51
|
Special Issue “Biocatalysts: Design and Application”. Catalysts 2021. [DOI: 10.3390/catal11070778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of biocatalysts in chemical reactions is of great interest because reactions can be carried out under very mild and green conditions [...]
Collapse
|
52
|
Ribeiro ES, de Farias BS, Sant'Anna Cadaval Junior TR, de Almeida Pinto LA, Diaz PS. Chitosan-based nanofibers for enzyme immobilization. Int J Biol Macromol 2021; 183:1959-1970. [PMID: 34090851 DOI: 10.1016/j.ijbiomac.2021.05.214] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
The widespread application of soluble enzymes in industrial processes is considered restrict due to instability of enzymes outside optimum operating conditions. For instance, enzyme immobilization can overcome this issue. In fact, chitosan-based nanofibers have outstanding properties, which can improve the efficiency in enzyme immobilization and the stability of enzymes over a wide range of operating conditions. These properties include biodegradability, antimicrobial activity, non-toxicity, presence of functional groups (amino and hydroxyl), large surface area to volume ratio, enhanced porosity and mechanical properties, easy separations and reusability. Therefore, the present review explores the advantages and drawbacks concerning the different methods of enzyme immobilization, including adsorption, cross-linking and entrapment. All these strategies have questions that still need to be addressed, such as elucidation of adsorption mechanism (physisorption or chemisorption); effect of cross-linking reaction on intramolecular and intermolecular interactions and the effect of internal and external diffusional limitations on entrapment of enzymes. Moreover, the current review discusses the challenges and prospects regarding the application of chitosan-based nanofibers in enzyme immobilization, towards maximizing catalytic activity and lifetime.
Collapse
Affiliation(s)
- Eduardo Silveira Ribeiro
- Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
| | - Bruna Silva de Farias
- School of Chemistry and Food, Federal University of Rio Grande (FURG), km 8 - Itália Avenue, 96203-900 Rio Grande, Brazil.
| | | | - Luiz Antonio de Almeida Pinto
- School of Chemistry and Food, Federal University of Rio Grande (FURG), km 8 - Itália Avenue, 96203-900 Rio Grande, Brazil.
| | - Patrícia Silva Diaz
- Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
| |
Collapse
|
53
|
Wagner L, Roß T, Hollmann T, Hahn F. Cross-linking of a polyketide synthase domain leads to a recyclable biocatalyst for chiral oxygen heterocycle synthesis. RSC Adv 2021; 11:20248-20251. [PMID: 35479892 PMCID: PMC9033652 DOI: 10.1039/d1ra03692k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
The potential of polyketide synthase (PKS) domains for chemoenzymatic synthesis can often not be tapped due to their low stability and activity in vitro. In this proof-of-principle study, the immobilisation of the heterocycle-forming PKS domain AmbDH3 as a cross-linked enzyme aggregate (CLEA) is described. The AmbDH3-CLEA showed good activity recovery, stability and recyclability. Repetitive reactions on the semi-preparative scale were performed with high conversion and isolated yield. Similar to that observed for the free enzyme, the aggregate retained substrate tolerance and the ability for kinetic resolution. This first example of a successful enzymatic PKS domain immobilisation demonstrates that cross-linking can in principle be applied to this type of enzyme to increase its applicability for chemoenzymatic synthesis. Cross-linking of the polyketide synthase domain AmbDH3 led to an active aggregate with improved properties for the chemoenzymatic synthesis of chiral oxygen heterocycles, such as recyclability and facile purification.![]()
Collapse
Affiliation(s)
- Lisa Wagner
- Department of Chemistry, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Theresa Roß
- Department of Chemistry, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Tim Hollmann
- Department of Chemistry, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Frank Hahn
- Department of Chemistry, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
54
|
Farhan LO, Mehdi WA, Taha EM, Farhan AM, Mehde AA, Özacar M. Various type immobilizations of Isocitrate dehydrogenases enzyme on hyaluronic acid modified magnetic nanoparticles as stable biocatalysts. Int J Biol Macromol 2021; 182:217-227. [PMID: 33838186 DOI: 10.1016/j.ijbiomac.2021.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Magnetic nanoparticles (MNPs) were modified by hyaluronic acid (HA). After the process of functionalization, two different strategies have been used to immobilize isocitrate dehydrogenases (IDH) on MNPs. In the first strategy, cross-linked enzyme aggregates were prepared. For this, firstly hyaluronic acid modified magnetic nanoparticles cross-linked enzyme fine aggregates of isocitrate dehydrogenases (IDH/HA/MNPs-CLEAs) were synthesized, and secondly bovine serum albumin (BSA) as co-feeder was used to synthesize the IDH/BSA/HA/MNPs-CLEAs. In the second strategy, the IDH was effectively immobilized on the HA/MNPs surface. The features of MNPs and its derivatives have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and zeta potential measurements. The activity and stability of IDH in IDH/HA/MNPs, IDH/HA/MNPs-CLEAs, and IDH/BSA/HA/MNPs-CLEAs were enhanced. Besides, the enzyme immobilized was readily separated via external magnet from the reaction medium and reused many times. The acquired findings indicate that HA/MNPs are a novel binder/support system to IDH, and IDH immobilized on this system can become a very important biocatalyst working with high accuracy and sensitivity for the determination of magnesium in drinking water and other biological solutions.
