51
|
Neuman RI, Baars MD, Saleh L, Broekhuizen M, Nieboer D, Cornette J, Schoenmakers S, Verhoeven M, Koch BCP, Russcher H, van den Berg SAA, van den Meiracker AH, Visser W, Danser AHJ. Omeprazole Administration in Preterm Preeclampsia: a Randomized Controlled Trial to Study Its Effect on sFlt-1 (Soluble Fms-Like Tyrosine Kinase-1), PlGF (Placental Growth Factor), and ET-1 (Endothelin-1). Hypertension 2022; 79:1297-1307. [PMID: 35341328 PMCID: PMC9093236 DOI: 10.1161/hypertensionaha.122.19070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low sFlt-1 (soluble Fms-like tyrosine kinase-1) and ET-1 (endothelin-1) levels have been reported in preeclamptic women using proton pump inhibitors.
Collapse
Affiliation(s)
- Rugina I Neuman
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine (R.I.N., L.S., M.B., A.H.v.d.M., W.V., A.H.J.D.).,Department of Obstetrics and Gynecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands. (R.I.N., M.D.B., L.S., J.C., S.S., W.V.)
| | - Milan D Baars
- Department of Obstetrics and Gynecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands. (R.I.N., M.D.B., L.S., J.C., S.S., W.V.)
| | - Langeza Saleh
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine (R.I.N., L.S., M.B., A.H.v.d.M., W.V., A.H.J.D.).,Department of Obstetrics and Gynecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands. (R.I.N., M.D.B., L.S., J.C., S.S., W.V.)
| | - Michelle Broekhuizen
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine (R.I.N., L.S., M.B., A.H.v.d.M., W.V., A.H.J.D.).,Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands. (M.B.)
| | - Daan Nieboer
- Department of Biochemical Statistics, Erasmus MC University Medical Center, Rotterdam, The Netherlands. (D.N.)
| | - Jérôme Cornette
- Department of Obstetrics and Gynecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands. (R.I.N., M.D.B., L.S., J.C., S.S., W.V.)
| | - Sam Schoenmakers
- Department of Obstetrics and Gynecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands. (R.I.N., M.D.B., L.S., J.C., S.S., W.V.)
| | - Michel Verhoeven
- Department of Pharmacy, Erasmus MC University Medical Center, Rotterdam, The Netherlands. (M.V., B.C.P.K.)
| | - Birgit C P Koch
- Department of Pharmacy, Erasmus MC University Medical Center, Rotterdam, The Netherlands. (M.V., B.C.P.K.)
| | - Henk Russcher
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands. (H.R., S.A.A.v.d.B.)
| | - Sjoerd A A van den Berg
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands. (H.R., S.A.A.v.d.B.).,Department of Internal Medicine, Division of Endocrinology, Erasmus MC University Medical Center, Rotterdam, The Netherlands. (S.A.A.v.d.B.)
| | - Anton H van den Meiracker
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine (R.I.N., L.S., M.B., A.H.v.d.M., W.V., A.H.J.D.)
| | - Willy Visser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine (R.I.N., L.S., M.B., A.H.v.d.M., W.V., A.H.J.D.).,Department of Obstetrics and Gynecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands. (R.I.N., M.D.B., L.S., J.C., S.S., W.V.)
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine (R.I.N., L.S., M.B., A.H.v.d.M., W.V., A.H.J.D.)
| |
Collapse
|
52
|
Kim EY, Lee JM. Transcriptional Control of Trpm6 by the Nuclear Receptor FXR. Int J Mol Sci 2022; 23:ijms23041980. [PMID: 35216094 PMCID: PMC8874704 DOI: 10.3390/ijms23041980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Farnesoid x receptor (FXR) is a nuclear bile acid receptor that belongs to the nuclear receptor superfamily. It plays an essential role in bile acid biosynthesis, lipid and glucose metabolism, liver regeneration, and vertical sleeve gastrectomy. A loss of the FXR gene or dysregulations of FXR-mediated gene expression are associated with the development of progressive familial intrahepatic cholestasis, tumorigenesis, inflammation, and diabetes mellitus. Magnesium ion (Mg2+) is essential for mammalian physiology. Over 600 enzymes are dependent on Mg2+ for their activity. Here, we show that the Trpm6 gene encoding a Mg2+ channel is a direct FXR target gene in the intestinal epithelial cells of mice. FXR expressed in the intestinal epithelial cells is absolutely required for sustaining a basal expression of intestinal Trpm6 that can be robustly induced by the treatment of GW4064, a synthetic FXR agonist. Analysis of FXR ChIP-seq data revealed that intron regions of Trpm6 contain two prominent FXR binding peaks. Among them, the proximal peak from the transcription start site contains a functional inverted repeat 1 (IR1) response element that directly binds to the FXR-RXRα heterodimer. Based on these results, we proposed that an intestinal FXR-TRPM6 axis may link a bile acid signaling to Mg2+ homeostasis.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4826
| |
Collapse
|
53
|
Chen YW, Yang M, Wang MX, Jiang JH, Jiang DY, Chen ZL, Yang L. Refractory hypokalemia caused by cetuximab with advanced colorectal cancer patients: the case series and literature review. Anticancer Drugs 2022; 33:e789-e794. [PMID: 34419963 PMCID: PMC8670339 DOI: 10.1097/cad.0000000000001212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/19/2021] [Indexed: 01/20/2023]
Abstract
Cetuximab is the first-line treatment for advanced metastatic colon cancer. But cetuximab can cause electrolyte disturbances, including hypomagnesemia and hypokalemia. Among them, hypokalemia is often caused by hypomagnesemia, not directly caused by cetuximab. This article reports two cases of refractory hypokalemia caused by cetuximab without hypomagnesemia. The two patients had no abnormalities in serum potassium before cetuximab treatment. The occurrence of hypokalemia was clearly correlated with the cetuximab, and they were significantly improved after stopping or reducing the dose. At the same time, the appearance of hypokalemia is significantly related to the efficacy of cetuximab. They have received 37 and 35 cycles of cetuximab-related therapy, with condition stable periods of 12.8 and 15.1 months, respectively. Obviously, our report refutes the above view. In our opinion, hypokalemia, a side effect of cetuximab, may be directly caused by it, rather than secondary to hypomagnesemia. Similar to hypomagnesemia, the appearance of hypokalemia often indicates a better curative effect of cetuximab.
Collapse
Affiliation(s)
- Yun-Wang Chen
- The Qingdao University Medical College, Qingdao, Shandong
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang
| | - Min Yang
- The Qingdao University Medical College, Qingdao, Shandong
| | - Ming-Xing Wang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jia-Hong Jiang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang
| | - Ding-Yi Jiang
- The Qingdao University Medical College, Qingdao, Shandong
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang
| | - Zhe-Ling Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang
| | - Liu Yang
- The Qingdao University Medical College, Qingdao, Shandong
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang
| |
Collapse
|
54
|
Lei M, Wang P, Li H, Liu X, Shu J, Zhang Q, Cai C, Li D, Zhang Y. Case Report: Recurrent Hemiplegic Migraine Attacks Accompanied by Intractable Hypomagnesemia Due to a de novo TRPM7 Gene Variant. Front Pediatr 2022; 10:880242. [PMID: 35712613 PMCID: PMC9194527 DOI: 10.3389/fped.2022.880242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed chanzyme comprised of a divalent cation channel permeable to calcium and magnesium and a cytosolic serine-threonine α-kinase domain. TRPM7 has a crucial role in magnesium ion homeostasis and anoxic neuronal death, which was identified as a potential non-glutamate target for hypoxic-ischemic neuronal injury. TRPM7 is implicated in ischemic stroke and hypomagnesemia in many studies, but it has not been associated with disease in the OMIM database. No clinical cases between TRPM7 gene variants and hypomagnesemia have been reported, so far. One patient with recurrent hemiplegic migraine attacks accompanied by intractable hypomagnesemia was followed up at Tianjin Children's Hospital from 2018 to 2021. We systematically summarized and analyzed the clinical manifestations, imaging features, and serum magnesium changes of the patient. Genetic analysis was performed by whole-exome sequencing and Sanger sequencing to infer the etiology of hemiplegic migraine attacks and hypomagnesemia in this patient. Gene sequencing revealed a novel heterozygous variant of the TRPM7 gene (c.2998A>G, p. Met1000Val), which has not been reported previously; this is also a de novo variant that is not inherited from his parents. We described a novel variant p. Met1000Val (c.2998A>G) located in the transmembrane region of TRPM7 protein, which is possibly crucial for the normal function of the ion channel. Our study expands the variation spectrum of the TRPM7 gene, highlights the importance of molecular genetic evaluation in patients with TRPM7 gene deficiency, and demonstrates the causal relationship between TRPM7 gene variants and disease manifestations.
Collapse
Affiliation(s)
- Meifang Lei
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Ping Wang
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Hong Li
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Xiaojun Liu
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Qianqian Zhang
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China.,Department of Neurosurgery, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Dong Li
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Yuqin Zhang
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| |
Collapse
|
55
|
Bousova K, Zouharova M, Herman P, Vetyskova V, Jiraskova K, Vondrasek J. TRPM7 N-terminal region forms complexes with calcium binding proteins CaM and S100A1. Heliyon 2021; 7:e08490. [PMID: 34917797 PMCID: PMC8645431 DOI: 10.1016/j.heliyon.2021.e08490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) represents melastatin TRP channel with two significant functions, cation permeability and kinase activity. TRPM7 is widely expressed among tissues and is therefore involved in a variety of cellular functions representing mainly Mg2+ homeostasis, cellular Ca2+ flickering, and the regulation of DNA transcription by a cleaved kinase domain translocated to the nucleus. TRPM7 participates in several important biological processes in the nervous and cardiovascular systems. Together with the necessary function of the TRPM7 in these tissues and its recently analyzed overall structure, this channel requires further studies leading to the development of potential therapeutic targets. Here we present the first study investigating the N-termini of TRPM7 with binding regions for important intracellular modulators calmodulin (CaM) and calcium-binding protein S1 (S100A1) using in vitro and in silico approaches. Molecular simulations of the discovered complexes reveal their potential binding interfaces with common interaction patterns and the important role of basic residues present in the N-terminal binding region of TRPM.
Collapse
Affiliation(s)
- Kristyna Bousova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
- Corresponding author.
| | - Monika Zouharova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
- Department of Biochemistry and Patobiochemistry, Second Faculty of Medicine, Charles University, 150 06 Prague 5, V Uvalu 84, Czech Republic
| | - Petr Herman
- Department Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic
| | - Veronika Vetyskova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Katerina Jiraskova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| | - Jiri Vondrasek
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| |
Collapse
|
56
|
Ji D, Fleig A, Horgen FD, Feng ZP, Sun HS. Modulators of TRPM7 and its potential as a drug target for brain tumours. Cell Calcium 2021; 101:102521. [PMID: 34953296 DOI: 10.1016/j.ceca.2021.102521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
TRPM7 is a non-selective divalent cation channel with an alpha-kinase domain. Corresponding with its broad expression, TRPM7 has a role in a wide range of cell functions, including proliferation, migration, and survival. Growing evidence shows that TRPM7 is also aberrantly expressed in various cancers, including brain cancers. Because ion channels have widespread tissue distribution and result in extensive physiological consequences when dysfunctional, these proteins can be compelling drug targets. In fact, ion channels comprise the third-largest drug target type, following enzymes and receptors. Literature has shown that suppression of TRPM7 results in inhibition of migration, invasion, and proliferation in several human brain tumours. Therefore, TRPM7 presents a potential target for therapeutic brain tumour interventions. This article reviews current literature on TRPM7 as a potential drug target in the context of brain tumours and provides an overview of various selective and non-selective modulators of the channel relevant to pharmacology, oncology, and ion channel function.
