51
|
Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102200] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
52
|
Al Dayel MF, El Sherif F. Evaluation of the effects of Chlorella vulgaris, Nannochloropsis salina, and Enterobacter cloacae on growth, yield and active compound compositions of Moringa oleifera under salinity stress. Saudi J Biol Sci 2021; 28:1687-1696. [PMID: 33732054 PMCID: PMC7938152 DOI: 10.1016/j.sjbs.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/06/2020] [Indexed: 10/31/2022] Open
Abstract
Application of Chlorella vulgaris, Nannochloropsis salina and Enterobacter cloacae has been reported to improve the growth of multiple plant species. Moringa oleifera is a medicinal plant found in Saudi Arabia. Its leaves, flowers and fruit have been used as food. Moringa oleifera is rich in rutin and gallic acid and many other bioactive compounds, which collectively contribute to its demonstrated range of pharmacological activities. In Saudi Arabia, the semi-arid and arid weather presents a significant challenge to agriculture. High salinity in cultivated land is a particular threat. We applied Chlorella vulgaris, Nannochloropsis salina, and Enterobacter cloacae at multiple salinities to Moringa oleifera to investigate their effects on the growth, yield, and photosynthetic pigment content. We also examined possible changes in the phytochemical composition. The application of Chlorella vulgaris, Nannochloropsis salina and Enterobacter cloacae enhanced plant growth and yield, while inhibition was observed at high (6000 ppm) salinity. The presence of Chlorella vulgaris and Nannochloropsis salina altered plant growth and yield and rutin and gallic acid content of Moringa oleifera plants grown in saline conditions. Microalgae species were recommended for use as a bio-fertiliser alternative to mainstream synthetic fertilisers.
Collapse
Affiliation(s)
- Munirah F Al Dayel
- Department of Biological Sciences, Faculty of Science, King Faisal University, Saudi Arabia
| | - Fadia El Sherif
- Department of Biological Sciences, Faculty of Science, King Faisal University, Saudi Arabia
- Department of Horticulture, Faculty of Agriculture, Suez Canal University, Egypt
| |
Collapse
|
53
|
The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020871] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increase in worldwide population observed in the last decades has contributed to an increased demand for food supplies, which can only be attained through an improvement in agricultural productivities. Moreover, agricultural practices should become more sustainable, as the use of chemically-based fertilisers, pesticides and growth stimulants can pose serious environmental problems and lead to the scarcity of finite resources, such as phosphorus and potassium, thus increasing the fertilisers’ costs. One possible alternative for the development of a more sustainable and highly effective agriculture is the use of biologically-based compounds with known activity in crops’ nutrition, protection and growth stimulation. Among these products, microalgal and cyanobacterial biomass (or their extracts) are gaining particular attention, due to their undeniable potential as a source of essential nutrients and metabolites with different bioactivities, which can significantly improve crops’ yields. This manuscript highlights the potential of microalgae and cyanobacteria in the improvement of agricultural practices, presenting: (i) how these photosynthetic microorganisms interact with higher plants; (ii) the main bioactive compounds that can be isolated from microalgae and cyanobacteria; and (iii) how microalgae and cyanobacteria can influence plants’ growth at different levels (nutrition, protection and growth stimulation).
Collapse
|
54
|
An Experimental Investigation on Tribological Behaviour of Tire-Derived Pyrolysis Oil Blended with Biodiesel Fuel. SUSTAINABILITY 2020. [DOI: 10.3390/su12239975] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The demand for alternative fuels has risen in recent years due to the economic and environmental consequences of conventional fuels. In addition to engine characteristics, i.e., performance, combustion, and emission the lubricity of the considered fuel is an important parameter for its selection. This experimental study shows the tribological performance of the tire pyrolysis oil by using the four-ball tester. Waste tire pyrolysis oil was purified by using the distillation process. The experiment was conducted over 300 s at 40, 50, 63, and 80 kg load, 1800 rpm constant speed, and 27 °C temperature of all fuels on the ASTM D2266 standard. The tribological performance of the tire pyrolysis oil was compared with the BT10 (biodiesel 90%–tire pyrolysis oil 10%) and BT20 (biodiesel 80%–tire pyrolysis oil 20%) and biodiesel. The optical microscope is used to measure the wear scar diameter and then it is examined through a scanning electron microscope. In terms of greater load-carrying capacity, tire pyrolysis oil shows better anti-wear behaviour compared to biodiesel fuel. The wear scar diameter of BT10, BT20, and tire pyrolysis oil was 23.99%, 8.37%, and 32.62%, respectively, lower than the biodiesel fuel at 80 kg load. The SEM micrographs revealed that tire pyrolysis oil and BT10 displayed lower wear as compared to counterparts. Finally, it is concluded that BT10 is the most suitable fuel in terms of tribological performance.