Collapse
Affiliation(s)
- Layla O Farhan
- Department of Chemistry, College of Science for Women, University of Baghdad, Al-Jadriya, Baghdad, Iraq
| | - Wesen Adel Mehdi
- Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54187, Sakarya, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOEℕAMS R&D Group), 54187, Sakarya, Turkey.
| | - Ekhlass M Taha
- Department of Chemistry, College of Science for Women, University of Baghdad, Al-Jadriya, Baghdad, Iraq
| | - Ahlam M Farhan
- Department of Chemistry, College of Science for Women, University of Baghdad, Al-Jadriya, Baghdad, Iraq
| | - Atheer Awad Mehde
- Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54187, Sakarya, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOEℕAMS R&D Group), 54187, Sakarya, Turkey
| | - Mahmut Özacar
- Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOEℕAMS R&D Group), 54187, Sakarya, Turkey; Sakarya University, Science & Arts Faculty, Department of Chemistry, 54187, Sakarya, Turkey
| |
Collapse
|
55
|
Muley AB, Awasthi S, Bhalerao PP, Jadhav NL, Singhal RS. Preparation of cross-linked enzyme aggregates of lipase from Aspergillus niger: process optimization, characterization, stability, and application for epoxidation of lemongrass oil. Bioprocess Biosyst Eng 2021; 44:1383-1404. [PMID: 33660099 DOI: 10.1007/s00449-021-02509-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/04/2021] [Indexed: 12/01/2022]
Abstract
Cross-linked enzyme aggregates (CLEAs) of lipase were prepared after fractional precipitation with 40-50% ammonium sulfate and then cross-linking with glutaraldehyde. The process variables for the preparation of lipase-CLEAs such as glutaraldehyde concentration, cross-linking period, and initial pH of medium were optimized. The optimized conditions for the preparation of lipase-CLEAs were 25 mM/80 min/pH 7.0, and 31.62 mM/90 min/pH 6.0 with one factor at a time approach and numerical optimization with central composite design, respectively. Lipase-CLEAs were characterized by particle size analysis, SEM, and FTIR. Cross-linking not only shifted the optimal pH and temperature from 7.0 to 7.5 and 40-45 to 45-50 °C, but also altered the secondary structure. Lipase-CLEAs showed an increase in Km by 7.70%, and a decrease in Vmax by 16.63%. Lipase-CLEAs presented better thermostability than free lipase as evident from thermal inactivation constants (t1/2, D and Ed value), and thermodynamic parameters (Ed, ΔH°, ΔG°, and ΔS°) in the range of 50-70 °C. Lipase-CLEAs retained more than 65% activity up to four cycles and showed good storage stability for 12 days when stored at 4 ± 2 °C. They were successfully utilized for the epoxidation of lemongrass oil which was confirmed by changes in iodine value, epoxide value, and FTIR spectra.
Collapse
Affiliation(s)
- Abhijeet Bhimrao Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Sneha Awasthi
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Prasanna Prakash Bhalerao
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Nilesh Lakshaman Jadhav
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Rekha Satishchandra Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| |
Collapse
|
56
|
Del Arco J, Alcántara AR, Fernández-Lafuente R, Fernández-Lucas J. Magnetic micro-macro biocatalysts applied to industrial bioprocesses. BIORESOURCE TECHNOLOGY 2021; 322:124547. [PMID: 33352394 DOI: 10.1016/j.biortech.2020.124547] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The use of magnetic biocatalysts is highly beneficial in bioprocesses technology, as it allows their easy recovering and enhances biocatalyst lifetime. Thus, it simplifies operational processing and increases efficiency, leading to more cost-effective processes. The use of small-size matrices as carriers for enzyme immobilization enables to maximize surface area and catalysts loading, also reducing diffusion limitations. As highly expensive nanoparticles (nm size) usually aggregate, their application at large scale is not recommended. In contrast, the use of magnetic micro-macro (µm-mm size) matrices leads to more homogeneous biocatalysts with null or very low aggregation, which facilitates an easy handling and recovery. The present review aims to highlight recent trends in the application of medium-to-high size magnetic biocatalysts in different areas (biodiesel production, food and pharma industries, protein purification or removal of environmental contaminants). The advantages and disadvantages of these above-mentioned magnetic biocatalysts in bioprocess technology will be also discussed.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Biomedical Science School, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Spain
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n., 28040 Madrid, Spain
| | - Roberto Fernández-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Biomedical Science School, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55 - 66, Barranquilla, Colombia.
| |
Collapse
|
57
|
Abstract
Recent years have witnessed a growing interest in the use of biocatalysts in flow reactors. This merging combines the high selectivity and mild operation conditions typical of biocatalysis with enhanced mass transfer and resource efficiency associated to flow chemistry. Additionally, it provides a sound environment to emulate Nature by mimicking metabolic pathways in living cells and to produce goods through the systematic organization of enzymes towards efficient cascade reactions. Moreover, by enabling the combination of enzymes from different hosts, this approach paves the way for novel pathways. The present review aims to present recent developments within the scope of flow chemistry involving multi-enzymatic cascade reactions. The types of reactors used are briefly addressed. Immobilization methodologies and strategies for the application of the immobilized biocatalysts are presented and discussed. Key aspects related to the use of whole cells in flow chemistry are presented. The combination of chemocatalysis and biocatalysis is also addressed and relevant aspects are highlighted. Challenges faced in the transition from microscale to industrial scale are presented and discussed.
Collapse
|
58
|
Romero G, Contreras LM, Aguirre C, Wilkesman J, Clemente-Jiménez JM, Rodríguez-Vico F, Las Heras-Vázquez FJ. Characterization of Cross-Linked Enzyme Aggregates of the Y509E Mutant of a Glycoside Hydrolase Family 52 β-xylosidase from G. stearothermophilus. Molecules 2021; 26:molecules26020451. [PMID: 33467076 PMCID: PMC7830863 DOI: 10.3390/molecules26020451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/05/2023] Open
Abstract
Cross-linked enzyme aggregates (CLEAs) of the Y509E mutant of glycoside hydrolase family 52 β-xylosidase from Geobacillus stearothermophilus with dual activity of β-xylosidase and xylanase (XynB2Y509E) were prepared. Ammonium sulfate was used as the precipitant agent, and glutaraldehyde as cross-linking agent. The optimum conditions were found to be 90% ammonium sulfate, 12.5 mM glutaraldehyde, 3 h of cross-linking reaction at 25 °C, and pH 8.5. Under these (most effective) conditions, XynB2Y509E-CLEAs retained 92.3% of their original β-xylosidase activity. Biochemical characterization of both crude and immobilized enzymes demonstrated that the maximum pH and temperature after immobilization remained unchanged (pH 6.5 and 65 °C). Moreover, an improvement in pH stability and thermostability was also found after immobilization. Analysis of kinetic parameters shows that the K
m value of XynB2Y509E-CLEAs obtained was slightly higher than that of free XynB2Y509E (1.2 versus 0.9 mM). Interestingly, the xylanase activity developed by the mutation was also conserved after the immobilization process.
