has been divided into mainly three distinct branches in the past, increasing evidence shows that some molecular hubs can act in various branches by exchanging interaction partners. Here we discuss developmental and clinical aspects of WNT signaling in neuroblastoma (NB), an embryonic tumor with an extremely broad clinical spectrum, ranging from spontaneous differentiation to fatal outcome. We discuss implications of WNT molecules in NB onset, progression, and relapse due to chemoresistance. In the light of the still too high number of NB deaths, new pathways must be considered.
Collapse
Affiliation(s)
- Juergen Becker
- Department of Anatomy and Cell Biology, University Medical School Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany.
| | - Joerg Wilting
- Department of Anatomy and Cell Biology, University Medical School Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| |
Collapse
|