Collapse
Affiliation(s)
- Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, Hawaii 96813, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii 96744, USA
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2.
| |
Collapse
|
57
|
Characterization of IL-2 Stimulation and TRPM7 Pharmacomodulation in NK Cell Cytotoxicity and Channel Co-Localization with PIP 2 in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211879. [PMID: 34831634 PMCID: PMC8618557 DOI: 10.3390/ijerph182211879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multisystemic disorder responsible for significant disability. Although a unifying etiology for ME/CFS is uncertain, impaired natural killer (NK) cell cytotoxicity represents a consistent and measurable feature of this disorder. Research utilizing patient-derived NK cells has implicated dysregulated calcium (Ca2+) signaling, dysfunction of the phosphatidylinositol-4,5-bisphosphate (PIP2)-dependent cation channel, transient receptor potential melastatin (TRPM) 3, as well as altered surface expression patterns of TRPM3 and TRPM2 in the pathophysiology of ME/CFS. TRPM7 is a related channel that is modulated by PIP2 and participates in Ca2+ signaling. Though TRPM7 is expressed on NK cells, the role of TRPM7 with IL-2 and intracellular signaling mechanisms in the NK cells of ME/CFS patients is unknown. This study examined the effect of IL-2 stimulation and TRPM7 pharmacomodulation on NK cell cytotoxicity using flow cytometric assays as well as co-localization of TRPM7 with PIP2 and cortical actin using confocal microscopy in 17 ME/CFS patients and 17 age- and sex-matched healthy controls. The outcomes of this investigation are preliminary and indicate that crosstalk between IL-2 and TRMP7 exists. A larger sample size to confirm these findings and characterization of TRPM7 in ME/CFS using other experimental modalities are warranted.
Collapse
|
58
|
Chokshi R, Bennett O, Zhelay T, Kozak JA. NSAIDs Naproxen, Ibuprofen, Salicylate, and Aspirin Inhibit TRPM7 Channels by Cytosolic Acidification. Front Physiol 2021; 12:727549. [PMID: 34733174 PMCID: PMC8558630 DOI: 10.3389/fphys.2021.727549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/10/2021] [Indexed: 01/23/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are used for relieving pain and inflammation accompanying numerous disease states. The primary therapeutic mechanism of these widely used drugs is the inhibition of cyclooxygenase 1 and 2 (COX1, 2) enzymes that catalyze the conversion of arachidonic acid into prostaglandins. At higher doses, NSAIDs are used for prevention of certain types of cancer and as experimental treatments for Alzheimer’s disease. In the immune system, various NSAIDs have been reported to influence neutrophil function and lymphocyte proliferation, and affect ion channels and cellular calcium homeostasis. Transient receptor potential melastatin 7 (TRPM7) cation channels are highly expressed in T lymphocytes and are inhibited by Mg2+, acidic pH, and polyamines. Here, we report a novel effect of naproxen, ibuprofen, salicylate, and acetylsalicylate on TRPM7. At concentrations of 3–30mM, they reversibly inhibited TRPM7 channel currents. By measuring intracellular pH with the ratiometric indicator BCECF, we found that at 300μM to 30mM, these NSAIDs reversibly acidified the cytoplasm in a concentration-dependent manner, and propose that TRPM7 channel inhibition is a consequence of cytosolic acidification, rather than direct. NSAID inhibition of TRPM7 channels was slow, voltage-independent, and displayed use-dependence, increasing in potency upon repeated drug applications. The extent of channel inhibition by salicylate strongly depended on cellular PI(4,5)P2 levels, as revealed when this phospholipid was depleted with voltage-sensitive lipid phosphatase (VSP). Salicylate inhibited heterologously expressed wildtype TRPM7 channels but not the S1107R variant, which is insensitive to cytosolic pH, Mg2+, and PI(4,5)P2 depletion. NSAID-induced acidification was also observed in Schneider 2 cells from Drosophila, an organism that lacks orthologous COX genes, suggesting that this effect is unrelated to COX enzyme activity. A 24-h exposure to 300μM–10mM naproxen resulted in a concentration-dependent reduction in cell viability. In addition to TRPM7, the described NSAID effect would be expected to apply to other ion channels and transporters sensitive to intracellular pH.
Collapse
Affiliation(s)
- Rikki Chokshi
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH, United States
| | - Orville Bennett
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH, United States
| | - Tetyana Zhelay
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH, United States
| | - J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH, United States
| |
Collapse
|
59
|
Thermodynamic and structural basis of temperature-dependent gating in TRP channels. Biochem Soc Trans 2021; 49:2211-2219. [PMID: 34623379 DOI: 10.1042/bst20210301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022]
Abstract
Living organisms require detecting the environmental thermal clues for survival, allowing them to avoid noxious stimuli or find prey moving in the dark. In mammals, the Transient Receptor Potential ion channels superfamily is constituted by 27 polymodal receptors whose activity is controlled by small ligands, peptide toxins, protons and voltage. The thermoTRP channels subgroup exhibits unparalleled temperature dependence -behaving as heat and cold sensors. Functional studies have dissected their biophysical features in detail, and the advances of single-particle Cryogenic Electron microscopy provided the structural framework required to propose detailed channel gating mechanisms. However, merging structural and functional evidence for temperature-driven gating of thermoTRP channels has been a hard nut to crack, remaining an open question nowadays. Here we revisit the highlights on the study of heat and cold sensing in thermoTRP channels in the light of the structural data that has emerged during recent years.
Collapse
|
60
|
Proton pump inhibitors and osteoporosis risk: exploring the role of TRPM7 channel. Eur J Clin Pharmacol 2021; 78:35-41. [PMID: 34714373 DOI: 10.1007/s00228-021-03237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Long-term use of proton pump inhibitors (PPIs) has been linked to an increased risk of osteoporosis, with various indirect mechanisms so far identified. Although no direct underlying mechanism for effect on bone cells have been investigated with the use of PPIs. Melastatin-like transient receptor potential 7 (TRPM7)channel has been engaged in the proliferation of bone cells. TRPM7 channel is regulated by extracellular Mg2+ and Ca2+ level, that further encourages to analyse if any imbalance with pantoprazole usage could alter bone remodelling process mediated by TRPM7. OBJECTIVES The present study was conducted to investigate the effect of pantoprazole on the calcium and magnesium level, the cations involved in the bone remodelling process, as well as role of the TRPM7 channel in the proliferation of bone cells. METHODS A cytotoxicity study was carried out to study the effect of pantoprazole on the bone cell using MC3T3-E1 cell line, together with the expression of TRPM7 was determined post-pantoprazole treatment. An in vivo study in rats was carried out for estimation of Ca2+, Mg2+ and Ca2+/Mg2+ ratio as well as bone strength was measured over a duration of 4 weeks and 8 weeks with the treatment of pantoprazole. A pilot-scale clinical study was carried out in patients with a fracture to support the evidence of preliminary findings from in-vitro and in vivo studies. RESULTS MC3T3-E1 cell line treated with pantoprazole showed decreased cell viability in a dose-dependent manner and reduced expression of TRPM7 channel, evidencing interaction of TRPM7 and pantoprazole in the bone remodelling process. A pilot study conducted on 12 patients having major fractures showed changes in serum Mg2+ and Ca2+ levels over a period of 1 month as well as the animal study also showed ionic imbalance over 8-week treatment with pantoprazole. Bone density measured for the patient at the end of the 1-month treatment was found to be in the osteopenic category, together with the animal study which showed a decrease in femur bone strength for the animal treated with pantoprazole over a period of 8 weeks. CONCLUSION The study findings proved a negative impact of pantoprazole use on Ca2+ and Mg2+ levels, which can impact TRPM7-mediated bone remodelling which serves to be a possible mechanism for osteoporosis upon pantoprazole use.
Collapse
|
61
|
Wei X, Tang Z, Wu H, Zuo X, Dong H, Tan L, Wang W, Liu Y, Wu Z, Shi L, Wang N, Li X, Xiao X, Guo Z. Biofunctional magnesium-coated Ti6Al4V scaffolds promote autophagy-dependent apoptosis in osteosarcoma by activating the AMPK/mTOR/ULK1 signaling pathway. Mater Today Bio 2021; 12:100147. [PMID: 34704011 PMCID: PMC8523865 DOI: 10.1016/j.mtbio.2021.100147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
The recurrence of osteosarcoma (OS) after reconstruction using Ti6Al4V prostheses remains a major problem in the surgical treatment of OS. Modification of the surfaces of Ti6Al4V prostheses with antitumor functions is an important strategy for improving therapeutic outcomes. Magnesium (Mg) coating has been shown to be multifunctional: it exhibits osteogenic and angiogenic properties and the potential to inhibit OS. In this study, we determined the proper concentration of released Mg2+ with respect to OS inhibition and biosafety and evaluated the anti-OS effects of Mg-coated Ti6Al4V scaffolds. We found that the release of Mg2+ during short-term and long-term degradation could significantly inhibit the proliferation and migration of HOS and 143B cells. Increased cell apoptosis and excessive autophagy were also observed, and further evidence of AMPK/mTOR/ULK1 signaling pathway activation was obtained both in vitro and in vivo, which suggested that the biofunctional scaffolds induce OS inhibition. Our study demonstrates the ability of an Mg coating to inhibit OS and may contribute to the further application of Mg-coated Ti6Al4V prostheses. Multifunctional Mg coating is considerable surface modification for Ti6Al4V prostheses. Mg2+ releasing by the scaffolds could significantly inhibit the proliferation and migration of OS cells. The biofunctional scaffolds could inhibit OS by activating autophagy-dependent apoptosis. The AMPK/mTOR/ULK-1 pathway was involved in autophagy-depended apoptosis induced by the scaffolds.
Collapse
Affiliation(s)
- X Wei
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Z Tang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - H Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - X Zuo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - H Dong
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - L Tan
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - W Wang
- Department of Immunology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Y Liu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Z Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - L Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - N Wang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - X Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| | - X Xiao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Z Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| |
Collapse
|
62
|
Bohmwald K, Gálvez NMS, Andrade CA, Mora VP, Muñoz JT, González PA, Riedel CA, Kalergis AM. Modulation of Adaptive Immunity and Viral Infections by Ion Channels. Front Physiol 2021; 12:736681. [PMID: 34690811 PMCID: PMC8531258 DOI: 10.3389/fphys.2021.736681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Most cellular functions require of ion homeostasis and ion movement. Among others, ion channels play a crucial role in controlling the homeostasis of anions and cations concentration between the extracellular and intracellular compartments. Calcium (Ca2+) is one of the most relevant ions involved in regulating critical functions of immune cells, allowing the appropriate development of immune cell responses against pathogens and tumor cells. Due to the importance of Ca2+ in inducing the immune response, some viruses have evolved mechanisms to modulate intracellular Ca2+ concentrations and the mobilization of this cation through Ca2+ channels to increase their infectivity and to evade the immune system using different mechanisms. For instance, some viral infections require the influx of Ca2+ through ionic channels as a first step to enter the cell, as well as their replication and budding. Moreover, through the expression of viral proteins on the surface of infected cells, Ca2+ channels function can be altered, enhancing the pathogen evasion of the adaptive immune response. In this article, we review those ion channels and ion transporters that are essential for the function of immune cells. Specifically, cation channels and Ca2+ channels in the context of viral infections and their contribution to the modulation of adaptive immune responses.