Collapse
Affiliation(s)
- Gabriela Romero
- Center for Environmental, Biological and Chemical Research, Experimental Faculty of Sciences and Technology, University of Carabobo, Valencia 2001, Venezuela; (G.R.); (L.M.C.); (J.W.)
| | - Lellys M. Contreras
- Center for Environmental, Biological and Chemical Research, Experimental Faculty of Sciences and Technology, University of Carabobo, Valencia 2001, Venezuela; (G.R.); (L.M.C.); (J.W.)
- Department of Chemistry and Physics, University of Almeria, Building CITE I, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain; (J.M.C.-J.); (F.R.-V.)
| | - Carolina Aguirre
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Department of Environmental Chemistry, Faculty of Sciences, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción 4090541, Chile;
| | - Jeff Wilkesman
- Center for Environmental, Biological and Chemical Research, Experimental Faculty of Sciences and Technology, University of Carabobo, Valencia 2001, Venezuela; (G.R.); (L.M.C.); (J.W.)
- Institute for Biochemistry, University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, D-68163 Mannheim, Germany
| | - Josefa María Clemente-Jiménez
- Department of Chemistry and Physics, University of Almeria, Building CITE I, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain; (J.M.C.-J.); (F.R.-V.)
- Campus de Excelencia Internacional Agroalimentario ceiA3, University of Almeria, 04120 Almería, Spain
| | - Felipe Rodríguez-Vico
- Department of Chemistry and Physics, University of Almeria, Building CITE I, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain; (J.M.C.-J.); (F.R.-V.)
- Campus de Excelencia Internacional Agroalimentario ceiA3, University of Almeria, 04120 Almería, Spain
| | - Francisco Javier Las Heras-Vázquez
- Department of Chemistry and Physics, University of Almeria, Building CITE I, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain; (J.M.C.-J.); (F.R.-V.)
- Campus de Excelencia Internacional Agroalimentario ceiA3, University of Almeria, 04120 Almería, Spain
- Correspondence: ; Tel.: +34-950-015055
| |
Collapse
|
59
|
Immobilization of Eversa ® Transform via CLEA Technology Converts It in a Suitable Biocatalyst for Biolubricant Production Using Waste Cooking Oil. Molecules 2021; 26:molecules26010193. [PMID: 33401727 PMCID: PMC7794791 DOI: 10.3390/molecules26010193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
The performance of the previously optimized magnetic cross-linked enzyme aggregate of Eversa (Eversa-mCLEA) in the enzymatic synthesis of biolubricants by transesterification of waste cooking oil (WCO) with different alcohols has been evaluated. Eversa-mCLEA showed good activities using these alcohols, reaching a transesterification activity with isoamyl alcohol around 10-fold higher than with methanol. Yields of isoamyl fatty acid ester synthesis were similar using WCO or refined oil, confirming that this biocatalyst could be utilized to transform this residue into a valuable product. The effects of WCO/isoamyl alcohol molar ratio and enzyme load on the synthesis of biolubricant were also investigated. A maximum yield of around 90 wt.% was reached after 72 h of reaction using an enzyme load of 12 esterification units/g oil and a WCO/alcohol molar ratio of 1:6 in a solvent-free system. At the same conditions, the liquid Eversa yielded a maximum ester yield of only 34%. This study demonstrated the great changes in the enzyme properties that can be derived from a proper immobilization system. Moreover, it also shows the potential of WCO as a feedstock for the production of isoamyl fatty acid esters, which are potential candidates as biolubricants.
Collapse
|
60
|
Sheldon RA, Basso A, Brady D. New frontiers in enzyme immobilisation: robust biocatalysts for a circular bio-based economy. Chem Soc Rev 2021; 50:5850-5862. [DOI: 10.1039/d1cs00015b] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This tutorial review focuses on recent advances in technologies for enzyme immobilisation, enabling their cost-effective use in the bio-based economy and continuous processing in general.
Collapse
Affiliation(s)
- Roger A. Sheldon
- Molecular Sciences Institute
- School of Chemistry
- University of the Witwatersrand
- Johannesburg
- South Africa
| | | | - Dean Brady
- Molecular Sciences Institute
- School of Chemistry
- University of the Witwatersrand
- Johannesburg
- South Africa
| |
Collapse
|
61
|
Eidenschenk C, Cheruzel L. Ru(II)-diimine complexes and cytochrome P450 working hand-in-hand. J Inorg Biochem 2020; 213:111254. [PMID: 32979791 PMCID: PMC7686262 DOI: 10.1016/j.jinorgbio.2020.111254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/19/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
With a growing interest in utilizing visible light to drive biocatalytic processes, several light-harvesting units and approaches have been employed to harness the synthetic potential of heme monooxygenases and carry out selective oxyfunctionalization of a wide range of substrates. While the fields of cytochrome P450 and Ru(II) photochemistry have separately been prolific, it is not until the turn of the 21st century that they converged. Non-covalent and subsequently covalently attached Ru(II) complexes were used to promote rapid intramolecular electron transfer in bacterial P450 enzymes. Photocatalytic activity with Ru(II)-modified P450 enzymes was achieved under reductive conditions with a judicious choice of a sacrificial electron donor. The initial concept of Ru(II)-modified P450 enzymes was further improved using protein engineering, photosensitizer functionalization and was successfully applied to other P450 enzymes. In this review, we wish to present the recent contributions from our group and others in utilizing Ru(II) complexes coupled with P450 enzymes in the broad context of photobiocatalysis, protein assemblies and chemoenzymatic reactions. The merging of chemical catalysts with the synthetic potential of P450 enzymes has led to the development of several chemoenzymatic approaches. Moreover, strained Ru(II) compounds have been shown to selectively inhibit P450 enzymes by releasing aromatic heterocycle containing molecules upon visible light excitation taking advantage of the rapid ligand loss feature in those complexes.
