51
|
Figueiredo Macedo de Lima J, Aguiar Jordão Mainardi MDC, Puppin-Rontani RM, Pereira Rodrigues-Filho U, Suzy Liporoni PC, Calegaro ML, Rischka K, Baggio Aguiar FH. Bioinspired catechol chemistry for dentin remineralization: A new approach for the treatment of dentin hypersensitivity. Dent Mater 2020; 36:501-511. [DOI: 10.1016/j.dental.2020.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 11/25/2022]
|
52
|
Tomaz PLS, Sousa LAD, Aguiar KFD, Oliveira TDS, Matochek MHM, Polassi MR, D'Alpino PHP. Effects of 1450-ppm Fluoride-containing Toothpastes Associated with Boosters on the Enamel Remineralization and Surface Roughness after Cariogenic Challenge. Eur J Dent 2020; 14:161-170. [PMID: 32168543 PMCID: PMC7069749 DOI: 10.1055/s-0040-1705072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES This in vitro study investigated the remineralization potential of 1450 ppm, fluoride-containing toothpastes containing different active remineralization agents after cariogenic challenge with pH cycling. The enamel surface roughness after brushing and the chemical and physical characteristics of the toothpastes tested were also analyzed. MATERIALS AND METHODS Fifty-six bovine enamel blocks were obtained (4 × 4 × 6 mm) and divided into three thirds: intact (untreated), demineralized (artificial caries lesion), and treated (caries lesion, pH cycling, and brushing with dentifrices). Seven commercially available fluoride toothpastes (1450 ppm F): three with anti-erosion claims (Candida Professional [CPP], Colgate Total 12 Daily Repair [CDR], Regenerate Enamel Science [RES]); three with desensitizing claims (Bianco Pro Clinical [BPP], Elmex Sensitive [ESS], and Regenerador Diário DentalClean [RDC]); and one standard regular-fluoride toothpaste Colgate Total 12 (CTT) were selected. During pH cycling (demineralization 6 h/remineralization 18 h) for 7 days, the treated third was brushed with the different dentifrices for 10 minutes in a brushing machine before immersion in a remineralizing solution. The Knoop hardness (25 g, 10 second of the surface, and longitudinal section were then evaluated at eight depths (10 to 330 μm). Mean and percentage of surface hardness recovery (% SHR) were calculated. Surface enamel roughness (Ra) was also evaluated. The pH, %weight of particles, zeta potential, and polydispersity index of toothpaste slurries were also evaluated. STATISTICAL ANALYSIS Data were statistically analyzed (ANOVA/Tukey, 5%). RESULTS The %SHR of CPP was significantly lower than the others (p < 0.05). The enamel subsurface was more effectively remineralized when treated with BPP, ESS, and RDC. The surface roughness was higher when the demineralized third was treated with CTT, RDC, and RES and after the cariogenic challenge (p < 0.05). For some of the products tested, there was no relationship between surface remineralization and subsurface remineralization. Although toothpastes CPP and RDC present the lowest %SHR means, both products effectively remineralize within the subsurface carious lesion. Regression analysis demonstrated no strong correlations of the enamel surface roughness with the chemical and physical parameters. CONCLUSIONS Most but not all the fluoride toothpastes were able to remineralize the enamel surface. No specific chemical or physical parameter alone correlated with the surface roughness.
Collapse
Affiliation(s)
- Pedro Luiz Santos Tomaz
- Biotechnology and Innovation in Health Program, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, São Paulo, Brazil
| | - Letícia Almeida de Sousa
- Biotechnology and Innovation in Health Program, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, São Paulo, Brazil
| | - Kayanne Freire de Aguiar
- Biotechnology and Innovation in Health Program, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, São Paulo, Brazil
| | - Thales de Sá Oliveira
- Biotechnology and Innovation in Health Program, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, São Paulo, Brazil
| | - Marcelo Henrick Maia Matochek
- Biotechnology and Innovation in Health Program, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, São Paulo, Brazil
| | - Mackeler Ramos Polassi
- Biotechnology and Innovation in Health Program, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, São Paulo, Brazil
| | | |
Collapse
|
53
|
Kunert M, Lukomska-Szymanska M. Bio-Inductive Materials in Direct and Indirect Pulp Capping-A Review Article. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1204. [PMID: 32155997 PMCID: PMC7085085 DOI: 10.3390/ma13051204] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022]
Abstract
The article is aimed at analyzing the available research and comparing the properties of bio-inductive materials in direct and indirect pulp capping procedures. The properties and clinical performances of four calcium-silicate cements (ProRoot MTA, MTA Angelus, RetroMTA, Biodentine), a light-cured calcium silicate-based material (TheraCal LC) and an enhanced resin-modified glass-ionomer (ACTIVA BioACTIVE) are widely discussed. A correlation of in vitro and in vivo data revealed that, currently, the most validated material for pulp capping procedures is still MTA. Despite Biodentine's superiority in relatively easier manipulation, competitive pricing and predictable clinical outcome, more long-term clinical studies on Biodentine as a pulp capping agent are needed. According to available research, there is also insufficient evidence to support the use of TheraCal LC or ACTIVA BioACTIVE BASE/LINER in vital pulp therapy.