Collapse
Affiliation(s)
- Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A. Andrade
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P. Mora
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T. Muñoz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
63
|
Manneck D, Braun H, Schrapers KT, Stumpff F. TRPV3 and TRPV4 as candidate proteins for intestinal ammonium absorption. Acta Physiol (Oxf) 2021; 233:e13694. [PMID: 34031986 DOI: 10.1111/apha.13694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
AIM Absorption of ammonia from the gut has consequences that range from encephalitis in hepatic disease to global climate change induced by nitrogenous excretions from livestock. Since patch clamp data show that certain members of the transient receptor potential (TRP) family are permeable to NH4 + , participation in ammonium efflux was investigated. METHODS Digesta, mucosa and muscular samples from stomach, duodenum, jejunum, ileum, caecum and colon of pigs were analysed via colourimetry, qPCR, Western blot, immunohistochemistry and Ussing chambers. RESULTS qPCR data show high duodenal expression of TRPV6. TRPM6 was highest in jejunum and colon, with expression of TRPM7 ubiquitous. TRPM8 and TRPV1 were below detection. TRPV2 was highest in the jejunum but almost non-detectable in the colon. TRPV4 was ubiquitously expressed by mucosal and muscular layers. TRPV3 mRNA was only found in the mucosa of the caecum and colon, organs in which NH4 + was highest (>7 mmol·L-1 ). Immunohistochemically, an apical expression of TRPV3 and TRPV4 could be detected in all tissues, with effects of 2-APB and GSK106790A supporting functional expression. In symmetrical NaCl Ringer, removal of mucosal Ca2+ and Mg2+ increased colonic short circuit current (Isc ) and conductance (Gt ) by 0.18 ± 0.06 µeq·cm-2 ·h-1 and 4.70 ± 0.85 mS·cm-2 (P < .05, N/n = 4/17). Application of mucosal NH4 Cl led to dose-dependent and divalent-sensitive increases in Gt and Isc , with effects highest in the caecum and colon. CONCLUSION We propose that TRP channels contribute to the intestinal transport of ammonium, with TRPV3 and TRPV4 promising candidate proteins. Pharmacological regulation may be possible.
Collapse
Affiliation(s)
- David Manneck
- Institute of Veterinary Physiology Freie Universität Berlin Berlin Germany
| | | | | | - Friederike Stumpff
- Institute of Veterinary Physiology Freie Universität Berlin Berlin Germany
| |
Collapse
|
64
|
Low serum magnesium concentration is associated with the presence of viable hepatocellular carcinoma tissue in cirrhotic patients. Sci Rep 2021; 11:15184. [PMID: 34312420 PMCID: PMC8313704 DOI: 10.1038/s41598-021-94509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/17/2021] [Indexed: 12/03/2022] Open
Abstract
This study aimed to ascertain, for the first time, whether serum magnesium (Mg) concentration is affected by the presence of hepatocellular carcinoma (HCC). We retrospectively enrolled consecutive cirrhotic patients with a diagnosis of HCC (n = 130) or without subsequent evidence of HCC during surveillance (n = 161). Serum levels of Mg were significantly (P < 0.001) lower in patients with HCC than in those without (median [interquartile range]: 1.80 [1.62–1.90] mg/dl vs. 1.90 [1.72–2.08] mg/dl). On multivariate logistic regression, low serum Mg was associated with the presence of HCC (OR 0.047, 95% CI 0.015–0.164; P < 0.0001), independently from factors that can influence magnesaemia and HCC development. In a subset of 94 patients with HCC, a linear mixed effects model adjusted for confounders showed that serum Mg at diagnosis of HCC was lower than before diagnosis of the tumor (β = 0.117, 95% CI 0.039–0.194, P = 0.0035) and compared to after locoregional treatment of HCC (β = 0.079, 95% CI 0.010–0.149, P = 0.0259), with two thirds of patients experiencing these changes of serum Mg over time. We hypothesize that most HCCs, like other cancers, may be avid for Mg and behave like a Mg trap, disturbing the body’s Mg balance and resulting in lowering of serum Mg levels.
Collapse
|
65
|
Che X, Zhan J, Zhao F, Zhong Z, Chen M, Han R, Wang Y. Oridonin Promotes Apoptosis and Restrains the Viability and Migration of Bladder Cancer by Impeding TRPM7 Expression via the ERK and AKT Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4340950. [PMID: 34285910 PMCID: PMC8275389 DOI: 10.1155/2021/4340950] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/01/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oridonin is a powerful anticancer compound found in Rabdosia rubescens. However, its potential impact on bladder cancer remains uninvestigated. In this work, we aimed to detect the anticancer effect of oridonin on bladder cancer and explore the molecular mechanisms involved. METHODS The anticancer activity of oridonin was assessed in vitro with a CCK8 assay, an annexin V-FITC apoptosis analysis, and colony formation and Transwell migration assays which were performed with the human bladder cancer cell line T24. Levels of apoptosis-related proteins, melastatin transient receptor potential channel 7 (TRPM7), and signaling molecules were examined in oridonin-treated T24 cells by western blotting or RT-PCR. Oridonin anticancer efficacy was further validated in vivo with a T24 xenograft mouse model. RESULTS Oridonin repressed the proliferative, colony-forming, and migratory capacities of T24 cells, triggered extensive apoptosis in vitro, and retarded tumor growth in vivo. Moreover, oridonin treatment significantly increased expression levels of p53 and cleaved caspase-3 and reduced expression of TRPM7, p-AKT, and p-ERK. CONCLUSION Oridonin exhibited outstanding antiproliferative and antimigratory effects on bladder cancer, and these effects were at least partially associated with targeting of TRPM7 through inactivation of the ERK and AKT signaling pathways. These findings provide insight for the clinical application of oridonin in bladder cancer prevention.
Collapse
Affiliation(s)
- Xianping Che
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| | - Jiangtao Zhan
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| | - Fan Zhao
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| | - Zunhe Zhong
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| | - Mianchuan Chen
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| | - Ruifa Han
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, 300211 Tianjin, China
| | - Yi Wang
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| |
Collapse
|
66
|
Rios FJ, Touyz RM. Mg 2+ Channels as the Link Between Mg 2+ Deficiency and COMT Downregulation in Salt-Sensitive Hypertension. Hypertension 2021; 78:151-154. [PMID: 34106728 DOI: 10.1161/hypertensionaha.121.17330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom
| |
Collapse
|
67
|
Guan Z, Chen X, Fang S, Ji Y, Gao Z, Zheng Y. CCT128930 is a novel and potent antagonist of TRPM7 channel. Biochem Biophys Res Commun 2021; 560:132-138. [PMID: 33989904 DOI: 10.1016/j.bbrc.2021.04.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023]
Abstract
Transient receptor potential melastatin 7 (TRPM7) channels represent a major magnesium (Mg2+)-uptake component in mammalian cells and are negatively modulated by internal Mg2+. However, few TRPM7 modulators were identified so far, which hindered the understanding of the TRPM7 channel functions. In this study, we identified that CCT128930, an ATP-competitive protein kinase B inhibitor reported previously, was a potent TRPM7 channel antagonist. The inhibition of CCT128930 on TRPM7 was independent of intracellular Mg2+. In the absence and presence of 300 μM Mg2+ in pipette solution, the IC50 values were 0.86 ± 0.11 μM and 0.63 ± 0.09 μM, respectively. Subtype selectivity data showed that CCT128930 preferentially inhibited TRPM7 channels compared to TRPM6 and TRPM8 isoforms. In addition, CCT128930 was found to be able to reduce the endogenous TRPM7-like currents in SH-SY5Y neuroblastoma cells. At last, multiple residues in the superficial part of the TRPM7 selectivity filter were identified to be critical for the inhibitory activity of CCT128930 which are different from the determinants of Mg2+ and reported TRPM7 antagonists. Our results indicated that CCT128930 is a novel and potent TRPM7 channel antagonist.
Collapse
Affiliation(s)
- Ziyue Guan
- Shanghai University, Shanghai, 200444, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xueqin Chen
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Sui Fang
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yonghua Ji
- Shanghai University, Shanghai, 200444, China
| | - Zhaobing Gao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Yueming Zheng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
68
|
Cappadone C, Malucelli E, Zini M, Farruggia G, Picone G, Gianoncelli A, Notargiacomo A, Fratini M, Pignatti C, Iotti S, Stefanelli C. Assessment and Imaging of Intracellular Magnesium in SaOS-2 Osteosarcoma Cells and Its Role in Proliferation. Nutrients 2021; 13:nu13041376. [PMID: 33923895 PMCID: PMC8073505 DOI: 10.3390/nu13041376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
Magnesium is an essential nutrient involved in many important processes in living organisms, including protein synthesis, cellular energy production and storage, cell growth and nucleic acid synthesis. In this study, we analysed the effect of magnesium deficiency on the proliferation of SaOS-2 osteosarcoma cells. When quiescent magnesium-starved cells were induced to proliferate by serum addition, the magnesium content was 2–3 times lower in cells maintained in a medium without magnesium compared with cells growing in the presence of the ion. Magnesium depletion inhibited cell cycle progression and caused the inhibition of cell proliferation, which was associated with mTOR hypophosphorylation at Serine 2448. In order to map the intracellular magnesium distribution, an analytical approach using synchrotron-based X-ray techniques was applied. When cell growth was stimulated, magnesium was mainly localized near the plasma membrane in cells maintained in a medium without magnesium. In non-proliferating cells growing in the presence of the ion, high concentration areas inside the cell were observed. These results support the role of magnesium in the control of cell proliferation, suggesting that mTOR may represent an important target for the antiproliferative effect of magnesium. Selective control of magnesium availability could be a useful strategy for inhibiting osteosarcoma cell growth.
Collapse
Affiliation(s)
- Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, 33, 40127 Bologna, Italy; (E.M.); (G.F.); (G.P.); (S.I.)
- Correspondence:
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, 33, 40127 Bologna, Italy; (E.M.); (G.F.); (G.P.); (S.I.)
| | - Maddalena Zini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 33, 40126 Bologna, Italy; (M.Z.); (C.P.)
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, 33, 40127 Bologna, Italy; (E.M.); (G.F.); (G.P.); (S.I.)
- INBB—Biostructures and Biosystems National Institute, 00136 Rome, Italy
| | - Giovanna Picone
- Department of Pharmacy and Biotechnology, University of Bologna, 33, 40127 Bologna, Italy; (E.M.); (G.F.); (G.P.); (S.I.)
| | | | - Andrea Notargiacomo
- Institute for Photonics and Nanotechnologies, Consiglio Nazionale delle Ricerche, 00156 Rome, Italy;
| | - Michela Fratini
- Institute of Nanotechnology-CNR c/o Physics Department at ‘Sapienza’ University, 00185 Rome, Italy;
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Carla Pignatti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 33, 40126 Bologna, Italy; (M.Z.); (C.P.)
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 33, 40127 Bologna, Italy; (E.M.); (G.F.); (G.P.); (S.I.)