Collapse
Affiliation(s)
- Celine Eidenschenk
- Department Biochemical and Cellular Pharmacology, Genentech, One DNA Way, South San Francisco, CA 94080, USA
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA.
| |
Collapse
|
62
|
Preparation and synthetic dye decolorization ability of magnetic cross-linked enzyme aggregates of laccase from Bacillus amyloliquefaciens. Bioprocess Biosyst Eng 2020; 44:727-735. [PMID: 33245440 DOI: 10.1007/s00449-020-02481-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Laccases are versatile oxidases that are capable of decolorizing various synthetic dyes. Recombinant Bacillus amyloliquefaciens laccase was immobilized as magnetic cross-linked enzyme aggregates (M-CLEAs) for application in dye decolorization. Several parameters influencing the activity recovery were evaluated during the synthesis of M-CLEAs. With ammonium sulfate as precipitant, maximum activity was recovered by cross-linking with 0.16% glutaraldehyde for 1 h. The prepared M-CLEAs exhibited improved activity under alkaline conditions. It remained 74% activity after incubation at 60 °C for 5 h. Enhanced tolerance towards NaCl was also observed for the M-CLEAs, with 68% activity remaining in the presence of 1 M NaCl. The immobilized laccase could rapidly decolorize more than 93% of reactive black 5 and indigo carmine in 1 h, while its catalytic efficiency towards reactive blue 19 was relatively low. After four cycles of consecutive reuse, the M-CLEAs could decolorize 92% of indigo carmine. The easy recovery and reusability of M-CLEAs facilitate the potential application of bacterial laccase in dye decolorization.
Collapse
|
63
|
Murguiondo C, Mestre A, Méndez-Líter JA, Nieto-Domínguez M, de Eugenio LI, Molina-Gutiérrez M, Martínez MJ, Prieto A. Enzymatic glycosylation of bioactive acceptors catalyzed by an immobilized fungal β-xylosidase and its multi-glycoligase variant. Int J Biol Macromol 2020; 167:245-254. [PMID: 33217466 DOI: 10.1016/j.ijbiomac.2020.11.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
A recombinant β-xylosidase (rBxTW1) from the ascomycete Talaromyces amestolkiae and a mutant derived from it, with mostly synthetic activity, have been immobilized as magnetic cross-linked enzyme aggregates (mCLEAs). The mCLEAs of rBxTW1 kept the excellent hydrolytic and O-transxylosylating activities of the free enzyme and had improved thermal and pH stability. The mCLEAs of the mutant also maintained or improved the catalytic properties of the soluble enzyme, synthetizing the O-xylosides of vanillin and (-)-epigallocatechin gallate, and the N- and S-xyloside of 3,5-dibromo-1,2,4-triazole and thiophenol, respectively. The mCLEAs were recyclable across 4 cycles of synthesis of the O-xylosides through a green and highly selective process. The magnetic properties of the scaffold used for immobilization may allow the easy recovery and reuse of the biocatalyst even from reactions containing insoluble lignocellulosic biomass.
Collapse
Affiliation(s)
- Carlos Murguiondo
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Anna Mestre
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Juan A Méndez-Líter
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Manuel Nieto-Domínguez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Laura I de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - María Molina-Gutiérrez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Jesús Martínez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
64
|
Hero JS, Morales AH, Perotti NI, Romero CM, Martinez MA. Improved development in magnetic Xyl-CLEAs technology for biotransformation of agro-industrial by-products through the use of a novel macromolecular cross-linker. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
65
|
Abd Rahman NH, Jaafar NR, Abdul Murad AM, Abu Bakar FD, Shamsul Annuar NA, Md Illias R. Novel cross-linked enzyme aggregates of levanase from Bacillus lehensis G1 for short-chain fructooligosaccharides synthesis: Developmental, physicochemical, kinetic and thermodynamic properties. Int J Biol Macromol 2020; 159:577-589. [DOI: 10.1016/j.ijbiomac.2020.04.262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
66
|
Alves NR, Pereira MM, Giordano RLC, Tardioli PW, Lima ÁS, Soares CMF, Souza RL. Design for preparation of more active cross-linked enzyme aggregates of Burkholderia cepacia lipase using palm fiber residue. Bioprocess Biosyst Eng 2020; 44:57-66. [PMID: 32767112 DOI: 10.1007/s00449-020-02419-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023]
Abstract
A new design of cross-linked enzyme aggregates (CLEAs) of Burkholderia cepacia lipase (BCL) based mainly on the use of lignocellulosic residue of palm fiber as an additive was proposed. Different parameters for the preparation of active CLEAs in the hydrolysis of olive oil, such as precipitation agents, crosslinking agent concentration, additives, and coating agents were investigated. The highest activity yield (121.1 ± 0.1%) and volumetric activity (1578.1 ± 2.5 U/mL) were achieved for CLEAs prepared using the combination of a coating step with Triton® X-100 and polyethyleneimine plus the use of palm fiber as an additive. The variations of the secondary structures of BCL-CLEAs were analyzed by second-derivative infrared spectra, mainly indicating a reduction of the α-helix structure, which was responsible for the lipase activation in the supramolecular structure of the CLEAs. Thus, these results provided evidence of an innovative design of BCL-CLEAs as a sustainable and biocompatible opportunity for biotechnology applications.
