51
|
Behera B, Selvam S M, Paramasivan B. Research trends and market opportunities of microalgal biorefinery technologies from circular bioeconomy perspectives. BIORESOURCE TECHNOLOGY 2022; 351:127038. [PMID: 35331886 DOI: 10.1016/j.biortech.2022.127038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 05/16/2023]
Abstract
Microalgae as an alternative feedstock for sustainable bio-products have gained significant interest over years. Even though scientific productivity related to microalgae-based research has increased in recent decades, translation to industrial scale is still lacking. Therefore, it is essential to understand the current state-of-art and, identify research gaps and hotspots driving industrial scale up. The present review through scientometric analysis attempted to delineate the research evolution contributing to this emerging field. The research trends were analysed over the last decade globally highlighting the collaborative network between the countries. The comprehensive knowledge map generated confirmed microalgal biorefinery as a scientifically active field, where the present research interest is focussed on synergistically integrating the unit processes involved to make it enviro-economically feasible. Market opportunities and regulatory policy requirements along with the consensus need to adopt circular bio-economy perspectives were highlighted to facilitate real-time implementation of microalgal biorefinery.
Collapse
Affiliation(s)
- Bunushree Behera
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India.
| | - Mari Selvam S
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Balasubramanian Paramasivan
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
52
|
Behera S, Priyadarshanee M, Das S. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications. CHEMOSPHERE 2022; 294:133723. [PMID: 35085614 DOI: 10.1016/j.chemosphere.2022.133723] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The rising plastic pollution deteriorates the environment significantly as these petroleum-based plastics are not biodegradable, and their production requires natural fuels (energy source) and other resources. Polyhydroxyalkanoates (PHAs) are bioplastic and a sustainable and eco-friendly alternative to synthetic plastics. PHAs can be entirely synthesized using various microorganisms such as bacteria, algae, and fungi. These value-added biopolymers show promising properties such as enhanced biodegradability, biocompatibility, and other chemo-mechanical properties. Further, it has been established that the properties of PHA polymers depend on the substrates and chemical composition (monomer unit) of these polymers. PHAs hold great potential as an alternative to petroleum-based polymers, and further research for economic production and utilization of these biopolymers is required. The review describes the synthesis mechanism and different properties of microbially synthesized PHAs for various applications. The classification of PHAs and the multiple techniques necessary for their detection and evaluation have been discussed. In addition, the synthesis mechanism involving the genetic regulation of these biopolymers in various microbial groups has been described. This review provides information on various commercially available PHAs and their application in multiple sectors. The industrial production of these microbially synthesized polymers and the different extraction methods have been reviewed in detail. Furthermore, the review provides an insight into the potential applications of this biopolymer in environmental, industrial, and biomedical applications.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
53
|
Promising Developments in Bio-Based Products as Alternatives to Conventional Plastics to Enable Circular Economy in Ukraine. RECYCLING 2022. [DOI: 10.3390/recycling7020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transforming the plastic industry toward producing more sustainable alternatives than conventional plastics, as an essential enabler of the bio-based circular economy (CE), requires reinforcing initiatives to drive solutions from the lab to the market. In this regard, startups and ideation and innovation events can potentially play significant roles in consolidating efforts and investments by academia and industry to foster bio-based and biodegradable plastic-related developments. This study aimed to present the current trends and challenges of bioplastics and bio-based materials as sustainable alternatives for plastics. On this basis, having conducted a systematic literature review, the seminal research themes of the bio-based materials and bioplastics literature were unfolded and discussed. Then, the most recent developments of bio-based sustainable products in Ukraine, as alternatives to petroleum-based plastics, that have gained publicity through local startup programs and hackathons were presented. The findings shed light on the potential of the bio-based sector to facilitate the CE transition through (i) rendering innovative solutions most of which have been less noticed in academia before; (ii) enhancing academic debate and bridging the gap between developers, scholars, and practitioners within the plastic industry toward creating circularity across the supply chain; (iii) identifying the main challenges and future perspectives for further investigations in the future.