Collapse
|
54
|
Mukherjee K, Visakan G, Phark JH, Moradian-Oldak J. Enhancing Collagen Mineralization with Amelogenin Peptide: Towards the Restoration of Dentin. ACS Biomater Sci Eng 2020; 6:2251-2262. [PMID: 33313393 DOI: 10.1021/acsbiomaterials.9b01774] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mammalian teeth primarily consist of two distinct calcified tissues, enamel and dentin, that are intricately integrated by a complex and critical structure, the dentin-enamel junction (DEJ). Loss of enamel exposes the underlying dentin, increasing the risk of several irreversible dental diseases. This paper highlights the significance of utilizing the functional domains of a major enamel matrix protein, amelogenin, intrinsic to tooth enamel and the DEJ interface, to rationally design smaller bioinspired peptides for regeneration of tooth microstructures. Using this strategy, we designed a synthetic peptide, P26, that demonstrates a remarkable dual mineralization potential to restore incipient enamel decay and mineralization defects localized in peripheral dentin below the DEJ. As a proof of principle, we demonstrate that interaction between P26 and collagen prompts peptide self-assembly, followed by mineralization of collagen fibrils in vitro. P26-mediated nucleation of hydroxyapatite (HAP) crystals on demineralized dentin in situ significantly facilitates the recovery of mineral density and effectively restores the biomechanical properties of dentin to near-native levels, suggesting that P26-based therapy has promising applications for treating diverse mineralized tissue defects in the tooth.
Collapse
Affiliation(s)
- Kaushik Mukherjee
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles 90033, United States
| | - Gayathri Visakan
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles 90033, United States
| | - Jin-Ho Phark
- Herman Ostrow School of Dentistry, 925 W 34 St., University of Southern California, Los Angeles 90089, United States
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles 90033, United States
| |
Collapse
|
55
|
Wu Q, Mei ML, Wu X, Shi S, Xu Y, Chu CH, Chen Y. Remineralising effect of 45S5 bioactive glass on artificial caries in dentine. BMC Oral Health 2020; 20:49. [PMID: 32046691 PMCID: PMC7014937 DOI: 10.1186/s12903-020-1038-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/06/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND This study investigated the remineralisation effect of bioactive glass on artificial dentine caries. METHODS Dentine disks with artificial caries were treated with bioactive glass (group BAG), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) (group CPP-ACP), sodium fluoride glycerol (group F) or deionized water (group W). All disks were subjected to pH cycling for 28 days subsequently. The topography, microhardness and remineralisation depth of the dentine carious lesion were assessed by atomic force microscopy (AFM), microhardness testing and confocal laser scanning microscope (CLSM), respectively. RESULTS AFM images indicated mineral depositions on the surface of the carious lesion in group BAG. The changes of Vickers hardness number (ΔVHN, mean ± SD) after pH cycling were 9.67 ± 3.60, 6.06 ± 3.83, 5.00 ± 2.19 and - 1.90 ± 2.09 (p < 0.001) in group BAG, group CPP-ACP, group F and group W, respectively. The remineralisation depth (mean ± SD) of the carious lesion in group BAG, group CPP-ACP, group F and group W were 165 ± 11 μm, 111 ± 11 μm, 75 ± 6 μm and 0 μm (p < 0.001), respectively. CONCLUSION Bioactive glass possessed a promising remineralisation effect on artificial dentine caries and could be a therapeutic choice for caries management.
Collapse
Affiliation(s)
- Qiong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Polyclinics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - May Lei Mei
- Faculty of Dentistry, University of Otago, Dunedin, 9054, New Zealand.
| | - Xin Wu
- Department of Stomatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shuya Shi
- Department of Stomatology, Affiliated hospital of Jiangnan University, Wuxi, China
| | - Yuting Xu
- Stomatological Hospital Affiliated to Soochow University, Suzhou, China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yaming Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China. .,Department of Polyclinics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
56
|
BRAGA RR, FRONZA BM. The use of bioactive particles and biomimetic analogues for increasing the longevity of resin-dentin interfaces: A literature review. Dent Mater J 2020; 39:62-68. [DOI: 10.4012/dmj.2019-293] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Roberto Ruggiero BRAGA
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo
| | - Bruna Marin FRONZA
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo
| |
Collapse
|
57
|
Xie Y, He E, Cao Z, Ou Q, Wang Y. Effect of polyvinylphosphonic acid on resin-dentin bonds and the cytotoxicity of mouse dental papilla cell-23. J Prosthet Dent 2019; 122:492.e1-492.e6. [PMID: 31623837 DOI: 10.1016/j.prosdent.2019.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 11/29/2022]
Abstract
STATEMENT OF PROBLEM Polyvinylphosphonic acid (PVPA) could be used as a biomimetic remineralization analog and a matrix metalloproteinases (MMPs) inhibitor. However, studies are lacking regarding the performance of PVPA in dental bonding systems for maintaining the durability of the resin-dentin bond. PURPOSE The purpose of this in vitro study was to investigate the effect of PVPA on the durability of resin-dentin bonds and the viability of mouse dental papilla cell-23 (MDPC-23). The mechanical properties of resin-dentin interfaces during long-term storage were analyzed, and the potential application of PVPA as a biomimetic remineralization analog in adhesive dentistry was evaluated. MATERIAL AND METHODS Seventy-five extracted noncarious human third molars were collected and randomly divided into 5 groups, and then the microtensile bond strength (μTBS) data and scanning electron microscope (SEM) images were used to evaluate the preservation condition of resin-dentin bonds after 1 day, 6 months, and 1 year of storage. The cytotoxicity of PVPA was detected by cell proliferation assay and cell apoptosis assay. RESULTS Compared with the control and chlorhexidine (CHX) groups, the combined group (treated with both 200-μg/mL PVPA and biomimetic remineralization) had excellent bond durability. The exposed collagen fibril from the PVPA-treated groups (included 200-μg/mL and 500-μg/mL PVPA groups and a combined group) still showed integrity after 1 year of storage when compared with the control group. PVPA up to 500 μg/mL showed no cytotoxicity to MDPC-23 and did not inhibit cell growth. CONCLUSIONS This study offered evidence that PVPA did not result in cytotoxicity at low concentrations as an MMP inhibitor and a biomimetic remineralization analog. In addition, the application of PVPA improved bond strength and preserved collagen integrity after 1 year of in vitro storage.