Collapse
Affiliation(s)
- Nanda R Alves
- UNIT, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, Brazil
| | - Matheus M Pereira
- Chemistry Department, CICECO, University of Aveiro, Campus Universitário de Santiago Aveiro, 3810-193, Aveiro, Portugal
| | - Raquel L C Giordano
- Programa de Pós-Graduação Em Engenharia Química (PPG-EQ), Departamento de Engenharia Química, Universidade Federal de São Carlos (DEQ/UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Paulo W Tardioli
- Programa de Pós-Graduação Em Engenharia Química (PPG-EQ), Departamento de Engenharia Química, Universidade Federal de São Carlos (DEQ/UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Álvaro S Lima
- UNIT, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, Brazil.,ITP, Instituto de Tecnologia E Pesquisa, Av. Murilo Dantas, 300, ITP, Farolândia, Aracaju, SE, Brazil
| | - Cleide M F Soares
- UNIT, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, Brazil.,ITP, Instituto de Tecnologia E Pesquisa, Av. Murilo Dantas, 300, ITP, Farolândia, Aracaju, SE, Brazil
| | - Ranyere L Souza
- UNIT, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, Brazil. .,ITP, Instituto de Tecnologia E Pesquisa, Av. Murilo Dantas, 300, ITP, Farolândia, Aracaju, SE, Brazil.
| |
Collapse
|
67
|
Sheldon RA. Biocatalysis and biomass conversion: enabling a circular economy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190274. [PMID: 32623984 DOI: 10.1098/rsta.2019.0274] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/20/2019] [Indexed: 05/22/2023]
Abstract
This paper is based on a lecture presented to the Royal Society in London on 24 June 2019. Two of the grand societal and technological challenges of the twenty-first century are the 'greening' of chemicals manufacture and the ongoing transition to a sustainable, carbon neutral economy based on renewable biomass as the raw material, a so-called bio-based economy. These challenges are motivated by the need to eliminate environmental degradation and mitigate climate change. In a bio-based economy, ideally waste biomass, particularly agricultural and forestry residues and food supply chain waste, are converted to liquid fuels, commodity chemicals and biopolymers using clean, catalytic processes. Biocatalysis has the right credentials to achieve this goal. Enzymes are biocompatible, biodegradable and essentially non-hazardous. Additionally, they are derived from inexpensive renewable resources which are readily available and not subject to the large price fluctuations which undermine the long-term commercial viability of scarce precious metal catalysts. Thanks to spectacular advances in molecular biology the landscape of biocatalysis has dramatically changed in the last two decades. Developments in (meta)genomics in combination with 'big data' analysis have revolutionized new enzyme discovery and developments in protein engineering by directed evolution have enabled dramatic improvements in their performance. These developments have their confluence in the bio-based circular economy. This article is part of a discussion meeting issue 'Science to enable the circular economy'.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, P O Wits 2050, Johannesburg, South Africa
- Department of Biotechnology, Section BOC, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
68
|
Woodley JM. Towards the sustainable production of bulk-chemicals using biotechnology. N Biotechnol 2020; 59:59-64. [PMID: 32693028 DOI: 10.1016/j.nbt.2020.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/06/2023]
Abstract
The design and development of new routes for the production of sustainable bulk-chemicals requires focus on feedstock, conversion technology and downstream product recovery. This brief article discusses some of the constraints with using fermentation and suggests the removal of some constraints by using microbial biocatalysis or enzyme biocatalysis, which give a number of benefits in the context of the requirements for bulk-chemical production. Some potential process concepts are described, for products in the suitable low-price range. These examples (biodiesel, furfurals and amines) are used to illustrate the power of biocatalysis. Suggestions for future research efforts beyond molecular biology, involving process-based concepts, are also discussed.
Collapse
Affiliation(s)
- John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| |
Collapse
|
69
|
Sadeghzadeh S, Ghobadi Nejad Z, Ghasemi S, Khafaji M, Borghei SM. Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsuta. BIORESOURCE TECHNOLOGY 2020; 306:123169. [PMID: 32182473 DOI: 10.1016/j.biortech.2020.123169] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Enzymatic removal of Bisphenol A (BPA), acknowledged as an environmentally friendly approach, is a promising method to deal with hard degradable contaminants. However, the application of "enzymatic treatment" has been limited due to lower operational stability and practical difficulties associated with recovery and recycling. Enzyme immobilization is an innovative approach which circumvents these drawbacks. In this study, laccase from Trametes hirsuta was used for BPA removal. Amino-functionalized magnetic Fe3O4 nanoparticles were synthesized via the co-precipitation method followed by surface modification with (3-aminopropyl)trimethoxysilane (APTMS). The as-prepared nanoparticles were utilized for the immobilization of laccase with the magnetic cross-linked enzyme aggregates method (MCLEAs). Activity recovery of 27% was achieved, while no immobilized laccase was observed in the cross-linked enzyme aggregates method. The performance of immobilized laccase was measured by analyzing the degradation of BPA pollutant. The maximum removal efficiency of 87.3% was attained with an initial concentration of 60 ppm throughout 11 h.
Collapse
Affiliation(s)
- Sadegh Sadeghzadeh
- Chemical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Zahra Ghobadi Nejad
- Biochemistry & Bioenvironmental Research Center, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran
| | - Shahnaz Ghasemi
- Institute of Water and Energy, Sharif University of Technology, Azadi Avenue, P.O Box 11365-8639, Tehran, Iran
| | - Mona Khafaji
- Institute for Nanoscience & Nanotechnology, Sharif University of Technology, Azadi Avenue, P.O Box 14588-89694, Tehran, Iran
| | - Seyed Mehdi Borghei
- Chemical Engineering Department, Sharif University of Technology, Tehran, Iran; Biochemistry & Bioenvironmental Research Center, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran.
| |
Collapse
|
70
|
Structure-activity relationship in Pd/CeO2 methane oxidation catalysts. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63510-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
71
|
One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. Catalysts 2020. [DOI: 10.3390/catal10060605] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipases are among the most utilized enzymes in biocatalysis. In many instances, the main reason for their use is their high specificity or selectivity. However, when full modification of a multifunctional and heterogeneous substrate is pursued, enzyme selectivity and specificity become a problem. This is the case of hydrolysis of oils and fats to produce free fatty acids or their alcoholysis to produce biodiesel, which can be considered cascade reactions. In these cases, to the original heterogeneity of the substrate, the presence of intermediate products, such as diglycerides or monoglycerides, can be an additional drawback. Using these heterogeneous substrates, enzyme specificity can promote that some substrates (initial substrates or intermediate products) may not be recognized as such (in the worst case scenario they may be acting as inhibitors) by the enzyme, causing yields and reaction rates to drop. To solve this situation, a mixture of lipases with different specificity, selectivity and differently affected by the reaction conditions can offer much better results than the use of a single lipase exhibiting a very high initial activity or even the best global reaction course. This mixture of lipases from different sources has been called “combilipases” and is becoming increasingly popular. They include the use of liquid lipase formulations or immobilized lipases. In some instances, the lipases have been coimmobilized. Some discussion is offered regarding the problems that this coimmobilization may give rise to, and some strategies to solve some of these problems are proposed. The use of combilipases in the future may be extended to other processes and enzymes.