Collapse
|
54
|
An Overview of the Alternative Use of Seaweeds to Produce Safe and Sustainable Bio-Packaging. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In modern times, seaweeds have become widely involved in several biotechnological applications due to the variety of their constituent bioactive compounds. The consumption of seaweeds dates to ancient times; however, only from the last few decades of research can we explain the mechanisms of action and the potential of seaweed-derived bioactive compounds, which has led to their involvement in food, cosmetic, pharmaceutical, and nutraceutical industries. Macroalgae-derived bioactive compounds are of great importance as their properties enable them to be ideal candidates for the production of sustainable “green” packaging. Diverse studies demonstrate that seaweed polysaccharides (e.g., alginates and carrageenans) not only provide health benefits, but also contribute to the production of biopolymeric film and biodegradable packaging. The dispersion of plastics and microplastics in the oceans provoke serious environmental issues that influence ecosystems and aquatic organisms. Thus, the sustainable use of seaweed-derived biopolymers is now crucial to replace plasticizers with biodegradable materials, and thus preserve the environment. The present review aims to provide an overview on the potential of seaweeds in the production of bioplastics which might be involved in food or pharmaceutical packaging.
Collapse
|
55
|
Mapstone LJ, Leite MN, Purton S, Crawford IA, Dartnell L. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnol Adv 2022; 59:107946. [DOI: 10.1016/j.biotechadv.2022.107946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
|
56
|
Mal N, Satpati G, Raghunathan S, Davoodbasha M. Current strategies on algae-based biopolymer production and scale-up. CHEMOSPHERE 2022; 289:133178. [PMID: 34890607 DOI: 10.1016/j.chemosphere.2021.133178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
The craving for an alternative to the existing plastic products gives rise to the concept of algae-based bioplastic production, which appears to be excellently biodegradable and cost-effective. The significant assortment of algal biopolymers draws great attention to stop the surge of plastic waste and to mitigate the burning problems of environmental pollution. The polyhydroxyalkanoates (PHA) are naturally-occurring biopolymers found in the form of esters accumulated within a number of microbes, which provides the pillar for several biomolecules. This review summarizes the global scenario as well as the precise technique of algae-based PHA extraction and bioplastic production. In addition, different techniques for valorisation of PHA production, its biodegradability and its commercial applications are also taken into consideration.
Collapse
Affiliation(s)
- Navonil Mal
- Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - GourGopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, Kolkata, 700009, West Bengal, India.
| | - Sathya Raghunathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India.
| | - MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India; Centre for Micro Algal and Nano Biotechnology (CeMANT), Crescent Innovation and Incubation Council (CIIC), B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India; Division of Bioengineering, Incheon National University, Republic of Korea.
| |
Collapse
|
57
|
Naselli-Flores L, Padisák J. Ecosystem services provided by marine and freshwater phytoplankton. HYDROBIOLOGIA 2022; 850:2691-2706. [PMID: 35106010 PMCID: PMC8795964 DOI: 10.1007/s10750-022-04795-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 05/15/2023]
Abstract
Phytoplankton, the ecological group of microalgae adapted to live in apparent suspension in water masses, is much more than an ecosystem's engineer. In this opinion paper, we use our experience as phytoplankton ecologists to list and highlight the services provided by phytoplankton, trying to demonstrate how their activity is fundamental to regulate and sustain Life on our Planet. Although the number of services produced by phytoplankton can be considered less numerous than that produced by other photosynthetic organisms, the ubiquity of this group of organisms, and their thriving across oceanic ecosystems make it one of the biological engines moving our biosphere. Supporting services provided by phytoplankton include almost half of the global primary and oxygen production. In addition, phytoplankton greatly pushes biogeochemical cycles and nutrient (re)cycling, not only in aquatic ecosystems but also in terrestrial ones. In addition, it significantly contributes to climate regulation (regulating services), supplies food, fuels, active ingredients and drugs, and genetic resources (provisioning services), has inspired artistic and craft works, mythology, and, of course, science (cultural services), and much more. Therefore, phytoplankton should be considered in all respects a true biosphere's engineer.