Collapse
Affiliation(s)
- Yunyi Xie
- Graduate student, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Enbao He
- Resident Physician, Department of Stomatology, Guangzhou First People's Hospital, Guangzhou, PR China
| | - Zeyuan Cao
- Graduate student, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Qianmin Ou
- Graduate student, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yan Wang
- Professor, Oral Biology and Medicine, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| |
Collapse
|
58
|
Guentsch A, Fahmy MD, Wehrle C, Nietzsche S, Popp J, Watts DC, Kranz S, Krafft C, Sigusch BW. Effect of biomimetic mineralization on enamel and dentin: A Raman and EDX analysis. Dent Mater 2019; 35:1300-1307. [PMID: 31208774 PMCID: PMC9668404 DOI: 10.1016/j.dental.2019.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the effect of an experimental biomimetic mineralization kit (BIMIN) on the chemical composition and crystallinity of caries-free enamel and dentin samples in vitro. METHODS Enamel and dentin samples from 20 human teeth (10 for enamel; 10 for dentin) were divided into a control group without treatment and test samples with BIMIN treatment. Quantitative analysis of tissue penetration of fluoride, phosphate, and calcium was performed using energy-dispersive X-ray spectroscopy (EDX). Mineralization depth was measured by Raman spectroscopy probing the symmetric valence vibration near 960cm-1 as a marker for crystallinity. EDX data was statistically analyzed using a paired t-test and Raman data was analyzed using the Student's t-test. RESULTS EDX analysis demonstrated a penetration depth of fluoride of 4.10±3.32μm in enamel and 4.31±2.67μm in dentin. Calcium infiltrated into enamel 2.65±0.64μm and into dentin 5.58±1.63μm, while the penetration depths for phosphate were 4.83±2.81μm for enamel and 6.75±3.25μm for dentin. Further, up to 25μm of a newly mineralized enamel-like layer was observed on the surface of the samples. Raman concentration curves demonstrated an increased degree of mineralization up to 5-10μm into the dentin and enamel samples. SIGNIFICANCE Biomimetic mineralization of enamel and dentin samples resulted in an increase of mineralization and a penetration of fluoride into enamel and dentin.
Collapse
Affiliation(s)
- Arndt Guentsch
- Marquette University School of Dentistry, Milwaukee, WI, USA; Clinic of Conservative Dentistry and Periodontology, Center of Dental Medicine, Jena University Hospital, Friedrich-Schiller University Jena, Germany.
| | - Mina D Fahmy
- University of Tennessee Medical Center, Department of Oral and Maxillofacial Surgery, Knoxville, TN, USA
| | - Constanze Wehrle
- Clinic of Conservative Dentistry and Periodontology, Center of Dental Medicine, Jena University Hospital, Friedrich-Schiller University Jena, Germany
| | - Sandor Nietzsche
- Center of Electron Microscopy, Friedrich-Schiller University Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Germany
| | - David C Watts
- School of Dentistry and Photon Science Institute, University of Manchester, Manchester, UK
| | - Stefan Kranz
- Clinic of Conservative Dentistry and Periodontology, Center of Dental Medicine, Jena University Hospital, Friedrich-Schiller University Jena, Germany
| | | | - Bernd W Sigusch
- Clinic of Conservative Dentistry and Periodontology, Center of Dental Medicine, Jena University Hospital, Friedrich-Schiller University Jena, Germany
| |
Collapse
|
59
|
El Gezawi M, Wölfle UC, Haridy R, Fliefel R, Kaisarly D. Remineralization, Regeneration, and Repair of Natural Tooth Structure: Influences on the Future of Restorative Dentistry Practice. ACS Biomater Sci Eng 2019; 5:4899-4919. [PMID: 33455239 DOI: 10.1021/acsbiomaterials.9b00591] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, the principal strategy for the treatment of carious defects involves cavity preparations followed by the restoration of natural tooth structure with a synthetic material of inferior biomechanical and esthetic qualities and with questionable long-term clinical reliability of the interfacial bonds. Consequently, prevention and minimally invasive dentistry are considered basic approaches for the preservation of sound tooth structure. Moreover, conventional periodontal therapies do not always ensure predictable outcomes or completely restore the integrity of the periodontal ligament complex that has been lost due to periodontitis. Much effort and comprehensive research have been undertaken to mimic the natural development and biomineralization of teeth to regenerate and repair natural hard dental tissues and restore the integrity of the periodontium. Regeneration of the dentin-pulp tissue has faced several challenges, starting with the basic concerns of clinical applicability. Recent technologies and multidisciplinary approaches in tissue engineering and nanotechnology, as well as the use of modern strategies for stem cell recruitment, synthesis of effective biodegradable scaffolds, molecular signaling, gene therapy, and 3D bioprinting, have resulted in impressive outcomes that may revolutionize the practice of restorative dentistry. This Review covers the current approaches and technologies for remineralization, regeneration, and repair of natural tooth structure.