Collapse
|
72
|
Zerva A, Pentari C, Topakas E. Crosslinked Enzyme Aggregates (CLEAs) of Laccases from Pleurotus citrinopileatus Induced in Olive Oil Mill Wastewater (OOMW). Molecules 2020; 25:E2221. [PMID: 32397329 PMCID: PMC7248732 DOI: 10.3390/molecules25092221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 01/31/2023] Open
Abstract
The enzymatic factory of ligninolytic fungi has proven to be a powerful tool in applications regarding the degradation of various types of pollutants. The degradative potential of fungi is mainly due to the production of different types of oxidases, of which laccases is one of the most prominent enzymatic activities. In the present work, crude laccases from the supernatant of Pleurotus citrinopileatus cultures grown in olive oil mill wastewater (OOMW) were immobilized in crosslinked enzyme aggregates (CLEAs), aiming at the development of biocatalysts suitable for the enzymatic treatment of OOMW. The preparation of laccase CLEAs was optimized, resulting in a maximum of 72% residual activity. The resulting CLEAs were shown to be more stable in the presence of solvents and at elevated temperatures compared to the soluble laccase preparation. The removal of the phenolic component of OOMW catalyzed by laccase-CLEAs exceeded 35%, while they were found to retain their activity for at least three cycles of repetitive use. The described CLEAs can be applied for the pretreatment of OOMW, prior to its use for valorization processes, and thus, facilitate its complete biodegradation towards a consolidated process in the context of circular economy.
Collapse
Affiliation(s)
- Anastasia Zerva
- InduBioCat Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; (A.Z.); (C.P.)
| | - Christina Pentari
- InduBioCat Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; (A.Z.); (C.P.)
| | - Evangelos Topakas
- InduBioCat Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; (A.Z.); (C.P.)
- Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
73
|
Banerjee S, Arora A, Vijayaraghavan R, Patti AF. Extraction and crosslinking of bromelain aggregates for improved stability and reusability from pineapple processing waste. Int J Biol Macromol 2020; 158:318-326. [PMID: 32353500 DOI: 10.1016/j.ijbiomac.2020.04.220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/01/2023]
Abstract
The present study is first of its kind that focuses upon the extraction of bromelain from pineapple core waste and stabilising it as insoluble cross-linked aggregates. The influence of process variables such as the choice of precipitant, type of cross-linker, concentration of cross-linker and the reaction time for cross-linking step was investigated upon the activity recovery of bromelain cross-linked aggregates. The optimization of this biocatalyst preparation specifically recovered 87% of the enzymatic activity available in pineapple core waste by ammonium sulphate (60%, w/v) precipitation followed by cross-linking for 4 h with 80 mM glutaraldehyde. Cross-linked bromelain aggregates were thermally more stable and exhibited higher pH stability in comparison to free bromelain. The cross-linked bromelain aggregates exhibited higher operational stability in different organic solvents at 4 °C. The highest operational stability (% stability given in parenthesis) was observed in acetone (100%) followed by hexane (53.6%), ethyl acetate (39.6%), ethanol (32.5%) and chloroform (14.9%). The kinetic studies revealed higher Km value (5.45 mM) after the formation of cross-linked bromelain aggregates as compared to free bromelain (5.04 mM) with almost similar Vmax values. Cross-linked bromelain aggregates also showed significant reusability characteristics with an activity retention of >85% after 5-time cycles. Such recyclability of bromelain cross-linked aggregates could lead to potential industrial applications in both food and non-food sector. In addition, the present extraction method avoids costs related to purification and expensive immobilization carriers.
Collapse
Affiliation(s)
- Shivali Banerjee
- IITB - Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Bio-Processing Laboratory, Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; School of Chemistry, Green Chemical Futures, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Amit Arora
- IITB - Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Bio-Processing Laboratory, Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - R Vijayaraghavan
- School of Chemistry, Green Chemical Futures, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Antonio F Patti
- School of Chemistry, Green Chemical Futures, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.
| |
Collapse
|
74
|
Kourist R, González‐Sabín J. Non‐Conventional Media as Strategy to Overcome the Solvent Dilemma in Chemoenzymatic Tandem Catalysis. ChemCatChem 2020. [DOI: 10.1002/cctc.201902192] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Robert Kourist
- Institute of Molecular BiotechnologyGraz University of TechnologyNAWI GrazBioTechMed Petersgasse 14 Graz 8010 Austria
| | | |
Collapse
|
75
|
Sheldon RA, Brady D, Bode ML. The Hitchhiker's guide to biocatalysis: recent advances in the use of enzymes in organic synthesis. Chem Sci 2020; 11:2587-2605. [PMID: 32206264 PMCID: PMC7069372 DOI: 10.1039/c9sc05746c] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enzymes are excellent catalysts that are increasingly being used in industry and academia. This perspective is primarily aimed at synthetic organic chemists with limited experience using enzymes and provides a general and practical guide to enzymes and their synthetic potential, with particular focus on recent applications.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
- Department of Biotechnology , Delft University of Technology , Delft , The Netherlands
| | - Dean Brady
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| | - Moira L Bode
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| |
Collapse
|
76
|
Gupta MN, Perwez M, Sardar M. Protein crosslinking: Uses in chemistry, biology and biotechnology. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1733990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
77
|
Ottone C, Romero O, Aburto C, Illanes A, Wilson L. Biocatalysis in the winemaking industry: Challenges and opportunities for immobilized enzymes. Compr Rev Food Sci Food Saf 2020; 19:595-621. [PMID: 33325181 DOI: 10.1111/1541-4337.12538] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022]
Abstract
Enzymes are powerful catalysts already being used in a large number of industrial processes. Impressive advantages in enzyme catalysts improvement have occurred in recent years aiming to improve their performance under harsh operation conditions far away from those of their cellular habitat. Production levels of the winemaking industry have experienced a remarkable increase, and technological innovations have been introduced for increasing the efficiency at different process steps or for improving wine quality, which is a key issue in this industry. Enzymes, such as pectinases and proteases, have been traditionally used, and others, such as glycosidases, have been more recently introduced in the modern wine industry, and many dedicated studies refer to the improvement of enzyme performance under winemaking conditions. Within this framework, a thorough review on the role of enzymes in winemaking is presented, with special emphasis on the use of immobilized enzymes as a significant strategy for catalyst improvement within an industry in which enzymes play important roles that are to be reinforced paralleling innovation.