Collapse
Affiliation(s)
- Luigi Naselli-Flores
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 28, 90123 Palermo, Italy
| | - Judit Padisák
- Research Group of Limnology, Centre for Natural Sciences, University of Pannonia, Egyetem u. 10, Veszprém, 8200 Hungary
| |
Collapse
|
58
|
Reddy AR. Biopolymers Production from Algal Biomass and their Applications- A Review. JOURNAL OF BIOCHEMICAL TECHNOLOGY 2022. [DOI: 10.51847/nkwndz9ah7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
59
|
Biopolymers from Agriculture Waste and By-Products. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
60
|
Gudiukaite R, Nadda AK, Gricajeva A, Shanmugam S, Nguyen DD, Lam SS. Bioprocesses for the recovery of bioenergy and value-added products from wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113831. [PMID: 34649321 DOI: 10.1016/j.jenvman.2021.113831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/04/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Wastewater and activated sludge present a major challenge worldwide. Wastewater generated from large and small-scale industries, laundries, human residential areas and other sources is emerging as a main problem in sanitation and maintenance of smart/green cities. During the last decade, different technologies and processes have been developed to recycle and purify the wastewater. Currently, identification and fundamental consideration of development of more advanced microbial-based technologies that enable wastewater treatment and simultaneous resource recovery to produce bioenergy, biofuels and other value-added compounds (organic acids, fatty acids, bioplastics, bio-pesticides, bio-surfactants and bio-flocculants etc.) became an emerging topic. In the last several decades, significant development of bioprocesses and techniques for the extraction and recovery of mentioned valuable molecules and compounds from wastewater, waste biomass or sludge has been made. This review presents different microbial-based process routes related to resource recovery and wastewater application for the production of value-added products and bioenergy. Current process limitations and insights for future research to promote more efficient and sustainable routes for this under-utilized and continually growing waste stream are also discussed.
Collapse
Affiliation(s)
- Renata Gudiukaite
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Avenue 7, LT-10257, Vilnius, Lithuania.
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India.
| | - Alisa Gricajeva
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Avenue 7, LT-10257, Vilnius, Lithuania
| | - Sabarathinam Shanmugam
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
| | - D Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 442-760, South Korea
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
61
|
Chong JWR, Khoo KS, Yew GY, Leong WH, Lim JW, Lam MK, Ho YC, Ng HS, Munawaroh HSH, Show PL. Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: A review. BIORESOURCE TECHNOLOGY 2021; 342:125947. [PMID: 34563823 DOI: 10.1016/j.biortech.2021.125947] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Microalgae have emerged as an effective dual strategy for bio-valorisation of food processing wastewater and food waste hydrolysate which favours microalgae cultivation into producing value-added by products mainly lipids, carbohydrates, and proteins to the advantages of bioplastic production. Moreover, various microalgae have successfully removed high amount of organic pollutants from food processing wastewater prior discharging into the environment. Innovation of microalgae cultivating in food processing wastewater greatly reduced the cost of wastewater treatment compared to conventional approach in terms of lower carbon emissions, energy consumption, and chemical usage while producing microalgae biomass which can benefit low-cost fertilizer and bioplastic applications. The study on several microalgae species has all successfully grown on food waste hydrolysates showing high exponential growth rate and biomass production rich in proteins, lipids, carbohydrates, and fatty acids. Multiple techniques have been implemented for the extraction of food wastes to be incorporate into the bioplastic production.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wai Hong Leong
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Man Kee Lam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Hui Suan Ng
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudi 229, Bandung 40154, West Java, Indonesia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
62
|
Poulhazan A, Dickwella Widanage MC, Muszyński A, Arnold AA, Warschawski DE, Azadi P, Marcotte I, Wang T. Identification and Quantification of Glycans in Whole Cells: Architecture of Microalgal Polysaccharides Described by Solid-State Nuclear Magnetic Resonance. J Am Chem Soc 2021; 143:19374-19388. [PMID: 34735142 PMCID: PMC8630702 DOI: 10.1021/jacs.1c07429] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 12/15/2022]
Abstract
Microalgae are photosynthetic organisms widely distributed in nature and serve as a sustainable source of bioproducts. Their carbohydrate components are also promising candidates for bioenergy production and bioremediation, but the structural characterization of these heterogeneous polymers in cells remains a formidable problem. Here we present a widely applicable protocol for identifying and quantifying the glycan content using magic-angle-spinning (MAS) solid-state NMR (ssNMR) spectroscopy, with validation from glycosyl linkage and composition analysis deduced from mass-spectrometry (MS). Two-dimensional 13C-13C correlation ssNMR spectra of a uniformly 13C-labeled green microalga Parachlorella beijerinckii reveal that starch is the most abundant polysaccharide in a naturally cellulose-deficient strain, and this polymer adopts a well-organized and highly rigid structure in the cell. Some xyloses are present in both the mobile and rigid domains of the cell wall, with their chemical shifts partially aligned with the flat-ribbon 2-fold xylan identified in plants. Surprisingly, most other carbohydrates are largely mobile, regardless of their distribution in glycolipids or cell walls. These structural insights correlate with the high digestibility of this cellulose-deficient strain, and the in-cell ssNMR methods will facilitate the investigations of other economically important algae species.