Collapse
Affiliation(s)
- Moataz El Gezawi
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Uta Christine Wölfle
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Rasha Haridy
- Department of Clinical Dental Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.,Department of Conservative Dentistry, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| | - Riham Fliefel
- Experimental Surgery and Regenerative Medicine (ExperiMed), University Hospital, LMU Munich, 80336 Munich, Germany.,Department of Oral and Maxillofacial Surgery, University Hospital, LMU Munich, 80337 Munich, Germany.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
| | - Dalia Kaisarly
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany.,Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| |
Collapse
|
60
|
Tao S, He L, Xu HHK, Weir MD, Fan M, Yu Z, Zhang M, Zhou X, Liang K, Li J. Dentin remineralization via adhesive containing amorphous calcium phosphate nanoparticles in a biofilm-challenged environment. J Dent 2019; 89:103193. [PMID: 31476321 DOI: 10.1016/j.jdent.2019.103193] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The remineralization of dentin at a bonded interface would help to strengthen the bonded interface and inhibit secondary caries, and would prolong the longevity of restoration. The aim of this study was to investigate the remineralization of demineralized human dentin in a dental biofilm environment via an adhesive containing nanoparticles of amorphous calcium phosphate (NACP). METHODS Dentin demineralization was promoted by subjecting samples to a Streptococcus mutans acidic biofilm for 24 h. Samples were divided into a control group, a commercial fluoride-releasing adhesive group, and an NACP adhesive group. All samples were subjected to a remineralization protocol consisting of 4-h exposure per 24-h period in brain heart infusion broth plus 1% sucrose (BHIS) followed by immersion in artificial saliva for the remaining period. The pH of BHIS after 4-h immersion was measured every other day. After 10 days, the biofilm was assessed for colony-forming unit (CFU) count, lactic acid production, live/dead staining, and calcium and phosphate content. The mineral changes in the demineralized dentin samples were analyzed by transverse microradiography, hardness measurement, X-ray diffraction characterization, and scanning electron microscopy. RESULTS The NACP adhesive achieved acid neutralization, decreased biofilm CFU count, decreased biofilm lactic acid production, and increased biofilm calcium and phosphate content (P < 0.05). The NACP adhesive group had higher remineralization value than the commercial fluoride-releasing adhesive group (P < 0.05). CONCLUSIONS The NACP adhesive was effective in remineralizing dentin lesions in a biofilm model. Its ability to protect bond interface, inhibit secondary caries, and prolong the longevity of restoration is promising. CLINICAL SIGNIFICANCE Using NACP-containing adhesives could be recommended because of the protective ability of its hybrid layer even under a biofilm-challenged environment.
Collapse
Affiliation(s)
- Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Menglin Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhaohan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
61
|
He L, Hao Y, Zhen L, Liu H, Shao M, Xu X, Liang K, Gao Y, Yuan H, Li J, Li J, Cheng L, van Loveren C. Biomineralization of dentin. J Struct Biol 2019; 207:115-122. [PMID: 31153927 DOI: 10.1016/j.jsb.2019.05.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 02/08/2023]
Abstract
A single biomineralization of demineralized dentin is significant to restore the demineralized dentin due to dental caries or erosion. In recent years, meaningful progress has been made regarding the mechanisms involved in the biomineralization of dentin collagen. Concepts changing from the classical ion-based crystallization to non-classical particle-based crystallization, inspired a different strategy to infiltrate the demineralized dentin collagen. The remarkable discovery was the report of liquid-like amorphous calcium phosphate as nanoprecursor particles to carbonated hydroxyapatite. The non-collagenous proteins and their analogues are widely investigated, for their key role in controlling mineralization during the process of crystal nucleation and growth. The in-depth studies of the gap zone provided significant improvements in our understanding of the structure of collagen and of the intrafibrillar remineralization of collagen fibrils. The collagen is not a passive substrate as previously supposed, and the active role of guiding nanoprecursor infiltration and mediating its nucleation has been demonstrated. Furthermore, recovery of mechanical properties has been evaluated to determine the effectiveness of dentin remineralization. Finally, the problems regarding the origin formation of the calcium phosphate that is deposited in the collagen, and the exact interactions between the non-collagenous proteins, amorphous calcium phosphate and collagen are still unclear. We reviewed the importance of these findings in enriching our understanding of dentin biomineralization, while addressing certain limitations that are inherent to in vitro studies.
Collapse
Affiliation(s)
- Libang He
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Yu Hao
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Li Zhen
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Hongling Liu
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Meiying Shao
- West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Xin Xu
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Yuan Gao
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - He Yuan
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiyao Li
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Lei Cheng
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Cor van Loveren
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam 3004, 1081 LA, The Netherlands.
| |
Collapse
|
62
|
Liang K, Wang S, Tao S, Xiao S, Zhou H, Wang P, Cheng L, Zhou X, Weir MD, Oates TW, Li J, Xu HHK. Dental remineralization via poly(amido amine) and restorative materials containing calcium phosphate nanoparticles. Int J Oral Sci 2019; 11:15. [PMID: 31068570 PMCID: PMC6506538 DOI: 10.1038/s41368-019-0048-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 02/05/2023] Open
Abstract
Tooth decay is prevalent, and secondary caries causes restoration failures, both of which are related to demineralization. There is an urgent need to develop new therapeutic materials with remineralization functions. This article represents the first review on the cutting edge research of poly(amido amine) (PAMAM) in combination with nanoparticles of amorphous calcium phosphate (NACP). PAMAM was excellent nucleation template, and could absorb calcium (Ca) and phosphate (P) ions via its functional groups to activate remineralization. NACP composite and adhesive showed acid-neutralization and Ca and P ion release capabilities. PAMAM+NACP together showed synergistic effects and produced triple benefits: excellent nucleation templates, superior acid-neutralization, and ions release. Therefore, the PAMAM+NACP strategy possessed much greater remineralization capacity than using PAMAM or NACP alone. PAMAM+NACP achieved dentin remineralization even in an acidic solution without any initial Ca and P ions. Besides, the long-term remineralization capability of PAMAM+NACP was established. After prolonged fluid challenge, the immersed PAMAM with the recharged NACP still induced effective dentin mineral regeneration. Furthermore, the hardness of pre-demineralized dentin was increased back to that of healthy dentin, indicating a complete remineralization. Therefore, the novel PAMAM+NACP approach is promising to provide long-term therapeutic effects including tooth remineralization, hardness increase, and caries-inhibition capabilities.