- INBB—Biostructures and Biosystems National Institute, 00136 Rome, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy;
| |
Collapse
|
69
|
Schiroli D, Marraccini C, Zanetti E, Ragazzi M, Gianoncelli A, Quartieri E, Gasparini E, Iotti S, Baricchi R, Merolle L. Imbalance of Mg Homeostasis as a Potential Biomarker in Colon Cancer. Diagnostics (Basel) 2021; 11:diagnostics11040727. [PMID: 33923883 PMCID: PMC8073761 DOI: 10.3390/diagnostics11040727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Increasing evidences support a correlation between magnesium (Mg) homeostasis and colorectal cancer (CRC). Nevertheless, the role of Mg and its transporters as diagnostic markers in CRC is still a matter of debate. In this study we combined X-ray Fluorescence Microscopy and databases information to investigate the possible correlation between Mg imbalance and CRC. METHODS CRC tissue samples and their non-tumoural counterpart from four patients were collected and analysed for total Mg level and distribution by X-Ray Fluorescence Microscopy. We also reviewed the scientific literature and the main tissue expression databases to collect data on Mg transporters expression in CRC. RESULTS We found a significantly higher content of total Mg in CRC samples when compared to non-tumoural tissues. Mg distribution was also impaired in CRC. Conversely, we evidenced an uncertain correlation between Mg transporters expression and colon malignancies. DISCUSSION Although further studies are necessary to determine the correlation between different cancer types and stages, this is the first report proposing the measurement of Mg tissue localisation as a marker in CRC. This study represents thus a proof-of-concept that paves the way for the design of a larger prospective investigation of Mg in CRC.
Collapse
Affiliation(s)
- Davide Schiroli
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.S.); (E.Q.); (R.B.); (L.M.)
| | - Chiara Marraccini
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.S.); (E.Q.); (R.B.); (L.M.)
- Correspondence: ; Tel.: +39-0522-295057
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (E.Z.); (M.R.)
| | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (E.Z.); (M.R.)
| | | | - Eleonora Quartieri
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.S.); (E.Q.); (R.B.); (L.M.)
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Elisa Gasparini
- Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy;
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Roberto Baricchi
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.S.); (E.Q.); (R.B.); (L.M.)
| | - Lucia Merolle
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.S.); (E.Q.); (R.B.); (L.M.)
| |
Collapse
|
70
|
Ma G, Yang Y, Chen Y, Wei X, Ding J, Zhou RP, Hu W. Blockade of TRPM7 Alleviates Chondrocyte Apoptosis and Articular Cartilage Damage in the Adjuvant Arthritis Rat Model Through Regulation of the Indian Hedgehog Signaling Pathway. Front Pharmacol 2021; 12:655551. [PMID: 33927631 PMCID: PMC8076952 DOI: 10.3389/fphar.2021.655551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Articular cartilage damage with subsequent impairment of joint function is a common feature of articular diseases, in particular, rheumatoid arthritis and osteoarthritis. While articular cartilage injury mediated by chondrocyte apoptosis is a known major pathological feature of arthritis, the specific mechanisms remain unclear at present. Transient receptor potential melastatin-like seven channel (TRPM7) is reported to play an important regulatory role in apoptosis. This study focused on the effects of TRPM7 on arthritic chondrocyte injury and its underlying mechanisms of action. Sodium nitroprusside (SNP)-induced rat primary chondrocyte apoptosis and rat adjuvant arthritis (AA) were used as in vitro and in vivo models, respectively. Blockage of TRPM7 with 2-APB or specific siRNA resulted in increased chondrocyte viability and reduced toxicity of SNP. Moreover, treatment with 2-APB enhanced the Bcl-2/Bax ratio and reduced cleaved PARP and IL-6, MMP-13 and ADAMTS-5 expression in SNP-treated chondrocytes. Activation of Indian Hedgehog with purmorphamine reversed the protective effects of 2-APB on SNP-induced chondrocyte apoptosis. Blockage of TRPM7 with 2-APB relieved the clinical signs of AA in the rat model and reduced the arthritis score and paw swelling. Similar to findings in SNP-treated chondrocytes, 2-APB treatment increased the Bcl-2/Bax ratio and suppressed cleaved PARP, IL-6, MMP-13, ADAMTS-5, TRPM7, and Indian hedgehog expression in articular cartilage of AA rats. Our collective findings suggest that blockade of TRPM7 could effectively reduce chondrocyte apoptosis and articular cartilage damage in rats with adjuvant arthritis through regulation of the Indian Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Ganggang Ma
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yang Yang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| |
Collapse
|
71
|
Fiorentini D, Cappadone C, Farruggia G, Prata C. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients 2021; 13:1136. [PMID: 33808247 PMCID: PMC8065437 DOI: 10.3390/nu13041136] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Magnesium plays an important role in many physiological functions. Habitually low intakes of magnesium and in general the deficiency of this micronutrient induce changes in biochemical pathways that can increase the risk of illness and, in particular, chronic degenerative diseases. The assessment of magnesium status is consequently of great importance, however, its evaluation is difficult. The measurement of serum magnesium concentration is the most commonly used and readily available method for assessing magnesium status, even if serum levels have no reliable correlation with total body magnesium levels or concentrations in specific tissues. Therefore, this review offers an overview of recent insights into magnesium from multiple perspectives. Starting from a biochemical point of view, it aims at highlighting the risk due to insufficient uptake (frequently due to the low content of magnesium in the modern western diet), at suggesting strategies to reach the recommended dietary reference values, and at focusing on the importance of detecting physiological or pathological levels of magnesium in various body districts, in order to counteract the social impact of diseases linked to magnesium deficiency.
Collapse
Affiliation(s)
| | | | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (D.F.); (C.C.); (C.P.)
| | | |
Collapse
|
72
|
Meng S, Alanazi R, Ji D, Bandura J, Luo ZW, Fleig A, Feng ZP, Sun HS. Role of TRPM7 kinase in cancer. Cell Calcium 2021; 96:102400. [PMID: 33784560 DOI: 10.1016/j.ceca.2021.102400] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/09/2023]
Abstract
Cancer is the second leading cause of death worldwide and accounted for an estimated 9.6 million deaths, or 1 in 6 deaths, in 2018. Despite recent advances in cancer prevention, diagnosis, and treatment strategies, the burden of this disease continues to grow with each year, with dire physical, emotional, and economic consequences for all levels of society. Classic characteristics of cancer include rapid, uncontrolled cell proliferation and spread of cancerous cells to other parts of the body, a process known as metastasis. Transient receptor potential melastatin 7 (TRPM7), a Ca2+- and Mg2+-permeable nonselective divalent cation channel defined by the atypical presence of an α-kinase within its C-terminal domain, has been implicated, due to its modulation of Ca2+ and Mg2+ influx, in a wide variety of physiological and pathological processes, including cancer. TRPM7 is overexpressed in several cancer types and has been shown to variably increase cellular proliferation, migration, and invasion of tumour cells. However, the relative contribution of TRPM7 kinase domain activity to cancer as opposed to ion flux through its channel pore remains an area of active discovery. In this review, we describe the specific role of the TRPM7 kinase domain in cancer processes as well as mechanisms of regulation and inhibition of the kinase domain.
Collapse
Affiliation(s)
- Selena Meng
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Rahmah Alanazi
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Julia Bandura
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Zheng-Wei Luo
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, HI, 96720, USA
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
73
|
LPS promotes the progression of sepsis by activation of lncRNA HULC/miR-204-5p/TRPM7 network in HUVECs. Biosci Rep 2021; 40:225116. [PMID: 32484206 PMCID: PMC7295636 DOI: 10.1042/bsr20200740] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infection. Lipopolysaccharide (LPS) has been reported to induce inflammatory responses, and long non-coding RNA highly up-regulated in liver cancer (HULC) expression was associated with the progression of sepsis. But the role and underlying mechanism of HULC in LPS-induced sepsis remain unclear. Cell viability and apoptosis were measured by methyl thiazolyl tetrazolium (MTT) and flow cytometry assays, respectively. The levels of apoptosis-related proteins, inflammatory cytokines and transient receptor potential melastatin7 (TRPM7) were detected by western blot. Reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were detected by dichloro-dihydro-fluorescein diacetate (DCFH-DA) method using commercial kit. HULC, microRNA-204-5p (miR-204-5p) and TRPM7 expressions in serum of sepsis patients and human umbilical vein endothelial cells (HUVECs) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to confirm the interaction between HULC and miR-204-5p, miR-204-5p and TRPM7. LPS stimulation restrained cell viability and facilitated apoptosis, inflammatory injury and oxidative stress in HUVECs. HULC and TRPM7 were increased and accompanied with decreased miR-204-5p expression in serum of sepsis patients. A significant negative correlation between miR-204-5p and HULC or TRPM7 was observed, and there was a positive relationship between expressions of HULC and TRPM7. Importantly, LPS inhibited the cell viability and induced apoptosis, inflammatory injury and oxidative stress of HUVECs by up-regulating the expressions of HULC and TRPM7, and down-modulating miR-204-5p expression. Mechanically, HULC positively regulated TRPM7 expression by sponging miR-204-5p in HUVECs. LPS impaired cell viability, and promoted cell apoptosis, inflammatory response and oxidative stress in HUVECs by regulating HULC/miR-204-5p/TRPM7 axis.
Collapse
|
74
|
Mizoguchi Y, Ohgidani M, Haraguchi Y, Murakawa-Hirachi T, Kato TA, Monji A. ProBDNF induces sustained elevation of intracellular Ca 2+ possibly mediated by TRPM7 channels in rodent microglial cells. Glia 2021; 69:1694-1708. [PMID: 33740269 DOI: 10.1002/glia.23996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/07/2023]
Abstract
Microglia are intrinsic immune cells that release factors including pro- and anti-inflammatory cytokines, nitric oxide (NO) and neurotrophins following activation in the brain. Elevation of intracellular Ca2+ concentration ([Ca2+ ]i) is important for microglial functions, such as the release of cytokines or NO from activated microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia. Interestingly, proBDNF, the precursor form of mature BDNF, and mature BDNF elicit opposing neuronal responses in the brain. Mature BDNF induces sustained intracellular Ca2+ elevation through the upregulation of the surface expression of TRPC3 channels in rodent microglial cells. In addition, TRPC3 channels are important for the BDNF-induced suppression of NO production in activated microglia. In this study, we observed that proBDNF and mature BDNF have opposite effects on the relative expression of surface p75 neurotrophin receptor (p75NTR ) in rodent microglial cells. ProBDNF induces a sustained elevation of [Ca2+ ]i through binding to the p75NTR , which is possibly mediated by Rac 1 activation and TRPM7 channels in rodent microglial cells. Flow cytometry showed that proBDNF increased the relative surface expression of TRPM7. Although proBDNF did not affect either mRNA expression of pro- and anti-inflammatory cytokines or the phagocytic activity, proBDNF potentiates the generation of NO induced by IFN-γ and TRPM7 channels could be involved in the proBDNF-induced potentiation of IFN-γ-mediated production of NO. We show direct evidence that rodent microglial cells are able to respond to proBDNF, which might be important for the regulation of inflammatory responses in the brain.
Collapse
Affiliation(s)
- Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Masahiro Ohgidani
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan.,Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
75
|
Gagnon KB, Delpire E. Sodium Transporters in Human Health and Disease. Front Physiol 2021; 11:588664. [PMID: 33716756 PMCID: PMC7947867 DOI: 10.3389/fphys.2020.588664] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Sodium (Na+) electrochemical gradients established by Na+/K+ ATPase activity drives the transport of ions, minerals, and sugars in both excitable and non-excitable cells. Na+-dependent transporters can move these solutes in the same direction (cotransport) or in opposite directions (exchanger) across both the apical and basolateral plasma membranes of polarized epithelia. In addition to maintaining physiological homeostasis of these solutes, increases and decreases in sodium may also initiate, directly or indirectly, signaling cascades that regulate a variety of intracellular post-translational events. In this review, we will describe how the Na+/K+ ATPase maintains a Na+ gradient utilized by multiple sodium-dependent transport mechanisms to regulate glucose uptake, excitatory neurotransmitters, calcium signaling, acid-base balance, salt-wasting disorders, fluid volume, and magnesium transport. We will discuss how several Na+-dependent cotransporters and Na+-dependent exchangers have significant roles in human health and disease. Finally, we will discuss how each of these Na+-dependent transport mechanisms have either been shown or have the potential to use Na+ in a secondary role as a signaling molecule.
