51
|
Bakhshpour M, Göktürk I, Bereli N, Denizli A. Molecularly imprinted cryogel cartridges for the selective recognition of tyrosine. Biotechnol Prog 2020; 36:e3006. [PMID: 32329233 DOI: 10.1002/btpr.3006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 11/09/2022]
Abstract
Molecularly imprinted polymers are used for creating a specific cavity and selective recognition sites for the structure of a target molecule in a polymeric structure. In this study, specific molecularly imprinted cryogel cartridges were synthesized using two distinct functional monomers to compare imprinting efficiency for the selective recognition of Tyrosine (Tyr). Tyr-imprinted cryogel cartridge (MIP1) was prepared using metal-chelate coordination for the imprinting process by free-radical bulk polymerization under frozen conditions, and Tyr-imprinted cryogel cartridge (MIP2) was prepared in the same way using hydrophobic effects for imprinting. After the characterization of the cryogel cartridges was carried out, the optimum adsorption conditions of both were determined according to the different parameters such as flow rate (0.5-2.5 ml/min), pH of the medium (4.0-8.0), initial Tyr concentration (0.1-3.0 mg/ml), and temperature (4-45°C). Selectivity experiments of Tyr-imprinted and non-imprinted cryogel cartridges were carried out by using phenylalanine, tryptophan, and cysteine. Besides, the eluted Tyr from MIP1 and MIP2 cryogel cartridge were applied to FPLC system. Also, the reusability experiments of Tyr-imprinted cryogel cartridges was observed no significant decrease in the adsorption capacity.
Collapse
Affiliation(s)
| | - Ilgım Göktürk
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Nilay Bereli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
52
|
Raju RR, Liebig F, Klemke B, Koetz J. Ultralight magnetic aerogels from Janus emulsions. RSC Adv 2020; 10:7492-7499. [PMID: 35492159 PMCID: PMC9049865 DOI: 10.1039/c9ra10247g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/07/2020] [Indexed: 11/21/2022] Open
Abstract
Magnetite containing aerogels were synthesized by freeze-drying olive oil/silicone oil-based Janus emulsion gels containing gelatin and sodium carboxymethylcellulose (NaCMC). The magnetite nanoparticles dispersed in olive oil are processed into the gel and remain in the macroporous aerogel after removing the oil components. The coexistence of macropores from the Janus droplets and mesopores from freeze-drying of the hydrogels in combination with the magnetic properties offer a special hierarchical pore structure, which is of relevance for smart supercapacitors, biosensors, and spilled oil sorption and separation. The morphology of the final structure was investigated in dependence on initial compositions. More hydrophobic aerogels with magnetic responsiveness were synthesized by bisacrylamide-crosslinking of the hydrogel. The crosslinked aerogels can be successfully used in magnetically responsive clean up experiments of the cationic dye methylene blue. Magnetite containing aerogels were synthesized by freeze-drying olive oil/silicone oil-based Janus emulsion gels containing gelatin and sodium carboxymethylcellulose (NaCMC).![]()
Collapse
Affiliation(s)
| | - Ferenc Liebig
- Institute of Chemistry
- University of Potsdam
- 14476 Potsdam
- Germany
| | - Bastian Klemke
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 14109 Berlin
- Germany
| | - Joachim Koetz
- Institute of Chemistry
- University of Potsdam
- 14476 Potsdam
- Germany
| |
Collapse
|
53
|
Rogers ZJ, Bencherif SA. Cryogelation and Cryogels. Gels 2019; 5:gels5040046. [PMID: 31816989 PMCID: PMC6956035 DOI: 10.3390/gels5040046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Zachary J. Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA;
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA;
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Laboratory of Biomechanics & Bioengineering (BMBI), Sorbonne University, University of Technology of Compiègne (UTC), 60200 Compiègne, France
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Correspondence:
| |
Collapse
|
54
|
Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery. Bioanalysis 2019; 11:1799-1812. [PMID: 31617391 DOI: 10.4155/bio-2019-0145] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plasma and serum are widely used for proteomics-based biomarker discovery. However, analysis of these biofluids is highly challenging due to the complexity and wide dynamic range of their proteomes. Notably, highly abundant proteins tend to obscure the detection of potential biomarkers that are usually of lower concentrations. Among the strategies to resolve this problem are: depletion of high-abundance proteins, enrichment of low abundant proteins of interest and prefractionation. In this review, we focus on current and emerging depletion techniques used to enhance the detection and identification of the less abundant proteins in plasma and serum. We discuss the applications and contributions of these methods to proteomics analysis of plasma and serum alongside their limitations and future perspectives.
Collapse
|
55
|
Häussling V, Deninger S, Vidoni L, Rinderknecht H, Ruoß M, Arnscheidt C, Athanasopulu K, Kemkemer R, Nussler AK, Ehnert S. Impact of Four Protein Additives in Cryogels on Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Bioengineering (Basel) 2019; 6:E67. [PMID: 31394780 PMCID: PMC6784125 DOI: 10.3390/bioengineering6030067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Human adipose-derived mesenchymal stem/stromal cells (Ad-MSCs) have great potential for bone tissue engineering. Cryogels, mimicking the three-dimensional structure of spongy bone, represent ideal carriers for these cells. We developed poly(2-hydroxyethyl methacrylate) cryogels, containing hydroxyapatite to mimic inorganic bone matrix. Cryogels were additionally supplemented with different types of proteins, namely collagen (Coll), platelet-rich plasma (PRP), immune cells-conditioned medium (CM), and RGD peptides (RGD). The different protein components did not affect scaffolds' porosity or water-uptake capacity, but altered pore size and stiffness. Stiffness was highest in scaffolds with PRP (82.3 kPa), followed by Coll (55.3 kPa), CM (45.6 kPa), and RGD (32.8 kPa). Scaffolds with PRP, CM, and Coll had the largest pore diameters (~60 µm). Ad-MSCs were osteogenically differentiated on these scaffolds for 14 days. Cell attachment and survival rates were comparable for all four scaffolds. Runx2 and osteocalcin levels only increased in Ad-MSCs on Coll, PRP and CM cryogels. Osterix levels increased slightly in Ad-MSCs differentiated on Coll and PRP cryogels. With differentiation alkaline phosphatase activity decreased under all four conditions. In summary, besides Coll cryogel our PRP cryogel constitutes as an especially suitable carrier for bone tissue engineering. This is of special interest, as this scaffold can be generated with patients' PRP.
Collapse
Affiliation(s)
- Victor Häussling
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Sebastian Deninger
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Laura Vidoni
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Helen Rinderknecht
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Marc Ruoß
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Christian Arnscheidt
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Kiriaki Athanasopulu
- Department of Applied Chemistry Reutlingen University, 72762 Reutlingen, Germany
| | - Ralf Kemkemer
- Department of Applied Chemistry Reutlingen University, 72762 Reutlingen, Germany
| | - Andreas K Nussler
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany.
| | - Sabrina Ehnert
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| |
Collapse
|