Collapse
Affiliation(s)
- Kunneng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Suping Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA.,Department of Operative Dentistry and Endodontics & Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siying Tao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shimeng Xiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Han Zhou
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Ping Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jiyao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA. .,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. .,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
63
|
Kavrik F, Kucukyilmaz E. The effect of different ratios of nano‐sized hydroxyapatite fillers on the micro‐tensile bond strength of an adhesive resin. Microsc Res Tech 2019; 82:538-543. [DOI: 10.1002/jemt.23197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/18/2018] [Accepted: 11/14/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Fevzi Kavrik
- Faculty of Dentistry, Department of Pediatric DentistryIzmır Katip Celebi University Izmir Turkey
| | - Ebru Kucukyilmaz
- Faculty of Dentistry, Department of Pediatric DentistryIzmır Katip Celebi University Izmir Turkey
| |
Collapse
|
64
|
Shavandi A, Bekhit AEDA, Saeedi P, Izadifar Z, Bekhit AA, Khademhosseini A. Polyphenol uses in biomaterials engineering. Biomaterials 2018; 167:91-106. [PMID: 29567389 PMCID: PMC5973878 DOI: 10.1016/j.biomaterials.2018.03.018] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
Polyphenols are micronutrients obtained from diet that have been suggested to play an important role in health. The health benefits of polyphenols and their protective effects in food systems as antioxidant compounds are well known and have been extensively investigated. However, their functional roles as a "processing cofactor" in tissue engineering applications are less widely known. This review focuses on the functionality of polyphenols and their application in biomaterials. Polyphenols have been used to stabilize collagen and to improve its resistance to degradation in biological systems. Therefore, they have been proposed to improve the performance of biomedical devices used in cardiovascular systems by improving the mechanical properties of grafted heart valves, enhancing microcirculation through the relaxation of the arterial walls and improving the capillary blood flow and pressure resistance. Polyphenols have been found to stimulate bone formation, mineralization, as well as the proliferation, differentiation, and the survival of osteoblasts. These effects are brought about by the stimulatory effect of polyphenols on osteoblast cells and their protective effect against oxidative stress and inflammatory cytokines. In addition, polyphenols inhibit the differentiation of the osteoclast cells. Collectively, these actions lead to promote bone formation and to reduce bone resorption, respectively. Moreover, polyphenols can increase the cross-linking of dentine and hence its mechanical stability. Overall, polyphenols provide interesting properties that will stimulate further research in the bioengineering field.
Collapse
Affiliation(s)
- Amin Shavandi
- Department of Food Science, University of Otago, Dunedin, New Zealand.
| | | | - Pouya Saeedi
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Zohreh Izadifar
- The Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Canada
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt; Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, P.O. Box 32038, Kingdom of Bahrain
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
65
|
Cai J, Palamara JEA, Manton DJ, Burrow MF. Status and progress of treatment methods for root caries in the last decade: a literature review. Aust Dent J 2017; 63:34-54. [DOI: 10.1111/adj.12550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2017] [Indexed: 12/26/2022]
Affiliation(s)
- J Cai
- Melbourne Dental School; The University of Melbourne; Melbourne Victoria Australia
| | - JEA Palamara
- Melbourne Dental School; The University of Melbourne; Melbourne Victoria Australia
| | - DJ Manton
- Melbourne Dental School; The University of Melbourne; Melbourne Victoria Australia
| | - MF Burrow
- Melbourne Dental School; The University of Melbourne; Melbourne Victoria Australia
- Faculty of Dentistry; The University of Hong Kong; Hong Kong China
| |
Collapse
|
66
|
Alkilzy M, Tarabaih A, Santamaria RM, Splieth CH. Self-assembling Peptide P 11-4 and Fluoride for Regenerating Enamel. J Dent Res 2017; 97:148-154. [PMID: 28892645 DOI: 10.1177/0022034517730531] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine-based approaches for caries treatment focus on biomimetic remineralization of initial carious lesions as a minimal invasive therapy. In vitro, self-assembling peptide P11-4 enhances remineralization of early carious lesions. To investigate the safety and clinical efficacy of P11-4 for treatment of initial caries, a randomized controlled single-blind study was conducted on children aged >5 y with visible active early caries on erupting permanent molars. Subjects were randomized to either the test group (P11-4 + fluoride varnish) or control group (fluoride varnish alone). Caries were assessed at baseline and at 3 and 6 mo posttreatment per laser fluorescence, a visual analog scale, the International Caries Detection and Assessment System, and Nyvad caries activity criteria. Intention-to-treat analyses were performed, and safety and clinical feasibility of the treatment approaches were assessed. Compared with the control group, the test group showed clinically and statistically significant improvement in all outcomes at 3 and 6 mo. The laser fluorescence readings (odds ratio = 3.5, P = 0.015) and visual analog scale scores (odds ratio = 7.9, P < .0001) were significantly lower for the test group, and they showed regression in the International Caries Detection and Assessment System caries index (odds ratio = 5.1, P = 0.018) and conversion from active to inactive lesions according to Nyvad criteria (odds ratio = 12.2, P < 0.0001). No adverse events occurred. The biomimetic mineralization facilitated by P11-4 in combination with fluoride application is a simple, safe, and effective noninvasive treatment for early carious lesions that is superior to the presently used gold standard of fluoride alone. By regenerating enamel tissue and preventing lesion progression, this novel approach could change clinical dental practice from a restorative to a therapeutic approach. This could avoid additional loss of healthy hard tissue during invasive restorative treatments, potentially enabling longer tooth life and thereby lowering long-term health costs ( ClinicalTrials.gov NCT02724592).