Collapse
Affiliation(s)
- Kenneth B. Gagnon
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Eric Delpire
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
76
|
Blay C, Haffray P, Bugeon J, D’Ambrosio J, Dechamp N, Collewet G, Enez F, Petit V, Cousin X, Corraze G, Phocas F, Dupont-Nivet M. Genetic Parameters and Genome-Wide Association Studies of Quality Traits Characterised Using Imaging Technologies in Rainbow Trout, Oncorhynchus mykiss. Front Genet 2021; 12:639223. [PMID: 33692832 PMCID: PMC7937956 DOI: 10.3389/fgene.2021.639223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
One of the top priorities of the aquaculture industry is the genetic improvement of economically important traits in fish, such as those related to processing and quality. However, the accuracy of genetic evaluations has been hindered by a lack of data on such traits from a sufficiently large population of animals. The objectives of this study were thus threefold: (i) to estimate genetic parameters of growth-, yield-, and quality-related traits in rainbow trout (Oncorhynchus mykiss) using three different phenotyping technologies [invasive and non-invasive: microwave-based, digital image analysis, and magnetic resonance imaging (MRI)], (ii) to detect quantitative trait loci (QTLs) associated with these traits, and (iii) to identify candidate genes present within these QTL regions. Our study collected data from 1,379 fish on growth, yield-related traits (body weight, condition coefficient, head yield, carcass yield, headless gutted carcass yield), and quality-related traits (total fat, percentage of fat in subcutaneous adipose tissue, percentage of fat in flesh, flesh colour); genotypic data were then obtained for all fish using the 57K SNP Axiom® Trout Genotyping array. Heritability estimates for most of the 14 traits examined were moderate to strong, varying from 0.12 to 0.67. Most traits were clearly polygenic, but our genome-wide association studies (GWASs) identified two genomic regions on chromosome 8 that explained up to 10% of the genetic variance (cumulative effects of two QTLs) for several traits (weight, condition coefficient, subcutaneous and total fat content, carcass and headless gutted carcass yields). For flesh colour traits, six QTLs explained 1-4% of the genetic variance. Within these regions, we identified several genes (htr1, gnpat, ephx1, bcmo1, and cyp2x) that have been implicated in adipogenesis or carotenoid metabolism, and thus represent good candidates for further functional validation. Finally, of the three techniques used for phenotyping, MRI demonstrated particular promise for measurements of fat content and distribution, while the digital image analysis-based approach was very useful in quantifying colour-related traits. This work provides new insights that may aid the development of commercial breeding programmes in rainbow trout, specifically with regard to the genetic improvement of yield and flesh-quality traits as well as the use of invasive and/or non-invasive technologies to predict such traits.
Collapse
Affiliation(s)
- Carole Blay
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | | - Jonathan D’Ambrosio
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
- SYSAAF, Station LPGP-INRAE, Rennes, France
| | - Nicolas Dechamp
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | | | | - Xavier Cousin
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
| | - Geneviève Corraze
- INRAE, University of Pau & Pays Adour, E2S UPPA, UMR 1419 NuMéA, Saint-Pée-sur-Nivelle, France
| | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | |
Collapse
|
77
|
Abstract
The transient receptor potential (TRP) channel superfamily is comprised of a large group of cation-permeable channels, which display an extraordinary diversity of roles in sensory signaling and are involved in plethora of animal behaviors. These channels are activated through a wide variety of mechanisms and participate in virtually every sensory modality. Modulating TRP channel activity provides an important way to regulate membrane excitability and intracellular calcium levels. This is reflected by the fact that small molecule compounds modulating different TRPs have all entered clinical trials for a variety of diseases. The role of TRPs will be further elucidated in complex diseases of the nervous, intestinal, renal, urogenital, respiratory, and cardiovascular systems in diverse therapeutic areas including pain and itch, headache, pulmonary function, oncology, neurology, visceral organs, and genetic diseases. This review focuses on recent developments in the TRP ion channel-related area and highlights evidence supporting TRP channels as promising targets for new analgesic drugs for therapeutic intervention. This review presents a variety of: (1) phylogeny aspects of TRP channels; (2) some structural and functional characteristics of TRPs; (3) a general view and short characteristics of main seven subfamilies of TRP channels; (4) the evidence for consider TRP channels as therapeutic and analgesic targets; and finally (5) further perspectives of TRP channels research.
Collapse
|
78
|
Mg 2+ Transporters in Digestive Cancers. Nutrients 2021; 13:nu13010210. [PMID: 33450887 PMCID: PMC7828344 DOI: 10.3390/nu13010210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
Despite magnesium (Mg2+) representing the second most abundant cation in the cell, its role in cellular physiology and pathology is far from being elucidated. Mg2+ homeostasis is regulated by Mg2+ transporters including Mitochondrial RNA Splicing Protein 2 (MRS2), Transient Receptor Potential Cation Channel Subfamily M, Member 6/7 (TRPM6/7), Magnesium Transporter 1 (MAGT1), Solute Carrier Family 41 Member 1 (SCL41A1), and Cyclin and CBS Domain Divalent Metal Cation Transport Mediator (CNNM) proteins. Recent data show that Mg2+ transporters may regulate several cancer cell hallmarks. In this review, we describe the expression of Mg2+ transporters in digestive cancers, the most common and deadliest malignancies worldwide. Moreover, Mg2+ transporters’ expression, correlation and impact on patient overall and disease-free survival is analyzed using Genotype Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) datasets. Finally, we discuss the role of these Mg2+ transporters in the regulation of cancer cell fates and oncogenic signaling pathways.
Collapse
|
79
|
Wang D, Zhu ZL, Lin DC, Zheng SY, Chuang KH, Gui LX, Yao RH, Zhu WJ, Sham JSK, Lin MJ. Magnesium Supplementation Attenuates Pulmonary Hypertension via Regulation of Magnesium Transporters. Hypertension 2020; 77:617-631. [PMID: 33356397 DOI: 10.1161/hypertensionaha.120.14909] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary hypertension (PH) is characterized by profound vascular remodeling and altered Ca2+ homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Magnesium ion (Mg2+), a natural Ca2+ antagonist and a cofactor for numerous enzymes, is crucial for regulating diverse cellular functions, but its roles in PH remains unclear. Here, we examined the roles of Mg2+ and its transporters in PH development. Chronic hypoxia and monocrotaline induced significant PH in adult male rats. It was associated with a reduction of [Mg2+]i in PASMCs, a significant increase in gene expressions of Cnnm2, Hip14, Hip14l, Magt1, Mmgt1, Mrs2, Nipa1, Nipa2, Slc41a1, Slc41a2 and Trpm7; upregulation of SLC41A1, SLC41A2, CNNM2, and TRPM7 proteins; and downregulation of SLC41A3 mRNA and protein. Mg2+ supplement attenuated pulmonary arterial pressure, right heart hypertrophy, and medial wall thickening of pulmonary arteries, and reversed the changes in the expression of Mg2+ transporters. Incubation of PASMCs with a high concentration of Mg2+ markedly inhibited PASMC proliferation and migration, and increased apoptosis, whereas a low level of Mg2+ produced the opposite effects. siRNA targeting Slc41a1/2, Cnnm2, and Trpm7 attenuated PASMC proliferation and migration, but promoted apoptosis; and Slc41a3 overexpression also caused similar effects. Moreover, siRNA targeting Slc41a1 or high [Mg2+] incubation inhibited hypoxia-induced upregulation and nuclear translocation of NFATc3 in PASMCs. The results, for the first time, provide the supportive evidence that Mg2+ transporters participate in the development of PH by modulating PASMC proliferation, migration, and apoptosis; and Mg2+ supplementation attenuates PH through regulation of Mg2+ transporters involving the NFATc3 signaling pathway.
Collapse
Affiliation(s)
- Dan Wang
- From the Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, (D.W., Z.-L.Z., D.-C.L., S.-Y.Z., K.-H.C., L.-X.G., R.-H.Y., W.-J.Z., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.,Department of Physiology and Pathophysiology (D.W., Z.-L.Z., D.-C.L., K.-H.C., R.-H.Y., W.-J.Z., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Zhuang-Li Zhu
- From the Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, (D.W., Z.-L.Z., D.-C.L., S.-Y.Z., K.-H.C., L.-X.G., R.-H.Y., W.-J.Z., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.,Department of Physiology and Pathophysiology (D.W., Z.-L.Z., D.-C.L., K.-H.C., R.-H.Y., W.-J.Z., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Da-Cen Lin
- From the Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, (D.W., Z.-L.Z., D.-C.L., S.-Y.Z., K.-H.C., L.-X.G., R.-H.Y., W.-J.Z., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.,Department of Physiology and Pathophysiology (D.W., Z.-L.Z., D.-C.L., K.-H.C., R.-H.Y., W.-J.Z., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Si-Yi Zheng
- From the Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, (D.W., Z.-L.Z., D.-C.L., S.-Y.Z., K.-H.C., L.-X.G., R.-H.Y., W.-J.Z., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Kun-Han Chuang
- From the Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, (D.W., Z.-L.Z., D.-C.L., S.-Y.Z., K.-H.C., L.-X.G., R.-H.Y., W.-J.Z., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Long-Xin Gui
- From the Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, (D.W., Z.-L.Z., D.-C.L., S.-Y.Z., K.-H.C., L.-X.G., R.-H.Y., W.-J.Z., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Ru-Hui Yao
- From the Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, (D.W., Z.-L.Z., D.-C.L., S.-Y.Z., K.-H.C., L.-X.G., R.-H.Y., W.-J.Z., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.,Department of Physiology and Pathophysiology (D.W., Z.-L.Z., D.-C.L., K.-H.C., R.-H.Y., W.-J.Z., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Wei-Jie Zhu
- From the Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, (D.W., Z.-L.Z., D.-C.L., S.-Y.Z., K.-H.C., L.-X.G., R.-H.Y., W.-J.Z., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.,Department of Physiology and Pathophysiology (D.W., Z.-L.Z., D.-C.L., K.-H.C., R.-H.Y., W.-J.Z., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (J.S.K.S.)
| | - Mo-Jun Lin
- From the Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, (D.W., Z.-L.Z., D.-C.L., S.-Y.Z., K.-H.C., L.-X.G., R.-H.Y., W.-J.Z., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.,Department of Physiology and Pathophysiology (D.W., Z.-L.Z., D.-C.L., K.-H.C., R.-H.Y., W.-J.Z., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| |
Collapse
|
80
|
Hu F, Li M, Han F, Zhang Q, Zeng Y, Zhang W, Cheng X. Role of TRPM7 in cardiac fibrosis: A potential therapeutic target (Review). Exp Ther Med 2020; 21:173. [PMID: 33456540 PMCID: PMC7792474 DOI: 10.3892/etm.2020.9604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibrosis is a hallmark of cardiac remodeling associated with nearly all forms of heart disease. Clinically, no effective therapeutic drugs aim to inhibit cardiac fibrosis, owing to the complex etiological heterogeneity and pathogenesis of this disease. A two-in-one protein structure, a ubiquitous expression profile and unique biophysical characteristics enable the involvement of transient receptor potential melastatin-subfamily member 7 (TRPM7) in the pathogenesis and development of fibrosis-related cardiac diseases, such as heart failure (HF), cardiomyopathies, arrhythmia and hyperaldosteronism. In response to a variety of stimuli, multiple bioactive molecules can activate TRPM7 and related signaling pathways, leading to fibroblast proliferation, differentiation and extracellular matrix production in cardiac fibroblasts. TRPM7-mediated Ca2+ signaling and TGF-β1 signaling pathways are critical for the formation of fibrosis. Accumulating evidence has demonstrated that TRPM7 is a potential pharmacological target for halting the development of fibrotic cardiac diseases. Reliable drug-like molecules for further development of high-affinity in vivo drugs targeting TRPM7 are urgently needed. The present review discusses the widespread and significant role of TRPM7 in cardiac fibrosis and focuses on its potential as a therapeutic target for alleviating heart fibrogenesis.