Collapse
Affiliation(s)
- Alexandre Poulhazan
- Department
of Chemistry, University of Quebec at Montreal, Montreal H2X 2J6, Canada
| | | | - Artur Muszyński
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Alexandre A. Arnold
- Department
of Chemistry, University of Quebec at Montreal, Montreal H2X 2J6, Canada
| | - Dror E. Warschawski
- Laboratoire
des Biomolécules, LBM, CNRS UMR 7203,
Sorbonne Université, École Normale Supérieure,
PSL University, 75005 Paris, France
| | - Parastoo Azadi
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Isabelle Marcotte
- Department
of Chemistry, University of Quebec at Montreal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
63
|
Ali S, Paul Peter A, Chew KW, Munawaroh HSH, Show PL. Resource recovery from industrial effluents through the cultivation of microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 337:125461. [PMID: 34198241 DOI: 10.1016/j.biortech.2021.125461] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Industrial effluents such as pharmaceutical residues, pesticides, dyes, and metal processes holds abundant value-added products (VAPs), where its recovery has become essential. The purpose of such recovery is for sustainable treatment, which is an approach that considers the economic, social, and environmental aspects. Microalgae with its potential in the recovery process from effluents, can reduce energy usage of waste management strategies and regenerate nutrients such as carbon, phosphorus, and nitrogen. Microalgae cultures offer the use of inorganic materials by microalgae for their growth and the help of bacteria to produce biomass, thus, resulting in the absence of secondary emissions due to its ability to eliminate volatile organic compounds. Moreover, recovered bioactive compounds are transformed into bioethanol, bio-fertilizers, biopolymer, health supplements and animal feed. Therefore, it is significant to focus on an economical and efficient utilization of microalgae in recovering nutrients that can be further used in various commercial applications.
Collapse
Affiliation(s)
- Shazia Ali
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Angela Paul Peter
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
64
|
Starch Rich Chlorella vulgaris: High-Throughput Screening and Up-Scale for Tailored Biomass Production. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of microalgal starch has been studied in biorefinery frameworks to produce bioethanol or bioplastics, however, these products are currently not economically viable. Using starch-rich biomass as an ingredient in food applications is a novel way to create more value while expanding the product portfolio of the microalgal industry. Optimization of starch production in the food-approved species Chlorella vulgaris was the main objective of this study. High-throughput screening of biomass composition in response to multiple stressors was performed with FTIR spectroscopy. Nitrogen starvation was identified as an important factor for starch accumulation. Moreover, further studies were performed to assess the role of light distribution, investigating the role of photon supply rates in flat panel photobioreactors. Starch-rich biomass with up to 30% starch was achieved in cultures with low inoculation density (0.1 g L−1) and high irradiation (1800 µmol m−2 s−1). A final large-scale experiment was performed in 25 L tubular reactors, achieving a maximum of 44% starch in the biomass after 12 h in nitrogen starved conditions.