Collapse
Affiliation(s)
- M Alkilzy
- 1 Department of Preventive and Paediatric Dentistry, Centre for Oral Health, University of Greifswald, Greifswald, Germany
| | - A Tarabaih
- 1 Department of Preventive and Paediatric Dentistry, Centre for Oral Health, University of Greifswald, Greifswald, Germany
| | - R M Santamaria
- 1 Department of Preventive and Paediatric Dentistry, Centre for Oral Health, University of Greifswald, Greifswald, Germany
| | - C H Splieth
- 1 Department of Preventive and Paediatric Dentistry, Centre for Oral Health, University of Greifswald, Greifswald, Germany
| |
Collapse
|
67
|
Weir MD, Ruan J, Zhang N, Chow LC, Zhang K, Chang X, Bai Y, Xu HHK. Effect of calcium phosphate nanocomposite on in vitro remineralization of human dentin lesions. Dent Mater 2017; 33:1033-1044. [PMID: 28734567 DOI: 10.1016/j.dental.2017.06.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/31/2017] [Accepted: 06/22/2017] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Secondary caries is a primary reason for dental restoration failures. The objective of this study was to investigate the remineralization of human dentin lesions in vitro via restorations using nanocomposites containing nanoparticles of amorphous calcium phosphate (NACP) or NACP and tetracalcium phosphate (TTCP) for the first time. METHODS NACP was synthesized by a spray-drying technique and incorporated into a resin consisting of ethoxylated bisphenol A dimethacrylate (EBPADMA) and pyromellitic glycerol dimethacrylate (PMGDM). After restoring the dentin lesions with nanocomposites as well as a non-releasing commercial composite control, the specimens were treated with cyclic demineralization (pH 4, 1h per day) and remineralization (pH 7, 23h per day) for 4 or 8 weeks. Calcium (Ca) and phosphate (P) ion releases from composites were measured. Dentin lesion remineralization was measured at 4 and 8 weeks by transverse microradiography (TMR). RESULTS Lowering the pH increased ion release of NACP and NACP-TTCP composites. At 56 days, the released Ca concentration in mmol/L (mean±SD; n=3) was (13.39±0.72) at pH 4, much higher than (1.19±0.06) at pH 7 (p<0.05). At 56 days, P ion concentration was (5.59±0.28) at pH 4, much higher than (0.26±0.01) at pH 7 (p<0.05). Quantitative microradiography showed typical subsurface dentin lesions prior to the cyclic demineralization/remineralization treatment, and dentin remineralization via NACP and NACP-TTCP composites after 4 and 8 weeks of treatment. At 8 weeks, NACP nanocomposite achieved dentin lesion remineralization (mean±SD; n=15) of (48.2±11.0)%, much higher than (5.0±7.2)% for dentin in commercial composite group after the same cyclic demineralization/remineralization regimen (p<0.05). SIGNIFICANCE Novel NACP-based nanocomposites were demonstrated to achieve dentin lesion remineralization for the first time. These results, coupled with acid-neutralization and good mechanical properties shown previously, indicate that the NACP-based nanocomposites are promising for restorations to inhibit caries and protect tooth structures.
Collapse
Affiliation(s)
- Michael D Weir
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jianping Ruan
- School of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ning Zhang
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Laurence C Chow
- Volpe Research Center, American Dental Association Foundation, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Ke Zhang
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Xiaofeng Chang
- School of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Hockin H K Xu
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
68
|
Bertassoni LE. Dentin on the nanoscale: Hierarchical organization, mechanical behavior and bioinspired engineering. Dent Mater 2017; 33:637-649. [PMID: 28416222 PMCID: PMC5481168 DOI: 10.1016/j.dental.2017.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/09/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Knowledge of the structural organization and mechanical properties of dentin has expanded considerably during the past two decades, especially on a nanometer scale. In this paper, we review the recent literature on the nanostructural and nanomechanical properties of dentin, with special emphasis in its hierarchical organization. METHODS We give particular attention to the recent literature concerning the structural and mechanical influence of collagen intrafibrillar and extrafibrillar mineral in healthy and remineralized tissues. The multilevel hierarchical structure of collagen, and the participation of non-collagenous proteins and proteoglycans in healthy and diseased dentin are also discussed. Furthermore, we provide a forward-looking perspective of emerging topics in biomaterials sciences, such as bioinspired materials design and fabrication, 3D bioprinting and microfabrication, and briefly discuss recent developments on the emerging field of organs-on-a-chip. RESULTS The existing literature suggests that both the inorganic and organic nanostructural components of the dentin matrix play a critical role in various mechanisms that influence tissue properties. SIGNIFICANCE An in-depth understanding of such nanostructural and nanomechanical mechanisms can have a direct impact in our ability to evaluate and predict the efficacy of dental materials. This knowledge will pave the way for the development of improved dental materials and treatment strategies. CONCLUSIONS Development of future dental materials should take into consideration the intricate hierarchical organization of dentin, and pay particular attention to their complex interaction with the dentin matrix on a nanometer scale.
Collapse
Affiliation(s)
- Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA; Center for Regenerative Medicine, Oregon Health and Science University, School of Medicine, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, Portland, OR, USA.
| |
Collapse
|
69
|
Suchyta DJ, Soto RJ, Schoenfisch MH. Selective monophosphorylation of chitosan via phosphorus oxychloride. Polym Chem 2017; 8:2552-2558. [PMID: 29057011 DOI: 10.1039/c7py00123a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chitosan was selectively monophosphorylated via reaction with phosphorus oxychloride (POCl3) to enhance water solubility while avoiding polyphosphate formation. The use of POCl3 resulted in negligible product degradation (i.e., breakdown of O-glycosidic bonds) even after a 3 d reaction period (<5% weight loss). X-ray photoelectron spectroscopy (XPS) characterization of the POCl3-phosphorylated chitosan (P-chitosan) revealed a phosphorus to nitrogen (P/N) atomic ratio of 0.30. Phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy verified the monophosphorylation of chitosan's primary and secondary alcohols, and primary amines. The calcium chelation efficiency for the phosphorylated product approached 0.05 mg Ca2+ per mg of P-chitosan as measured by inductively coupled plasma-optical emission spectrometry (ICP-OES), indicating improved chelation over native chitosan. This selective monophosphorylation approach proved useful for modifying other biopolymers, including cellulose and alginate.