Collapse
Affiliation(s)
- Feng Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meiyong Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fengyu Han
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing Zhang
- Department of Cardiology, The Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yuhao Zeng
- Department of Medical Education, The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
81
|
Wong R, Gong H, Alanazi R, Bondoc A, Luck A, Sabha N, Horgen FD, Fleig A, Rutka JT, Feng ZP, Sun HS. Inhibition of TRPM7 with waixenicin A reduces glioblastoma cellular functions. Cell Calcium 2020; 92:102307. [PMID: 33080445 DOI: 10.1016/j.ceca.2020.102307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumour originating in the CNS. Median patient survival is <15 months with standard treatment which consists of surgery alongside radiation therapy and temozolomide chemotherapy. However, because of the aggressive nature of GBM, and the significant toxicity of these adjuvant therapies, long-term therapeutic effects are unsatisfactory. Thus, there is urgency to identify new drug targets for GBM. Recent evidence shows that the transient receptor potential melastatin 7 (TRPM7) cation channel is aberrantly upregulated in GBM and its inhibition leads to reduction of GBM cellular functions. This suggests that TRPM7 may be a potential drug target for GBM treatment. In this study, we assessed the effects of the specific TRPM7 antagonist waixenicin A on human GBM cell lines U87 or U251 both in vitro and in vivo. First, we demonstrated in vitro that application of waixenicin A reduced TRPM7 protein expression and inhibited the TRPM7-like currents in GBM cells. We also observed reduction of GBM cell viability, migration, and invasion. Using an intracranial xenograft GBM mouse model, we showed that with treatment of waixenicin A, there was increased cleaved caspase 3 activity, alongside reduction in Ki-67, cofilin, and Akt activity in vivo. Together, these data demonstrate higher GBM cell apoptosis, and lower proliferation, migration, invasion and survivability following treatment with waixenicin A.
Collapse
Affiliation(s)
- Raymond Wong
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Haifan Gong
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Rahmah Alanazi
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Andrew Bondoc
- Departments of Cell Biology SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Amanda Luck
- Departments of Cell Biology SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Nesrin Sabha
- Departments of Genetics and Genome Biology, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii, 96744, USA
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine at the University of Hawaii, Honolulu, Hawaii, 96720, USA
| | - James T Rutka
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Hong-Shuo Sun
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.
| |
Collapse
|
82
|
Simard C, Magaud C, Adjlane R, Dupas Q, Sallé L, Manrique A, Bois P, Faivre JF, Guinamard R. TRPM4 non-selective cation channel in human atrial fibroblast growth. Pflugers Arch 2020; 472:1719-1732. [PMID: 33047172 DOI: 10.1007/s00424-020-02476-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/26/2022]
Abstract
Cardiac fibroblasts play an important role in cardiac matrix turnover and are involved in cardiac fibrosis development. Ca2+ is a driving belt in this phenomenon. This study evaluates the functional expression and contribution of the Ca2+-activated channel TRPM4 in atrial fibroblast phenotype. Molecular and electrophysiological investigations were conducted in human atrial fibroblasts in primary culture and in atrial fibroblasts obtained from wild-type and transgenic mice with disrupted Trpm4 gene (Trpm4-/-). A typical TRPM4 current was recorded on human cells (equal selectivity for Na+ and K+, activation by internal Ca2+, voltage sensitivity, conductance of 23.2 pS, inhibition by 9-phenanthrol (IC50 = 6.1 × 10-6 mol L-1)). Its detection rate was 13% on patches at days 2-4 in culture but raised to 100% on patches at day 28. By the same time, a cell growth was observed. This growth was smaller when cells were maintained in the presence of 9-phenanthrol. Similar cell growth was measured on wild-type mice atrial fibroblasts during culture. However, this growth was minimized on Trpm4-/- mice fibroblasts compared to control animals. In addition, the expression of alpha smooth muscle actin increased during culture of atrial fibroblasts from wild-type mice. This was not observed in Trpm4-/- mice fibroblasts. It is concluded that TRPM4 participates in fibroblast growth and could thus be involved in cardiac fibrosis.
Collapse
Affiliation(s)
- Christophe Simard
- Groupe Signalisation, Electrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, EA4650, GIP Cyceron, Université de Caen Normandie, Sciences D, Esplanade de la Paix, 14032, Caen Cedex 5, France
| | - Christophe Magaud
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), Université de Poitiers, CNRS, Poitiers, France
| | - Racim Adjlane
- Groupe Signalisation, Electrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, EA4650, GIP Cyceron, Université de Caen Normandie, Sciences D, Esplanade de la Paix, 14032, Caen Cedex 5, France
| | - Quentin Dupas
- Groupe Signalisation, Electrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, EA4650, GIP Cyceron, Université de Caen Normandie, Sciences D, Esplanade de la Paix, 14032, Caen Cedex 5, France
| | - Laurent Sallé
- Groupe Signalisation, Electrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, EA4650, GIP Cyceron, Université de Caen Normandie, Sciences D, Esplanade de la Paix, 14032, Caen Cedex 5, France
| | - Alain Manrique
- Groupe Signalisation, Electrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, EA4650, GIP Cyceron, Université de Caen Normandie, Sciences D, Esplanade de la Paix, 14032, Caen Cedex 5, France
| | - Patrick Bois
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), Université de Poitiers, CNRS, Poitiers, France
| | - Jean-François Faivre
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), Université de Poitiers, CNRS, Poitiers, France
| | - Romain Guinamard
- Groupe Signalisation, Electrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, EA4650, GIP Cyceron, Université de Caen Normandie, Sciences D, Esplanade de la Paix, 14032, Caen Cedex 5, France.
| |
Collapse
|
83
|
Krzywoszyńska K, Witkowska D, Świątek-Kozłowska J, Szebesczyk A, Kozłowski H. General Aspects of Metal Ions as Signaling Agents in Health and Disease. Biomolecules 2020; 10:biom10101417. [PMID: 33036384 PMCID: PMC7600656 DOI: 10.3390/biom10101417] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the current knowledge on the involvement of metal ions in signaling processes within the cell, in both physiological and pathological conditions. The first section is devoted to the recent discoveries on magnesium and calcium-dependent signal transduction-the most recognized signaling agents among metals. The following sections then describe signaling pathways where zinc, copper, and iron play a key role. There are many systems in which changes in intra- and extra-cellular zinc and copper concentrations have been linked to important downstream events, especially in nervous signal transduction. Iron signaling is mostly related with its homeostasis. However, it is also involved in a recently discovered type of programmed cell death, ferroptosis. The important differences in metal ion signaling, and its disease-leading alterations, are also discussed.
Collapse
Affiliation(s)
- Karolina Krzywoszyńska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Jolanta Świątek-Kozłowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Agnieszka Szebesczyk
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Henryk Kozłowski
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| |
Collapse
|
84
|
A Review of the Action of Magnesium on Several Processes Involved in the Modulation of Hematopoiesis. Int J Mol Sci 2020; 21:ijms21197084. [PMID: 32992944 PMCID: PMC7582682 DOI: 10.3390/ijms21197084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Magnesium (Mg2+) is an essential mineral for the functioning and maintenance of the body. Disturbances in Mg2+ intracellular homeostasis result in cell-membrane modification, an increase in oxidative stress, alteration in the proliferation mechanism, differentiation, and apoptosis. Mg2+ deficiency often results in inflammation, with activation of inflammatory pathways and increased production of proinflammatory cytokines by immune cells. Immune cells and others that make up the blood system are from hematopoietic tissue in the bone marrow. The hematopoietic tissue is a tissue with high indices of renovation, and Mg2+ has a pivotal role in the cell replication process, as well as DNA and RNA synthesis. However, the impact of the intra- and extracellular disturbance of Mg2+ homeostasis on the hematopoietic tissue is little explored. This review deals specifically with the physiological requirements of Mg2+ on hematopoiesis, showing various studies related to the physiological requirements and the effects of deficiency or excess of this mineral on the hematopoiesis regulation, as well as on the specific process of erythropoiesis, granulopoiesis, lymphopoiesis, and thrombopoiesis. The literature selected includes studies in vitro, in animal models, and in humans, giving details about the impact that alterations of Mg2+ homeostasis can have on hematopoietic cells and hematopoietic tissue.
Collapse
|
85
|
Mapping TRPM7 Function by NS8593. Int J Mol Sci 2020; 21:ijms21197017. [PMID: 32977698 PMCID: PMC7582524 DOI: 10.3390/ijms21197017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a ubiquitously expressed membrane protein, which forms a channel linked to a cytosolic protein kinase. Genetic inactivation of TRPM7 in animal models uncovered the critical role of TRPM7 in early embryonic development, immune responses, and the organismal balance of Zn2+, Mg2+, and Ca2+. TRPM7 emerged as a new therapeutic target because malfunctions of TRPM7 have been associated with anoxic neuronal death, tissue fibrosis, tumour progression, and giant platelet disorder. Recently, several laboratories have identified pharmacological compounds allowing to modulate either channel or kinase activity of TRPM7. Among other small molecules, NS8593 has been defined as a potent negative gating regulator of the TRPM7 channel. Consequently, several groups applied NS8593 to investigate cellular pathways regulated by TRPM7. Here, we summarize the progress in this research area. In particular, two notable milestones have been reached in the assessment of TRPM7 druggability. Firstly, several laboratories demonstrated that NS8593 treatment reliably mirrors prominent phenotypes of cells manipulated by genetic inactivation of TRPM7. Secondly, it has been shown that NS8593 allows us to probe the therapeutic potential of TRPM7 in animal models of human diseases. Collectively, these studies employing NS8593 may serve as a blueprint for the preclinical assessment of TRPM7-targeting drugs.