Collapse
|
55
|
Nguyen TQ, Sesin V, Kisiala A, Emery RJN. The Role of Phytohormones in Enhancing Metal Remediation Capacity of Algae. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:671-678. [PMID: 32435845 DOI: 10.1007/s00128-020-02880-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/08/2020] [Indexed: 05/28/2023]
Abstract
Heavy metal (HM) contamination of the environment is a major issue worldwide, creating an ever-increasing demand for remediation techniques. Remediation with algae offers an ecologically safe, cost-effective, and efficient option for HM removal. Similar to plants, growth and development of algae are controlled by the hormonal system, where phytohormones are involved in HM tolerance and thus can regulate remediation ability; however, the underlying mechanisms of phytohormone function remain elusive. This review aims to draw a comprehensive model of phytohormone contributions to algal performance under HM stress. We focus on the mechanisms of HM biosorption, uptake and intracellular storage, and on how phytohormones interact with algal defence systems under HM exposure. We provide examples of successful utilization of algae in remediation, and of post-processing of algal materials. Finally, we discuss the advantages and risks of using algae for remediation. An in-depth understanding of these processes can inform effective HM remediation techniques.
Collapse
Affiliation(s)
- Thien Q Nguyen
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Verena Sesin
- Environmental and Life Sciences, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| | - Anna Kisiala
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
56
|
Singh J, Jain D, Agarwal P, Singh R. Auxin and cytokinin synergism augmenting biomass and lipid production in microalgae Desmodesmus sp. JS07. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
57
|
Different Classes of Phytohormones Act Synergistically to Enhance the Growth, Lipid and DHA Biosynthetic Capacity of Aurantiochytrium sp. SW1. Biomolecules 2020; 10:biom10050755. [PMID: 32413958 PMCID: PMC7277723 DOI: 10.3390/biom10050755] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
In the present study, the impact of eight phytohormones from six different classes on the growth, lipid and docosahexaenoic acid (DHA) biosynthetic capacity of Aurantiochytrium sp. SW1 (SW1) was evaluated. Kinetin (KIN), jasmonic acid (JA) and gibberellic acid (GA) significantly enhanced the growth and DHA production of SW1 by 16%-28% and 66%-84% in comparison to the control, respectively. The synergistic effect of these three phytohormones, evaluated by the response surface methodology (RSM), showed that a combination of 3.6 mg/L GA, 2.0 mg/L KIN and 20.0 mg/L JA further increased the growth and DHA production of SW1 by 16% to 28% and 22% to 36%, respectively, in comparison to the individual supplementation. The synergistic effect of these phytohormones was also shown to be time-dependent, where feeding at 24 h of cultivation led to 15%, 26% and 35% further increments in the biomass, lipid and DHA production in comparison to that of 0 h, respectively. The determination of stress markers, antioxidant enzymes and key enzymes involved in fatty acid biosynthesis aided to elucidate the potential mechanism underlying the improvement of growth and DHA production by SW1 at various times of feeding. Supplementation with the phytohormones at 24 h exhibited the maximum impact on reducing the level of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as augmented the antioxidants (superoxide dismutase and catalase) and key metabolic enzymes involved in lipogenesis (malic, glucose-6-phosphate dehydrogenase and ATP-citrate lyase) in comparison to the control and other time points. This study signifies the potential application of phytohormones for improving the growth, lipid and DHA production in Aurantiochytrium spp.
Collapse
|
58
|
Islam S, Mohammad F. Triacontanol as a dynamic growth regulator for plants under diverse environmental conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:871-883. [PMID: 32377038 PMCID: PMC7196594 DOI: 10.1007/s12298-020-00815-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 04/07/2020] [Indexed: 05/21/2023]
Abstract
Triacontanol (TRIA) being an endogenous plant growth regulator facilitates numerous plant metabolic activities leading to better growth and development. Moreover, TRIA plays essential roles in alleviating the stress-accrued alterations in crop plants via modulating the activation of the stress tolerance mechanisms. The present article critically focuses on the role of exogenously applied TRIA in morpho-physiology and biochemistry of plants for example, in terms of growth, photosynthesis, enzymatic activity, biofuel synthesis, yield and quality under normal and stressful conditions. This article also enlightens the mode of action of TRIA and its interaction with other phytohormones in regulating the physio-biochemical processes in counteracting the stress-induced damages in plants.
Collapse
Affiliation(s)
- Shaistul Islam
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Firoz Mohammad
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
59
|
|
60
|
Chen JH, Wei D, Lim PE. Enhanced coproduction of astaxanthin and lipids by the green microalga Chromochloris zofingiensis: Selected phytohormones as positive stimulators. BIORESOURCE TECHNOLOGY 2020; 295:122242. [PMID: 31629282 DOI: 10.1016/j.biortech.2019.122242] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 05/03/2023]
Abstract
Phytohormones comprise a variety of trace bioactive compounds that can stimulate cell growth and promote metabolic shifts. In the present work, a two-stage screening strategy was innovatively established to identify positive phytohormones for enhancement of astaxanthin and lipid coproduction in microplate-based cultures of mixotrophic Chromochloris zofingiensis. The results showed that auxins were the most efficient stimulators for astaxanthin accumulation. The maximum content of 13.1 mg/g and yield of 89.9 mg/L were obtained using indole propionic acid (10 mg/L) and indoleacetic acid (7.8 mg/L), representing the highest levels of astaxanthin in this microalga reported to date. Total lipids with the highest content (64.5% DW) and productivity (445.7 mg/L/d) were coproduced with astaxanthin using indoleacetic acid. Statistical analysis revealed close relations between phytohormones and astaxanthin and lipid biosynthesis. This study provides a novel original strategy for improving astaxanthin and lipid coproduction in C. zofingiensis using the selected phytohormones as positive stimulators.