Collapse
Affiliation(s)
- Dakota J Suchyta
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Robert J Soto
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Mark H Schoenfisch
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| |
Collapse
|
70
|
Khamverdi Z, Kordestani M, Soltanian AR. Effect of Proanthocyanidin, Fluoride and Casein Phosphopeptide Amorphous Calcium Phosphate Remineralizing Agents on Microhardness of Demineralized Dentin. JOURNAL OF DENTISTRY (TEHRAN, IRAN) 2017; 14:76-83. [PMID: 29104598 PMCID: PMC5662512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of dentin remineralization using proanthocyanidin (PA), fluoride varnish and casein phosphopeptide amorphous calcium phosphate (CPP-ACP) paste and their various combinations on microhardness of demineralized root dentin. MATERIALS AND METHODS One-hundred and twenty freshly extracted sound human premolars were selected and randomly divided into eight groups for dentin treatment as follows. C: Deionized water (control); PA: 6.5% PA solution; F: fluoride varnish (5% NaF, 22600 ppm fluoride); CP: CCP-ACP; PAF: 6.5% PA + fluoride varnish; PACP: 6.5% PA + CCP-ACP; FCP: fluoride varnish + CCP-ACP and PAFCP: 6.5% PA + fluoride varnish + CCP-ACP. All specimens were subjected to Vickers microhardness test (500 g, 10 seconds, 3 points). Data were analyzed using one-way ANOVA and Tukey's post hoc test. The significance level was set at 0.05. RESULTS The mean and standard deviation (SD) values of Vickers hardness number (VHN) in groups C, PA, F, CP, PAF, PACP, FCP and PAFCP were 37.39±4.97, 38.68±4.62, 48.28±2.68, 41.91±3.32, 48.59±2.55, 53.34±2.57, 48.413±4.00 and 55.20±1.82, respectively. Pairwise comparisons of the groups revealed that there was no significant difference between groups C and PA, PA and CP, F and PAF, F and FCP, PAF and FCP, and PACP and FPACP (P>0.05); but significant differences were observed between other groups (P<0.05). CONCLUSIONS The results of this study showed that the tested dentin treatments increased the microhardness of demineralized root dentin except for PA application.
Collapse
Affiliation(s)
- Zahra Khamverdi
- Professor, Dental Research Center, Department of Restorative Dentistry, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Matin Kordestani
- Post Graduate Student, Department of Restorative Dentistry, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran,Corresponding author: M. Kordestani, Department of Restorative Dentistry, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran,
| | - Ali Reza Soltanian
- Professor, Department of Biostatiatics, School of Public Health and Modeling of Noncomunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
71
|
Han M, Li QL, Cao Y, Fang H, Xia R, Zhang ZH. In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system. Sci Rep 2017; 7:41955. [PMID: 28167823 PMCID: PMC5294398 DOI: 10.1038/srep41955] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/03/2017] [Indexed: 11/16/2022] Open
Abstract
A novel agarose hydrogel biomimetic mineralization system loaded with calcium and phosphate was used to remineralize dentin and induce the oriented densely parallel packed HA layer on defective dentin surface in vivo in a rabbit model. Firstly, the enamel of the labial surface of rabbits' incisor was removed and the dentin was exposed to oral environment. Secondly, the hydrogel biomimetic mineralization system was applied to the exposed dentin surface by using a custom tray. Finally, the teeth were extracted and evaluated by scanning electron microscopy, X-ray diffraction, and nanoindentation test after a certain time of mineralization intervals. The regenerated tissue on the dentin surface was composed of highly organised HA crystals. Densely packed along the c axis, these newly precipitated HA crystals were perpendicular to the underlying dental surface with a tight bond. The demineralized dentin was remineralized and dentinal tubules were occluded by the grown HA crystals. The nanohardness and elastic modulus of the regenerated tissue were similar to natural dentin. The results indicated a potential clinical use for repairing dentin-exposed related diseases, such as erosion, wear, and dentin hypersensitivity.
Collapse
Affiliation(s)
- Min Han
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Quan-Li Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Ying Cao
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Hui Fang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Rong Xia
- Department of Stomatology, the Second Hospital affiliated to Anhui Medical University, Hefei, 230601, China
| | - Zhi-Hong Zhang
- Department of Stomatology, the Hospital of Anhui Province, Hefei, 230001, China
| |
Collapse
|
72
|
Ding C, Chen Z, Li J. From molecules to macrostructures: recent development of bioinspired hard tissue repair. Biomater Sci 2017; 5:1435-1449. [DOI: 10.1039/c7bm00247e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the bioinspired strategies for hard tissue repair, ranging from molecule-induced mineralization, to microscale assembly to macroscaffold fabrication.