Collapse
|
65
|
Khoo KS, Ho LY, Lim HR, Leong HY, Chew KW. Plastic waste associated with the COVID-19 pandemic: Crisis or opportunity? JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126108. [PMID: 34020352 PMCID: PMC9759681 DOI: 10.1016/j.jhazmat.2021.126108] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 05/12/2023]
Abstract
Coronavirus Diseases 2019 (COVID-19) pandemic has a huge impact on the plastic waste management in many countries due to the sudden surge of medical waste which has led to a global waste management crisis. Improper management of plastic waste may lead to various negative impacts on the environment, animals, and human health. However, adopting proper waste management and the right technologies, looking in a different perception of the current crisis would be an opportunity. About 40% of the plastic waste ended up in landfill, 25% incinerated, 16% recycled and the remaining 19% are leaked into the environment. The increase of plastic wastes and demand of plastic markets serve as a good economic indicator for investor and government initiative to invest in technologies that converts plastic waste into value-added product such as fuel and construction materials. This will close the loop of the life cycle of plastic waste by achieving a sustainable circular economy. This review paper will provide insight of the state of plastic waste before and during the COVID-19 pandemic. The treatment pathway of plastic waste such as sterilisation technology, incineration, and alternative technologies available in converting plastic waste into value-added product were reviewed.
Collapse
Affiliation(s)
- Kuan Shiong Khoo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Lih Yiing Ho
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Hui Yi Leong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| |
Collapse
|
66
|
Madadi R, Maljaee H, Serafim LS, Ventura SPM. Microalgae as Contributors to Produce Biopolymers. Mar Drugs 2021; 19:md19080466. [PMID: 34436305 PMCID: PMC8398342 DOI: 10.3390/md19080466] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Biopolymers are very favorable materials produced by living organisms, with interesting properties such as biodegradability, renewability, and biocompatibility. Biopolymers have been recently considered to compete with fossil-based polymeric materials, which rase several environmental concerns. Biobased plastics are receiving growing interest for many applications including electronics, medical devices, food packaging, and energy. Biopolymers can be produced from biological sources such as plants, animals, agricultural wastes, and microbes. Studies suggest that microalgae and cyanobacteria are two of the promising sources of polyhydroxyalkanoates (PHAs), cellulose, carbohydrates (particularly starch), and proteins, as the major components of microalgae (and of certain cyanobacteria) for producing bioplastics. This review aims to summarize the potential of microalgal PHAs, polysaccharides, and proteins for bioplastic production. The findings of this review give insight into current knowledge and future direction in microalgal-based bioplastic production considering a circular economy approach. The current review is divided into three main topics, namely (i) the analysis of the main types and properties of bioplastic monomers, blends, and composites; (ii) the cultivation process to optimize the microalgae growth and accumulation of important biobased compounds to produce bioplastics; and (iii) a critical analysis of the future perspectives on the field.
Collapse
Affiliation(s)
- Rozita Madadi
- Department of Agricultural Biotechnology, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran;
| | - Hamid Maljaee
- CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (H.M.); (L.S.S.)
| | - Luísa S. Serafim
- CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (H.M.); (L.S.S.)
- Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sónia P. M. Ventura
- CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (H.M.); (L.S.S.)
- Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
67
|
Sarma S, Sharma S, Rudakiya D, Upadhyay J, Rathod V, Patel A, Narra M. Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery. 3 Biotech 2021; 11:378. [PMID: 34367870 DOI: 10.1007/s13205-021-02911-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022] Open
Abstract
The need for alternative source of fuel has demanded the cultivation of 3rd generation feedstock which includes microalgae, seaweed and cyanobacteria. These phototrophic organisms are unique in a sense that they utilise natural sources like sunlight, water and CO2 for their growth and metabolism thereby producing diverse products that can be processed to produce biofuel, biochemical, nutraceuticals, feed, biofertilizer and other value added products. But due to low biomass productivity and high harvesting cost, microalgae-based production have not received much attention. Therefore, this review provides the state of the art of the microalgae based biorefinery approach to define an economical and sustainable process. The three major segments that need to be considered for economic microalgae biorefinery is low cost nutrient source, efficient harvesting methods and production of by-products with high market value. This review has outlined the use of various wastewater as nutrient source for simultaneous biomass production and bioremediation. Further, it has highlighted the common harvesting methods used for microalgae and also described various products from both raw biomass and delipidified microalgae residues in order to establish a sustainable, economical microalgae biorefinery with a touch of circular bioeconomy. This review has also discussed various challenges to be considered followed by a techno-economic analysis of the microalgae based biorefinery model.