Collapse
Affiliation(s)
- Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Oscar Romero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carla Aburto
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Andrés Illanes
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Lorena Wilson
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
78
|
Woodley JM. Advances in biological conversion technologies: new opportunities for reaction engineering. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00422j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction engineering needs to embrace biological conversion technologies, on the road to identify more sustainable routes for chemical manufacture.
Collapse
Affiliation(s)
- John M. Woodley
- Department of Chemical and Biochemical Engineering
- Technical University of Denmark (DTU)
- DK-2800 Kgs. Lyngby
- Denmark
| |
Collapse
|
79
|
Muley AB, Mulchandani KH, Singhal RS. Immobilization of enzymes on iron oxide magnetic nanoparticles: Synthesis, characterization, kinetics and thermodynamics. Methods Enzymol 2020; 630:39-79. [DOI: 10.1016/bs.mie.2019.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
80
|
Akkas T, Zakharyuta A, Taralp A, Ow-Yang CW. Cross-linked enzyme lyophilisates (CLELs) of urease: A new method to immobilize ureases. Enzyme Microb Technol 2020; 132:109390. [DOI: 10.1016/j.enzmictec.2019.109390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 12/31/2022]
|
81
|
Smeets V, Baaziz W, Ersen O, Gaigneaux EM, Boissière C, Sanchez C, Debecker DP. Hollow zeolite microspheres as a nest for enzymes: a new route to hybrid heterogeneous catalysts. Chem Sci 2019; 11:954-961. [PMID: 34084349 PMCID: PMC8146638 DOI: 10.1039/c9sc04615a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/09/2019] [Indexed: 01/22/2023] Open
Abstract
In the field of heterogeneous catalysis, the successful integration of enzymes and inorganic catalysts could pave the way to multifunctional materials which are able to perform advanced cascade reactions. However, such combination is not straightforward, for example in the case of zeolite catalysts for which enzyme immobilization is restricted to the external surface. Herein, this challenge is overcome by developing a new kind of hybrid catalyst based on hollow zeolite microspheres obtained by the aerosol-assisted assembly of zeolite nanocrystals. The latter spheres possess open entry-ways for enzymes, which are then loaded and cross-linked to form cross-linked enzyme aggregates (CLEAs), securing their entrapment. This controlled design allows the combination of all the decisive features of the zeolite with a high enzyme loading. A chemo-enzymatic reaction is demonstrated, where the structured zeolite material is used both as a nest for the enzyme and as an efficient inorganic catalyst. Glucose oxidase (GOx) ensures the in situ production of H2O2 subsequently utilized by the TS-1 zeolite to catalyze the epoxidation of allylic alcohol toward glycidol. The strategy can also be used to entrap other enzymes or combination of enzymes, as demonstrated here with combi-CLEAs of horseradish peroxidase (HRP) and glucose oxidase. We anticipate that this strategy will open up new perspectives, leveraging on the spray-drying (aerosol) technique to shape microparticles from various nano-building blocks and on the entrapment of biological macromolecules to obtain new multifunctional hybrid microstructures.
Collapse
Affiliation(s)
- Valentin Smeets
- Institute of Condensed Matter and Nanosciences (IMCN), UCLouvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS - Université de Strasbourg 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS - Université de Strasbourg 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Eric M Gaigneaux
- Institute of Condensed Matter and Nanosciences (IMCN), UCLouvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Cédric Boissière
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, PSL Research University 4 Place Jussieu F-75005 Paris France
| | - Clément Sanchez
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, PSL Research University 4 Place Jussieu F-75005 Paris France
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), UCLouvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
82
|
Improving the Yields and Reaction Rate in the Ethanolysis of Soybean Oil by Using Mixtures of Lipase CLEAs. Molecules 2019; 24:molecules24234392. [PMID: 31805665 PMCID: PMC6930585 DOI: 10.3390/molecules24234392] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/17/2022] Open
Abstract
Due to the heterogeneity of oils, the use of mixtures of lipases with different activity for a large number of glycerol-linked carboxylic acids that compose the substrate has been proposed as a better alternative than the use of one specific lipase preparation in the enzymatic synthesis of biodiesel. In this work, mixtures of lipases from different sources were evaluated in their soluble form in the ethanolysis of soybean oil. A mixture of lipases (50% of each lipase, in activity basis) from porcine pancreas (PPL) and Thermomyces lanuginosus lipase (TLL) gave the highest fatty acid ethyl ester (FAEE) yield (around 20 wt.%), while the individual lipases gave FAEE yields 100 and 5 times lower, respectively. These lipases were immobilized individually by the cross-linked enzyme aggregates (CLEAs) technique, yielding biocatalysts with 89 and 119% of expressed activity, respectively. A mixture of these CLEAs (also 50% of each lipase, in activity basis) gave 90.4 wt.% FAEE yield, while using separately CLEAs of PPL and TLL, the FAEE yields were 84.7 and 75.6 wt.%, respectively, under the same reaction conditions. The mixture of CLEAs could be reused (five cycles of 6 h) in the ethanolysis of soybean oil in a vortex flow-type reactor yielding an FAEE yield higher than 80% of that of the first batch.