Collapse
Affiliation(s)
- Chunmei Ding
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Zhuoxin Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
73
|
Scanning electron microscopic analysis of using agarose hydrogel microenvironment to create enamel prism-like tissue on dentine surface. J Dent 2016; 55:54-60. [DOI: 10.1016/j.jdent.2016.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/19/2016] [Accepted: 09/30/2016] [Indexed: 01/18/2023] Open
|
74
|
Jose P, Sanjeev K, Sekar M. Effect of Green and White Tea Pretreatment on Remineralization of Demineralized Dentin by CPP-ACFP-An Invitro Microhardness Analysis. J Clin Diagn Res 2016; 10:ZC85-9. [PMID: 27190960 DOI: 10.7860/jcdr/2016/16038.7674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/02/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Mechanical performance of dentine is of major significance for the overall function of the teeth. Remineralization of carious dentine is the ultimate goal in re-establishing the functionality of the affected tissue so as to regain and maintain the mechanical properties of dentine. Functional remineralization of the affected dentin involves stabilization of both inorganic and organic component, but Caesin Phosphopeptide Amorphous Calcium Flurophosphate (CPP-ACFP) stabilizes only inorganic content. Hence to stabilize organic content and to bring in functional remineralization the use of anticollagenolytic and antielastastic agent was considered for this study. AIM To assess and compare the remineralization of artificial carious dentin pre treated with white and green tea, before and after application of CPP-ACFP using microhardness test. Null hypothesis was that both teas did not have any effect on remineralization potential of CPP ACFP. MATERIALS AND METHODS Forty specimens were subjected to artificial caries lesions and were randomly divided into 4 groups based on the application of tea extract followed by CPP-ACFP (groups A & B) and CPP-ACFP followed by tea extracts (groups C & D). All the specimens were subjected to two pH cycling regimen. The specimens were subjected to Vickers microhardness test to obtain the microhardness values. The values were statistically analysed using one-way ANOVA and multiple comparisons with Tukey's HSD procedure. RESULTS After the 1(st) and 2(nd) pH cycling in groups A and B, Group B showed significant increase in microhardness values (35.79± 3.12 VHN). But after the pH cycling regimen in groups C and D, microhardness values increased in 1(st) pH cycling (50.03± 3.64 VHN); (50.03±3.64 VHN), respectively but decreased during the 2(nd) pH cycling, (33.94±6.45 VHN); (33.11±6.11 VHN) respectively with the level of significance <0.05. CONCLUSION The results of this study rejects the hypothesis tested and showed that both the tea extracts increased the microharness values when used prior to the application of remineralizing agent. However, 10% white tea showed better microhardness indicating stabilization of collagen in dentine resulting in functional remineralization.
Collapse
Affiliation(s)
- Poornima Jose
- Private Practitioner, Department of Conservative Dentistry and Endodontics, Kerala, India
| | - Kavitha Sanjeev
- Professor, Department of Conservative Dentistry and Endodontics, SRM Dental College , Bharathisalai, Ramapuram, Chennai, India
| | - Mahalaxmi Sekar
- Head of Department, Department of Conservative and Endodontics, SRM Dental College , Bharathisalai, Ramapuram, Chennai, Tamilnadu, India
| |
Collapse
|
75
|
Romero MJRH, Nakashima S, Nikaido T, Sadr A, Tagami J. In vitro dentine remineralization with a potential salivary phosphoprotein homologue. Arch Oral Biol 2016; 68:35-42. [PMID: 27054701 DOI: 10.1016/j.archoralbio.2016.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Advantages of introducing a salivary phosphoprotein homologue under standardized in vitro conditions to simulate the mineral-stabilizing properties of saliva have been proposed. This study longitudinally investigates the effects of casein, incorporated as a potential salivary phosphoprotein homologue in artificial saliva (AS) solutions with/without fluoride (F) on in vitro dentine lesion remineralization. DESIGN Thin sections of bovine root dentine were demineralized and allocated randomly into 6 groups (n=18) having equivalent mineral loss (ΔZ) after transverse microradiography (TMR). The specimens were remineralized using AS solutions containing casein 0μg/ml, F 0ppm (C0-F0); casein 0μg/ml, F 1ppm (C0-F1); casein 10μg/ml, F 0ppm (C10-F0); casein 10μg/ml, F 1ppm (C10-F1); casein 100μg/ml, F 0ppm (C100-F0) or casein 100μg/ml, F 1ppm (C100-F1) for 28days with TMR taken every 7 days. RESULTS Surface mineral precipitation, evident in group C0-F1, was apparently inhibited in groups with casein incorporation. Repeated measures ANOVA with Bonferroni correction revealed higher ΔZ for non-F and non-casein groups than for their counterparts (p<0.001). Subsequent multiple comparisons showed that mineral gain was higher (p<0.001) with 10μg/ml casein than with 100μg/ml when F was present in the earlier stages of remineralization, with both groups achieving almost complete remineralization after 28 days. CONCLUSION Casein is a potential salivary phosphoprotein homologue that could be employed for in vitro dentine remineralization studies. Concentration related effects may be clinically significant and thus must be further examined.
Collapse
Affiliation(s)
- Maria Jacinta Rosario H Romero
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; University of the Philippines Manila College of Dentistry, Pedro Gil corner Taft Avenue, Manila 1000, Philippines.
| | - Syozi Nakashima
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Toru Nikaido
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Alireza Sadr
- International Exchange Center, Tokyo Medical and Dental University,1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; Department of Restorative Dentistry, University of Washington School of Dentistry, 1959 NE Pacific Street, Box 357456 Seattle, WA, USA.
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| |
Collapse
|
76
|
Jokstad A. Secondary caries and microleakage. Dent Mater 2016; 32:11-25. [DOI: 10.1016/j.dental.2015.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 08/24/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
|
77
|
Toledano M, Aguilera FS, Osorio E, Cabello I, Toledano-Osorio M, Osorio R. Functional and molecular structural analysis of dentine interfaces promoted by a Zn-doped self-etching adhesive and an in vitro load cycling model. J Mech Behav Biomed Mater 2015; 50:131-49. [DOI: 10.1016/j.jmbbm.2015.05.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 01/22/2023]
|