Collapse
Affiliation(s)
- Shyamali Sarma
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Shaishav Sharma
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Darshan Rudakiya
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Jinal Upadhyay
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Vinod Rathod
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Aesha Patel
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Madhuri Narra
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| |
Collapse
|
68
|
|
69
|
Ehnert S, Seehase J, Müller-Renno C, Hannig M, Ziegler C. Simultaneous quantification of total carbohydrate and protein amounts from aqueous solutions by the sulfuric acid ultraviolet absorption method (SA-UV method). Anal Chim Acta 2021; 1174:338712. [PMID: 34247739 DOI: 10.1016/j.aca.2021.338712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Based on the sulfuric acid-ultraviolet assay (SA-UV, developed by Albalasmeh et al., 2013), we have further expanded this method for the simultaneous quantification of saccharides (carbohydrates) and proteins by ultraviolet spectrophotometry. The absorbance of saccharides depends on the formation of furfurals by dehydration in the presence of concentrated sulfuric acid, whereas proteins are unaffected and can be quantified by UV active peptide bonds and aromatic amino acid residues. In saccharide/protein mixtures the SA-UV assay offers a good alternative and substitutes the need for two different methods, like the phenol-sulfuric acid (PSA, developed by DuBois et al., 1951) and bicinchoninic acid (BCA, developed by Smith et al., 1985) assays. For the development of this method, we used glucose and BSA as model substrates and performed a method validation in terms of linearity, LOD, LOQ, accuracy, and precision. Simultaneous quantification in glucose/BSA mixtures is possible down to 20 mg/L from 30 μL sample volumes, and even low content mixtures with concentrations down to 2 mg/L can appropriately be quantified from higher volumes by an evaporation technique.
Collapse
Affiliation(s)
- Swen Ehnert
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jürgen Seehase
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Christine Müller-Renno
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, 66421 Homburg, Germany
| | - Christiane Ziegler
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
70
|
Biologically Derived Gels for the Cleaning of Historical and Artistic Metal Heritage. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083405] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the general global rise of attention and research to seek greener attitudes, the field of cultural heritage (CH) makes no exception. In the last decades, an increasing number of sustainable and biologically based solutions have been proposed for the protection and care of artworks. Additionally, the safety of the target artwork and the operator must be kept as core goals. Within this scenario, new products and treatments should be explored and implemented in the common conservation praxes. Therefore, this review addressing metal heritage is aimed to report biologically derived gel formulations already proposed for this specific area as reliable tools for cleaning. Promising bio-gel-based protocols, still to be implemented in metal conservation, are also presented to promote their investigation by stakeholders in metal conservation. After an opening overview on the common practices for cleaning metallic surfaces in CH, the focus will be moved onto the potentialities of gel-alternatives and in particular of ones with a biological origin. In more detail, we displayed water-gels (i.e., hydrogels) and solvent-gels (i.e., organogels) together with particular attention to bio-solvents. The discussion is closed in light of the state-of-the-art and future perspectives.