Collapse
|
86
|
Mellott A, Rockwood J, Zhelay T, Luu CT, Kaitsuka T, Kozak JA. TRPM7 channel activity in Jurkat T lymphocytes during magnesium depletion and loading: implications for divalent metal entry and cytotoxicity. Pflugers Arch 2020; 472:1589-1606. [PMID: 32964285 DOI: 10.1007/s00424-020-02457-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
TRPM7 is a cation channel-protein kinase highly expressed in T lymphocytes and other immune cells. It has been proposed to constitute a cellular entry pathway for Mg2+ and divalent metal cations such as Ca2+, Zn2+, Cd2+, Mn2+, and Ni2+. TRPM7 channels are inhibited by cytosolic Mg2+, rendering them largely inactive in intact cells. The dependence of channel activity on extracellular Mg2+ is less well studied. Here, we measured native TRPM7 channel activity in Jurkat T cells maintained in external Mg2+ concentrations varying between 400 nM and 1.4 mM for 1-3 days, obtaining an IC50 value of 54 μM. Maintaining the cells in 400 nM or 8 μM [Mg2+]o resulted in almost complete activation of TRPM7 in intact cells, due to cytosolic Mg2+ depletion. A total of 1.4 mM [Mg2+]o was sufficient to fully eliminate the basal current. Submillimolar concentrations of amiloride prevented cellular Mg2+ depletion but not loading. We investigated whether the cytotoxicity of TRPM7 permeant metal ions Ni2+, Zn2+, Cd2+, Co2+, Mn2+, Sr2+, and Ba2+ requires TRPM7 channel activity. Mg2+ loading modestly reduced cytotoxicity of Zn2+, Co2+, Ni2+, and Mn2+ but not of Cd2+. Channel blocker NS8593 reduced Co2+ and Mn2+ but not Cd2+ or Zn2+ cytotoxicity and interfered with Mg2+ loading as evaluated by TRPM7 channel basal activity. Ba2+ and Sr2+ were neither detectably toxic nor permeant through the plasma membrane. These results indicate that in Jurkat T cells, entry of toxic divalent metal cations primarily occurs through pathways distinct from TRPM7. By contrast, we found evidence that Mg2+ entry requires TRPM7 channels.
Collapse
Affiliation(s)
- Alayna Mellott
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Jananie Rockwood
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Tetyana Zhelay
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Charles Tuan Luu
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Taku Kaitsuka
- School of Pharmacy in Fukuoka, International University of Health and Welfare, Enokizu 137-1, Okawa, Fukuoka, Japan
| | - J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
87
|
Lee EH, Chun SY, Kim B, Yoon BH, Lee JN, Kim BS, Yoo ES, Lee S, Song PH, Kwon TG, Ha YS. Knockdown of TRPM7 prevents tumor growth, migration, and invasion through the Src, Akt, and JNK pathway in bladder cancer. BMC Urol 2020; 20:145. [PMID: 32907556 PMCID: PMC7488071 DOI: 10.1186/s12894-020-00714-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Background Bladder cancer (BC) is one of the most common malignancies of the urinary tract. The role of transient receptor potential melastatin 7 (TRPM7) in BC remains unclear. The aim of this study was to investigate the function and signal transduction pathway of TRPM7 in BC. Methods T24 and UMUC3 cells were used to evaluate the molecular mechanism of TRPM7 by immunoblot analysis. Small interfering RNA was used to knockdown TRPM7, and the effect of silencing TRPM7 was studied by wound healing, migration, and invasion assays in T24 and UMUC3 cells. Xenograft model study was obtained to analyze the effect of TRPM7 inhibition in vivo. Results Silencing of TRPM7 decreased the migration and invasion ability of T24 and UMUC3 cells. The phosphorylation of Src, Akt, and JNK (c-Jun N-terminal kinase) was also suppressed by TRPM7 silencing. Src, Akt, and JNK inhibitors effectively inhibited the migration and invasion of T24 and UMUC3 cells. In addition, the TRPM7 inhibitor, carvacrol, limited the tumor size in a xenograft model. Conclusion Our data reveal that TRPM7 regulates the migration and invasion of T24 and UMUC3 cells via the Src, Akt, and JNK signaling pathway. Therefore, TRPM7 suppression could be a potential treatment for BC patients.
Collapse
Affiliation(s)
- Eun Hye Lee
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Bomi Kim
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Bo Hyun Yoon
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jun Nyung Lee
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea.,Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Bum Soo Kim
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea.,Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Eun Sang Yoo
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Phil Hyun Song
- Department of Urology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Tae Gyun Kwon
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea. .,Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea. .,Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.
| | - Yun-Sok Ha
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea. .,Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea. .,Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.
| |
Collapse
|
88
|
Zou ZG, Rios F, Neves K, Alves-Lopes R, Ling J, Baillie G, Gao X, Fuller W, Camargo L, Gudermann T, Chubanov V, Montezano A, Touyz R. Epidermal growth factor signaling through transient receptor potential melastatin 7 cation channel regulates vascular smooth muscle cell function. Clin Sci (Lond) 2020; 134:2019-2035. [PMID: 32706027 PMCID: PMC8299307 DOI: 10.1042/cs20200827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/12/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Transient receptor potential (TRP) melastatin 7 (TRPM7) cation channel, a dual-function ion channel/protein kinase, regulates vascular smooth muscle cell (VSMC) Mg2+ homeostasis and mitogenic signaling. Mechanisms regulating vascular growth effects of TRPM7 are unclear, but epidermal growth factor (EGF) may be important because it is a magnesiotropic hormone involved in cellular Mg2+ regulation and VSMC proliferation. Here we sought to determine whether TRPM7 is a downstream target of EGF in VSMCs and if EGF receptor (EGFR) through TRPM7 influences VSMC function. Approach and results: Studies were performed in primary culture VSMCs from rats and humans and vascular tissue from mice deficient in TRPM7 (TRPM7+/Δkinase and TRPM7R/R). EGF increased expression and phosphorylation of TRPM7 and stimulated Mg2+ influx in VSMCs, responses that were attenuated by gefitinib (EGFR inhibitor) and NS8593 (TRPM7 inhibitor). Co-immunoprecipitation (IP) studies, proximity ligation assay (PLA) and live-cell imaging demonstrated interaction of EGFR and TRPM7, which was enhanced by EGF. PP2 (c-Src inhibitor) decreased EGF-induced TRPM7 activation and prevented EGFR-TRPM7 association. EGF-stimulated migration and proliferation of VSMCs were inhibited by gefitinib, PP2, NS8593 and PD98059 (ERK1/2 inhibitor). Phosphorylation of EGFR and ERK1/2 was reduced in VSMCs from TRPM7+/Δkinase mice, which exhibited reduced aortic wall thickness and decreased expression of PCNA and Notch 3, findings recapitulated in TRPM7R/R mice. CONCLUSIONS We show that EGFR directly interacts with TRPM7 through c-Src-dependent processes. Functionally these phenomena regulate [Mg2+]i homeostasis, ERK1/2 signaling and VSMC function. Our findings define a novel signaling cascade linking EGF/EGFR and TRPM7, important in vascular homeostasis.
Collapse
Affiliation(s)
- Zhi-Guo Zou
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Francisco J. Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Karla B. Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Rheure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Jiayue Ling
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - George S. Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Xing Gao
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - William Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Livia L. Camargo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität München, Goethestrasse 33, Munich 80336, Germany
| | - Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität München, Goethestrasse 33, Munich 80336, Germany
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
89
|
Zhou D, Wang L, Cui Q, Iftikhar R, Xia Y, Xu P. Repositioning Lidocaine as an Anticancer Drug: The Role Beyond Anesthesia. Front Cell Dev Biol 2020; 8:565. [PMID: 32766241 PMCID: PMC7379838 DOI: 10.3389/fcell.2020.00565] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
While cancer treatment has improved dramatically, it has also encountered many critical challenges, such as disease recurrence, metastasis, and drug resistance, making new drugs with novel mechanisms an urgent clinical need. The term “drug repositioning,” also known as old drugs for new uses, has emerged as one practical strategy to develop new anticancer drugs. Anesthetics have been widely used in surgical procedures to reduce the excruciating pain. Lidocaine, one of the most-used local anesthetics in clinical settings, has been found to show multi-activities, including potential in cancer treatment. Growing evidence shows that lidocaine may not only work as a chemosensitizer that sensitizes other conventional chemotherapeutics to certain resistant cancer cells, but also could suppress cancer cells growth by single use at different doses or concentrations. Lidocaine could suppress cancer cell growth in vitro and in vivo via multiple mechanisms, such as regulating epigenetic changes and promoting pro-apoptosis pathways, as well as regulating ABC transporters, metastasis, and angiogenesis, etc., providing valuable information for its further application in cancer treatment and for new drug discovery. In addition, lidocaine is now under clinical trials to treat certain types of cancer. In the current review, we summarize the research and analyze the underlying mechanisms, and address key issues in this area.
Collapse
Affiliation(s)
- Daipeng Zhou
- Department of Anesthesiology, Pinghu First People's Hospital, Jiaxing, China
| | - Lei Wang
- Department of Anesthesiology, Pinghu First People's Hospital, Jiaxing, China
| | - Qingbin Cui
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Ryma Iftikhar
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yanfei Xia
- Department of Anesthesiology, Zhejiang Hospital, Hangzhou, China
| | - Peng Xu
- Department of Anesthesiology, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
90
|
Leverrier-Penna S, Destaing O, Penna A. Insights and perspectives on calcium channel functions in the cockpit of cancerous space invaders. Cell Calcium 2020; 90:102251. [PMID: 32683175 DOI: 10.1016/j.ceca.2020.102251] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Development of metastasis causes the most serious clinical consequences of cancer and is responsible for over 90 % of cancer-related deaths. Hence, a better understanding of the mechanisms that drive metastasis formation appears critical for drug development designed to prevent the spread of cancer and related mortality. Metastasis dissemination is a multistep process supported by the increased motility and invasiveness capacities of tumor cells. To succeed in overcoming the mechanical constraints imposed by the basement membrane and surrounding tissues, cancer cells reorganize their focal adhesions or extend acto-adhesive cellular protrusions, called invadosomes, that can both contact the extracellular matrix and tune its degradation through metalloprotease activity. Over the last decade, accumulating evidence has demonstrated that altered Ca2+ channel activities and/or expression promote tumor cell-specific phenotypic changes, such as exacerbated migration and invasion capacities, leading to metastasis formation. While several studies have addressed the molecular basis of Ca2+ channel-dependent cancer cell migration, we are still far from having a comprehensive vision of the Ca2+ channel-regulated mechanisms of migration/invasion. This is especially true regarding the specific context of invadosome-driven invasion. This review aims to provide an overview of the current evidence supporting a central role for Ca2+ channel-dependent signaling in the regulation of these dynamic degradative structures. It will present available data on the few Ca2+ channels that have been studied in that specific context and discuss some potential interesting actors that have not been fully explored yet.
Collapse
Affiliation(s)
| | - Olivier Destaing
- Institute for Advanced BioSciences, CNRS UMR 5309, INSERM U1209, Institut Albert Bonniot, University Grenoble Alpes, 38700 Grenoble, France.
| | - Aubin Penna
- STIM, CNRS ERL7003, University of Poitiers, 86000 Poitiers, France.
| |
Collapse
|
91
|
López-Romero AE, Hernández-Araiza I, Torres-Quiroz F, Tovar-Y-Romo LB, Islas LD, Rosenbaum T. TRP ion channels: Proteins with conformational flexibility. Channels (Austin) 2020; 13:207-226. [PMID: 31184289 PMCID: PMC6602575 DOI: 10.1080/19336950.2019.1626793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ion channels display conformational changes in response to binding of their agonists and antagonists. The study of the relationships between the structure and the function of these proteins has witnessed considerable advances in the last two decades using a combination of techniques, which include electrophysiology, optical approaches (i.e. patch clamp fluorometry, incorporation of non-canonic amino acids, etc.), molecular biology (mutations in different regions of ion channels to determine their role in function) and those that have permitted the resolution of their structures in detail (X-ray crystallography and cryo-electron microscopy). The possibility of making correlations among structural components and functional traits in ion channels has allowed for more refined conclusions on how these proteins work at the molecular level. With the cloning and description of the family of Transient Receptor Potential (TRP) channels, our understanding of several sensory-related processes has also greatly moved forward. The response of these proteins to several agonists, their regulation by signaling pathways as well as by protein-protein and lipid-protein interactions and, in some cases, their biophysical characteristics have been studied thoroughly and, recently, with the resolution of their structures, the field has experienced a new boom. This review article focuses on the conformational changes in the pores, concentrating on some members of the TRP family of ion channels (TRPV and TRPA subfamilies) that result in changes in their single-channel conductances, a phenomenon that may lead to fine-tuning the electrical response to a given agonist in a cell.