Collapse
|
83
|
Mittmann E, Gallus S, Bitterwolf P, Oelschlaeger C, Willenbacher N, Niemeyer CM, Rabe KS. A Phenolic Acid Decarboxylase-Based All-Enzyme Hydrogel for Flow Reactor Technology. MICROMACHINES 2019; 10:E795. [PMID: 31757029 PMCID: PMC6953023 DOI: 10.3390/mi10120795] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/22/2023]
Abstract
Carrier-free enzyme immobilization techniques are an important development in the field of efficient and streamlined continuous synthetic processes using microreactors. Here, the use of monolithic, self-assembling all-enzyme hydrogels is expanded to phenolic acid decarboxylases. This provides access to the continuous flow production of p-hydroxystyrene from p-coumaric acid for more than 10 h with conversions ≥98% and space time yields of 57.7 g·(d·L)-1. Furthermore, modulation of the degree of crosslinking in the hydrogels resulted in a defined variation of the rheological behavior in terms of elasticity and mesh size of the corresponding materials. This work is addressing the demand of sustainable strategies for defunctionalization of renewable feedstocks.
Collapse
Affiliation(s)
- Esther Mittmann
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Sabrina Gallus
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Patrick Bitterwolf
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Claude Oelschlaeger
- Institute for Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (C.O.); (N.W.)
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (C.O.); (N.W.)
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Kersten S. Rabe
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| |
Collapse
|
84
|
Kulkarni NH, Muley AB, Bedade DK, Singhal RS. Cross-linked enzyme aggregates of arylamidase from Cupriavidus oxalaticus ICTDB921: process optimization, characterization, and application for mitigation of acrylamide in industrial wastewater. Bioprocess Biosyst Eng 2019; 43:457-471. [PMID: 31705314 DOI: 10.1007/s00449-019-02240-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022]
Abstract
Acrylamidase produced by Cupriavidus oxalaticus ICTDB921 was recovered directly from the fermentation broth by ammonium sulfate (40-50%) precipitation and then stabilized by cross-linking with glutaraldehyde. The optimum conditions for the preparation of cross-linked enzyme aggregates of acrylamidase (acrylamidase-CLEAs) were using 60 mM glutaraldehyde for 10 min at 35 °C and initial broth pH of 7.0. Acrylamidase-CLEAs were characterized by SDS-PAGE, FTIR, particle size analyzer and SEM. Cross-linking shifted the optimal temperature and pH from 70 to 50 °C and 5-7 to 6-8, respectively. It also altered the secondary structure fractions, pH and thermal stability along with the kinetic constants, Km and Vmax, respectively. A complete degradation of acrylamide ~ 1.75 g/L in industrial wastewater was achieved after 60 min in a batch process under optimum operating conditions, and the kinetics was best represented by Edward model (R2 = 0.70). Acrylamidase-CLEAs retained ~ 40% of its initial activity after three cycles for both pure acrylamide and industrial wastewater, and were stable for 15 days at 4 °C, retaining ~ 25% of its original activity.
Collapse
Affiliation(s)
- Nidhi H Kulkarni
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Abhijeet B Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Dattatray K Bedade
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
85
|
Li K, Mohammed MAA, Zhou Y, Tu H, Zhang J, Liu C, Chen Z, Burns R, Hu D, Ruso JM, Tang Z, Liu Z. Recent progress in the development of immobilized penicillin G acylase for chemical and industrial applications: A mini‐review. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ke Li
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Monier Alhadi Abdelrahman Mohammed
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Yongshan Zhou
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Hongyi Tu
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Jiachen Zhang
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Chunli Liu
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Zhenbin Chen
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Robert Burns
- Department of Physics and EngineeringFrostburg State University Frostburg Maryland
| | - Dongdong Hu
- State Key Laboratory of Chemical EngineeringEast China University of Science and Technology Shanghai China
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied PhysicsUniversity of Santiago de Compostela Santiago de Compostela Spain
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy MaterialsNew Energy Research Institute School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou China
- Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy MaterialsSchool of Environment and Energy South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou China
| | - Zhen Liu
- Department of Physics and EngineeringFrostburg State University Frostburg Maryland
| |
Collapse
|
86
|
Surfactant Imprinting Hyperactivated Immobilized Lipase as Efficient Biocatalyst for Biodiesel Production from Waste Cooking Oil. Catalysts 2019. [DOI: 10.3390/catal9110914] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enzymatic production of biodiesel from waste cooking oil (WCO) could contribute to resolving the problems of energy demand and environment pollutions.In the present work, Burkholderia cepacia lipase (BCL) was activated by surfactant imprinting, and subsequently immobilized in magnetic cross-linked enzyme aggregates (mCLEAs) with hydroxyapatite coated magnetic nanoparticles (HAP-coated MNPs). The maximum hyperactivation of BCL mCLEAs was observed in the pretreatment of BCL with 0.1 mM Triton X-100. The optimized Triton-activated BCL mCLEAs was used as a highly active and robust biocatalyst for biodiesel production from WCO, exhibiting significant increase in biodiesel yield and tolerance to methanol. The results indicated that surfactant imprinting integrating mCLEAs could fix BCL in their active (open) form, experiencing a boost in activity and allowing biodiesel production performed in solvent without further addition of water. A maximal biodiesel yield of 98% was achieved under optimized conditions with molar ratio of methanol-to-WCO 7:1 in one-time addition in hexane at 40 °C. Therefore, the present study displays a versatile method for lipase immobilization and shows great practical latency in renewable biodiesel production.
Collapse
|
87
|
Abstract
Enzyme-based biocatalysis exhibits multiple advantages over inorganic catalysts, including the biocompatibility and the unchallenged specificity of enzymes towards their substrate. The recovery and repeated use of enzymes is essential for any realistic application in biotechnology, but is not easily achieved with current strategies. For this purpose, enzymes are often immobilized on inorganic scaffolds, which could entail a reduction of the enzymes’ activity. Here, we show that immobilization to a nano-scaled biological scaffold, a nanonetwork of end-to-end cross-linked M13 bacteriophages, ensures high enzymatic activity and at the same time allows for the simple recovery of the enzymes. The bacteriophages have been genetically engineered to express AviTags at their ends, which permit biotinylation and their specific end-to-end self-assembly while allowing space on the major coat protein for enzyme coupling. We demonstrate that the phages form nanonetwork structures and that these so-called nanonets remain highly active even after re-using the nanonets multiple times in a flow-through reactor.
Collapse
|