Collapse
|
71
|
Devadas VV, Khoo KS, Chia WY, Chew KW, Munawaroh HSH, Lam MK, Lim JW, Ho YC, Lee KT, Show PL. Algae biopolymer towards sustainable circular economy. BIORESOURCE TECHNOLOGY 2021; 325:124702. [PMID: 33487515 DOI: 10.1016/j.biortech.2021.124702] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 05/11/2023]
Abstract
The accumulation of conventional petroleum-based polymers has increased exponentially over the years. Therefore, algae-based biopolymer has gained interest among researchers as one of the alternative approaches in achieving a sustainable circular economy around the world. The benefits of microalgae biopolymer over other feedstock is its autotrophic complex to reduce the greenhouse gases emission, rapid growing ability with flexibility in diverse environments and its ability to compost that gives greenhouse gas credits. In contrast, this review provides a comprehensive understanding of algae-based biopolymer in the evaluation of microalgae strains, bioplastic characterization and bioplastic blending technologies. The future prospects and challenges on the algae circular bioeconomy which includes the challenges faced in circular economy, issues regard to the scale-up and operating cost of microalgae cultivation and the life cycle assessment on algal-based biopolymer were highlighted. The aim of this review is to provide insights of algae-based biopolymer towards a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Vishno Vardhan Devadas
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Man-Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Jun-Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, Nibong Tebal 14300, Pulau Pinang, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
72
|
Prospects of Microalgae for Biomaterial Production and Environmental Applications at Biorefineries. SUSTAINABILITY 2021. [DOI: 10.3390/su13063063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microalgae are increasingly viewed as renewable biological resources for a wide range of chemical compounds that can be used as or transformed into biomaterials through biorefining to foster the bioeconomy of the future. Besides the well-established biofuel potential of microalgae, key microalgal bioactive compounds, such as lipids, proteins, polysaccharides, pigments, vitamins, and polyphenols, possess a wide range of biomedical and nutritional attributes. Hence, microalgae can find value-added applications in the nutraceutical, pharmaceutical, cosmetics, personal care, animal food, and agricultural industries. Microalgal biomass can be processed into biomaterials for use in dyes, paints, bioplastics, biopolymers, and nanoparticles, or as hydrochar and biochar in solid fuel cells and soil amendments. Equally important is the use of microalgae in environmental applications, where they can serve in heavy metal bioremediation, wastewater treatment, and carbon sequestration thanks to their nutrient uptake and adsorptive properties. The present article provides a comprehensive review of microalgae specifically focused on biomaterial production and environmental applications in an effort to assess their current status and spur further deployment into the commercial arena.
Collapse
|
73
|
Sustainable Production of Reclaimed Water by Constructed Wetlands for Combined Irrigation and Microalgae Cultivation Applications. HYDROLOGY 2021. [DOI: 10.3390/hydrology8010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Considering the increasing pressure on freshwater resources due to the constant increase in water consumption and insufficient wastewater control and treatment, recovering wastewater is a path to overcoming water scarcity. The present work describes the potential of reusing treated wastewater (reclaimed water) for irrigation and production of microalgae biomass in an integrated way, through experimental evaluation of plant and microalgae growth, and creation of an application model. First, two parallel experiments were conducted to evaluate the use of reclaimed water produced by a constructed wetland filled with a mix of solid waste: the irrigation of a set of small pots filled with soil and planted with Tagetes patula L., and the cultivation of microalgae Chlorella sp. and a mixed microalgae population with predominant species of the genus Scenedesmus sp. in shaken flasks and tubular bubble column photobioreactors. Results indicated no negative effects of using the reclaimed water on the irrigated plants and in the cultivated microalgae. The growth indicators of plants irrigated with reclaimed water were not significantly different from plants irrigated with fertilized water. The growth indicators of the microalgae cultivated with reclaimed water are within the range of published data. Second, to apply the results to a case study, the seasonal variability of irrigation needs in an academic campus was used to propose a conceptual model for wastewater recovery. The simulation results of the model point to a positive combination of using reclaimed water for the irrigation of green spaces and microalgae production, supported by a water storage strategy. Water abstraction for irrigation purposes can be reduced by 89%, and 2074 kg dry weight microalgae biomass can be produced annually. Besides the need for future work to optimize the model and to add economical evaluation criteria, the model shows the potential to be applied to non-academic communities in the perspective of smarter and greener cities.
Collapse
|
74
|
Improvement of Photoautotrophic Algal Biomass Production after Interrupted CO2 Supply by Urea and KH2PO4 Injection. ENERGIES 2021. [DOI: 10.3390/en14030778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microalgae-derived biomass is currently considered a sustainable feedstock for making biofuels, including biodiesel and direct combustion fuel. The photoautotrophic cultivation of microalgae using flue gas from power plants has been continuously investigated to improve the economic feasibility of microalgae processes. The utilization of waste CO2 from power plants is advantageous in reducing carbon footprints and the cost of carbon sources. Nonetheless, the sudden interruption of CO2 supply during microalgal cultivation leads to a severe reduction in biomass productivity. Herein, chemical fertilizers including urea and KH2PO4 were added to the culture medium when CO2 supply was halted. Urea (5 mM) and KH2PO4 (5 mM) were present in the culture medium in the form of CO2/NH4+ and K+/H2PO4−, respectively, preventing cell growth inhibition. The culture with urea and KH2PO4 supplementation exhibited 10.02-fold higher and 7.28-fold higher biomass and lipid productivity, respectively, compared to the culture with ambient CO2 supply due to the maintenance of a stable pH and dissolved inorganic carbon in the medium. In the mass cultivation of microalgae using flue gas from coal-fired power plants, urea and KH2PO4 were supplied while the flue gas supply was shut off. Consequently, the microalgae were grown successfully without cell death.