Collapse
Affiliation(s)
- Jun-Hui Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Research Institute for Food Nutrition and Human Health, Guangzhou, China.
| | - Phaik-Eem Lim
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
61
|
Nitrogen supplemented by symbiotic Rhizobium stimulates fatty-acid oxidation in Chlorella variabilis. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
62
|
Zhao Y, Wang HP, Han B, Yu X. Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: A review. BIORESOURCE TECHNOLOGY 2019; 274:549-556. [PMID: 30558833 DOI: 10.1016/j.biortech.2018.12.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 05/03/2023]
Abstract
Microalgae can produce lipids and high-value by-products under abiotic stress conditions, including nutrient starvation, high light intensity, extreme temperature, high salinity and the presence of heavy metals. However, the growth and development of microalgae and the accumulation of metabolites may be inhibited by adverse stresses. In recent years, phytohormones have emerged as a topic of intense focus in microalgae research. Phytohormones could sustain the growth of microalgae under abiotic stress conditions. In addition, the combination of plant hormones and abiotic stresses could further promote the biosynthesis of metabolites and improve the ability of microalgae to tolerate abiotic stresses. This review primarily focuses on the regulatory effects of exogenous phytohormones on the biosynthesis of metabolites by microalgae under adverse environmental conditions and discusses the mechanisms of phytohormone-mediated cell growth, stress tolerance and lipid biosynthesis in microalgae under abiotic stress conditions.
Collapse
Affiliation(s)
- Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui-Ping Wang
- Children's Hospital Affiliated to Kunming Medical University, Kunming 650228, China
| | - Benyong Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
63
|
Sun XM, Ren LJ, Zhao QY, Ji XJ, Huang H. Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:272. [PMID: 30305845 PMCID: PMC6171298 DOI: 10.1186/s13068-018-1275-9] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/26/2018] [Indexed: 05/04/2023]
Abstract
Microalgae have drawn great attention as promising sustainable source of lipids and carotenoids. Their lipid and carotenoids accumulation machinery can be trigged by the stress conditions such as nutrient limitation or exposure to the damaging physical factors. However, stressful conditions often adversely affect microalgal growth and cause oxidative damage to the cells, which can eventually reduce the yield of the desired products. To overcome these limitations, two-stage cultivation strategies and supplementation of growth-promoting agents have traditionally been utilized, but developing new highly adapted strains is theoretically the simplest strategy. In addition to genetic engineering, adaptive laboratory evolution (ALE) is frequently used to develop beneficial phenotypes in industrial microorganisms during long-term selection under specific stress conditions. In recent years, many studies have gradually introduced ALE as a powerful tool to improve the biological properties of microalgae, especially for improving the production of lipid and carotenoids. In this review, strategies for the manipulation of stress in microalgal lipids and carotenoids production are summarized and discussed. Furthermore, this review summarizes the overall state of ALE technology, including available selection pressures, methods, and their applications in microalgae for the improved production of lipids and carotenoids.
Collapse
Affiliation(s)
- Xiao-Man Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, People’s Republic of China
| | - Quan-Yu Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, People’s Republic of China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, People’s Republic of China
| |
Collapse
|
64
|
Sun XM, Ren LJ, Ji XJ, Huang H. Enhancing biomass and lipid accumulation in the microalgae Schizochytrium sp. by addition of fulvic acid and EDTA. AMB Express 2018; 8:150. [PMID: 30242564 PMCID: PMC6150865 DOI: 10.1186/s13568-018-0681-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022] Open
Abstract
Enhancing lipid productivity and reducing oxidative damage is essential for lipid overproduction in microalgae. In this study, addition of 20 mg/L fulvic acid (FA) resulted a 34.4% increase of lipid yield in Schizochytrium sp. Furthermore, the cooperative effect of FA and EDTA on cell growth and lipid production was investigated. The combined addition of 20 mg/L FA and 1.0 g/L EDTA yielded a maximal cell dry weight of 130.7 g/L and lipid productivity of 1.16 g/L/h, representing 36.4% and threefold increase over the non-supplemented group, respectively. Moreover, compared with the non-supplemented group, the combined addition strategy exhibited overall lower levels of reactive oxygen species and malondialdehyde, which accompanied with 66.7% and 81.9% higher superoxide dismutase and catalase activity, respectively. Furthermore, a 24.1–37.1% increase of malic enzyme and 19.4–25.2% decrease of phosphoenolpyruvate carboxylase activity was observed during the entire fermentation stage (0–108 h). Results suggested that the combined addition strategy not only enhanced lipid accumulation, but also prevented the lipid peroxidation.
Collapse
|