Collapse
|
75
|
Acquavia MA, Pascale R, Martelli G, Bondoni M, Bianco G. Natural Polymeric Materials: A Solution to Plastic Pollution from the Agro-Food Sector. Polymers (Basel) 2021; 13:polym13010158. [PMID: 33406618 PMCID: PMC7796273 DOI: 10.3390/polym13010158] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Conventional petroleum-derived plastics represent a serious problem for global pollution because, when discarded in the environment, are believed to remain for hundreds of years. In order to reduce dependence on fossil resources, bioplastic materials are being proposed as safer alternatives. Bioplastics are bio-based and/or biodegradable materials, typically derived from renewable sources. Food waste as feedstock represents one of the recent applications in the research field of bioplastics production. To date, several food wastes have been used as raw materials for the production of bioplastics, including mostly fruit and vegetable wastes. The conversion of fruit and vegetable wastes into biomaterials could occur through simple or more complex processes. In some cases, biopolymers extracted from raw biomass are directly manufactured; on the other hand, the extracted biopolymers could be reinforced or used as reinforcing agents and/or natural fillers in order to obtain biocomposites. The present review covers available results on the application of methods used in the last 10 years for the design of biomaterials obtained from formulations made up with both fruits and vegetables by-products. Particular attention will be addressed to the waste pre-treatment, to the bioplastic formulation and to its processing, as well as to the mechanical and physical properties of the obtained materials.
Collapse
Affiliation(s)
- Maria Assunta Acquavia
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell’Ateneo Lucano, 10-85100 Potenza, Italy; (M.A.A.); (G.M.)
- ALMAGISI s.r.l Corso Italia, 27-39100 Bolzano, Italy;
| | | | - Giuseppe Martelli
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell’Ateneo Lucano, 10-85100 Potenza, Italy; (M.A.A.); (G.M.)
| | | | - Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell’Ateneo Lucano, 10-85100 Potenza, Italy; (M.A.A.); (G.M.)
- Correspondence: ; Tel.: +39-0971205451
| |
Collapse
|
76
|
Chia WY, Ying Tang DY, Khoo KS, Kay Lup AN, Chew KW. Nature's fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 4:100065. [PMID: 36157709 PMCID: PMC9488055 DOI: 10.1016/j.ese.2020.100065] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 05/11/2023]
Abstract
The increased global demand for plastic materials has led to severe plastic waste pollution, particularly to the marine environment. This critical issue affects both sea life and human beings since microplastics can enter the food chain and cause several health impacts. Plastic recycling, chemical treatments, incineration and landfill are apparently not the optimum solutions for reducing plastic pollution. Hence, this review presents two newly identified environmentally friendly approaches, plastic biodegradation and bioplastic production using algae, to solve the increased global plastic waste. Algae, particularly microalgae, can degrade the plastic materials through the toxins systems or enzymes synthesized by microalgae itself while using the plastic polymers as carbon sources. Utilizing algae for plastic biodegradation has been critically reviewed in this paper to demonstrate the mechanism and how microplastics affect the algae. On the other hand, algae-derived bioplastics have identical properties and characteristics as petroleum-based plastics, while remarkably being biodegradable in nature. This review provides new insights into different methods of producing algae-based bioplastics (e.g., blending with other materials and genetic engineering), followed by the discussion on the challenges and further research direction to increase their commercial feasibility.
Collapse
Affiliation(s)
- Wen Yi Chia
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Andrew Ng Kay Lup
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- Corresponding author. School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia.
| |
Collapse
|