Collapse
Affiliation(s)
- Ana Elena López-Romero
- a Departamento de Neurociencia Cognitiva, División Neurociencias , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico , Mexico
| | - Ileana Hernández-Araiza
- a Departamento de Neurociencia Cognitiva, División Neurociencias , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico , Mexico
| | - Francisco Torres-Quiroz
- b Departamento de Bioquímica y Biología Estructural, División Investigación Básica , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Luis B Tovar-Y-Romo
- c Departamento de Neuropatología Molecular, División Neurociencias , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - León D Islas
- d Departamento de Fisiología, Facultad de Medicina , Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Tamara Rosenbaum
- a Departamento de Neurociencia Cognitiva, División Neurociencias , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico , Mexico
| |
Collapse
|
92
|
Stokłosa P, Borgström A, Kappel S, Peinelt C. TRP Channels in Digestive Tract Cancers. Int J Mol Sci 2020; 21:E1877. [PMID: 32182937 PMCID: PMC7084354 DOI: 10.3390/ijms21051877] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Cancers of the digestive tract are among the most prevalent types of cancer. These types of cancers are often diagnosed at a late stage, which results in a poor prognosis. Currently, many biomedical studies focus on the role of ion channels, in particular transient receptor potential (TRP) channels, in cancer pathophysiology. TRP channels show mostly non-selective permeability to monovalent and divalent cations. TRP channels are often dysregulated in digestive tract cancers, which can result in alterations of cancer hallmark functions, such as enhanced proliferation, migration, invasion and the inability to induce apoptosis. Therefore, TRP channels could serve as potential diagnostic biomarkers. Moreover, TRP channels are mostly expressed on the cell surface and ion channel targeting drugs do not need to enter the cell, making them attractive candidate drug targets. In this review, we summarize the current knowledge about TRP channels in connection to digestive tract cancers (oral cancer, esophageal cancer, liver cancer, pancreatic cancer, gastric cancer and colorectal cancer) and give an outlook on the potential of TRP channels as cancer biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, 3012 Bern, Switzerland; (A.B.); (S.K.); (C.P.)
| | | | | | | |
Collapse
|
93
|
Souza Bomfim GH, Costiniti V, Li Y, Idaghdour Y, Lacruz RS. TRPM7 activation potentiates SOCE in enamel cells but requires ORAI. Cell Calcium 2020; 87:102187. [PMID: 32146159 DOI: 10.1016/j.ceca.2020.102187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022]
Abstract
Calcium (Ca2+) release-activated Ca2+ (CRAC) channels mediated by STIM1/2 and ORAI (ORAI1-3) proteins form the dominant store-operated Ca2+ entry (SOCE) pathway in a wide variety of cells. Among these, the enamel-forming cells known as ameloblasts rely on CRAC channel function to enable Ca2+ influx, which is important for enamel mineralization. This key role of the CRAC channel is supported by human mutations and animal models lacking STIM1 and ORAI1, which results in enamel defects and hypomineralization. A number of recent reports have highlighted the role of the chanzyme TRPM7 (transient receptor potential melastanin 7), a transmembrane protein containing an ion channel permeable to divalent cations (Mg2+, Ca2+), as a modulator of SOCE. This raises the question as to whether TRPM7 should be considered an alternative route for Ca2+ influx, or if TRPM7 modifies CRAC channel activity in enamel cells. To address these questions, we monitored Ca2+ influx mediated by SOCE using the pharmacological TRPM7 activator naltriben and the inhibitor NS8593 in rat primary enamel cells and in the murine ameloblast cell line LS8 cells stimulated with thapsigargin. We also measured Ca2+ dynamics in ORAI1/2-deficient (shOrai1/2) LS8 cells and in cells with siRNA knock-down of Trpm7. We found that primary enamel cells stimulated with the TRPM7 activator potentiated Ca2+ influx via SOCE compared to control cells. However, blockade of TRPM7 with NS8593 did not decrease the SOCE peak. Furthermore, activation of TRPM7 in shOrai1/2 LS8 cells lacking SOCE failed to elicit Ca2+ influx, and Trpm7 knock-down had no effect on SOCE. Taken together, our data suggest that TRPM7 is a positive modulator of SOCE potentiating Ca2+ influx in enamel cells, but its function is fully dependent on the prior activation of the ORAI channels.
Collapse
Affiliation(s)
- Guilherme H Souza Bomfim
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Veronica Costiniti
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yi Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Youssef Idaghdour
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
94
|
TRPM7 mediates kidney injury, endothelial hyperpermeability and mortality during endotoxemia. J Transl Med 2020; 100:234-249. [PMID: 31444399 DOI: 10.1038/s41374-019-0304-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Sepsis is the main cause of mortality in patients admitted to intensive care units. During sepsis, endothelial permeability is severely augmented, contributing to renal dysfunction and patient mortality. Ca2+ influx and the subsequent increase in intracellular [Ca2+]i in endothelial cells (ECs) are key steps in the establishment of endothelial hyperpermeability. Transient receptor potential melastatin 7 (TRPM7) ion channels are permeable to Ca2+ and are expressed in a broad range of cell types and tissues, including ECs and kidneys. However, the role of TRPM7 on endothelial hyperpermeability during sepsis has remained elusive. Therefore, we investigated the participation of TRPM7 in renal vascular hyperpermeability, renal dysfunction, and enhanced mortality induced by endotoxemia. Our results showed that endotoxin increases endothelial hyperpermeability and Ca2+ overload through the TLR4/NOX-2/ROS/NF-κB pathway. Moreover, endotoxin exposure was shown to downregulate the expression of VE-cadherin, compromising monolayer integrity and enhancing vascular hyperpermeability. Notably, endotoxin-induced endothelial hyperpermeability was substantially inhibited by pharmacological inhibition and specific suppression of TRPM7 expression. The endotoxin was shown to upregulate the expression of TRPM7 via the TLR4/NOX-2/ROS/NF-κB pathway and induce a TRPM7-dependent EC Ca2+ overload. Remarkably, in vivo experiments performed in endotoxemic animals showed that pharmacological inhibition and specific suppression of TRPM7 expression inhibits renal vascular hyperpermeability, prevents kidney dysfunction, and improves survival in endotoxemic animals. Therefore, our results showed that TRPM7 mediates endotoxemia-induced endothelial hyperpermeability, renal dysfunction, and enhanced mortality, revealing a novel molecular target for treating renal vascular hyperpermeability and kidney dysfunction during endotoxemia, sepsis, and other inflammatory diseases.
Collapse
|
95
|
Ghali GZ, Ghali MGZ. Nafamostat mesylate attenuates the pathophysiologic sequelae of neurovascular ischemia. Neural Regen Res 2020; 15:2217-2234. [PMID: 32594033 PMCID: PMC7749469 DOI: 10.4103/1673-5374.284981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nafamostat mesylate, an apparent soi-disant panacea of sorts, is widely used to anticoagulate patients undergoing hemodialysis or cardiopulmonary bypass, mitigate the inflammatory response in patients diagnosed with acute pancreatitis, and reverse the coagulopathy of patients experiencing the commonly preterminal disseminated intravascular coagulation in the Far East. The serine protease inhibitor nafamostat mesylate exhibits significant neuroprotective effects in the setting of neurovascular ischemia. Nafamostat mesylate generates neuroprotective effects by attenuating the enzymatic activity of serine proteases, neuroinflammatory signaling cascades, and the endoplasmic reticulum stress responses, downregulating excitotoxic transient receptor membrane channel subfamily 7 cationic currents, modulating the activity of intracellular signal transduction pathways, and supporting neuronal survival (brain-derived neurotrophic factor/TrkB/ERK1/2/CREB, nuclear factor kappa B. The effects collectively reduce neuronal necrosis and apoptosis and prevent ischemia mediated disruption of blood-brain barrier microarchitecture. Investigational clinical applications of these compounds may mitigate ischemic reperfusion injury in patients undergoing cardiac, hepatic, renal, or intestinal transplant, preventing allograft rejection, and treating solid organ malignancies. Neuroprotective effects mediated by nafamostat mesylate support the wise conduct of randomized prospective controlled trials in Western countries to evaluate the clinical utility of this compound.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA; Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
96
|
Liu J, Zhang S, Dai W, Xie C, Li JC. A Comprehensive Prognostic and Immune Analysis of SLC41A3 in Pan-Cancer. Front Oncol 2020; 10:586414. [PMID: 33520701 PMCID: PMC7841432 DOI: 10.3389/fonc.2020.586414] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023] Open
Abstract
SLC41A3, as a member of the 41st family of solute carriers, participates in the transport of magnesium. The role of SLC41A3 in cancer prognosis and immune regulation has rarely been reported. This study was designed to analyze the expression status and prognostic significance of SLC41A3 in pan-cancers. The mRNA expression profiles of SLC41A3 were obtained from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx), the Broad Institute Cancer Cell Line Encyclopedia (CCLE), and the International Cancer Genome Consortium (ICGC). The Cox regression and Kaplan-Meier analyses were used to evaluate the prognostic value of SLC41A3 in pan-cancer. Furthermore, the correlation between SLC41A3 expression and immune cells infiltration, immune checkpoint, mismatch repair (MMR), DNA methyltransferase (DNMT), tumor mutation burden (TMB), and microsatellite instability (MSI) were calculated using data form TCGA database. The results showed that the expression of SLC41A3 was down-regulated in kidney renal clear cell carcinoma (KIRC), and was associated with poor overall survival and tumor-specific mortality. Whereas, the expression of SLC41A3 was up-regulated in liver hepatocellular carcinoma (LIHC), and the results of Cox regression analysis revealed that SLC41A3 was an independent factor for LIHC prognosis. Meanwhile, a nomogram including SLC41A3 and stage was built and exhibited good predictive power for the overall survival of LIHC patients. Additionally, correlation analysis suggested a significant correlation between SLC41A3 and TMB, MSI, MMR, DNMT, and immune cells infiltration in various cancers. The overall survival and disease-specific survival analysis revealed that the combined SLC41A3 expression and immune cell score, TMB, and MSI were significantly associated with clinical outcomes in ACC, LIHC, and UVM patients. Therefore, we proposed that SLC41A3 may serve as a potential prognostic biomarker for cancer.
Collapse
Affiliation(s)
- Jun Liu
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Shanqiang Zhang
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Wenjie Dai
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Chongwei Xie
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Ji-Cheng Li
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
- Institute of Cell Biology, Zhejiang University, Hangzhou, China
- *Correspondence: Ji-Cheng Li,
| |
Collapse
|
97
|
Sunarso, Tsuchiya A, Toita R, Tsuru K, Ishikawa K. Enhanced Osseointegration Capability of Poly(ether ether ketone) via Combined Phosphate and Calcium Surface-Functionalization. Int J Mol Sci 2019; 21:E198. [PMID: 31892154 PMCID: PMC6981423 DOI: 10.3390/ijms21010198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023] Open
Abstract
Biomedical applications of poly(ether ether ketone) (PEEK) are hindered by its inherent bioinertness and lack of osseointegration capability. In the present study, to enhance osteogenic activity and, hence, the osseointegration capability of PEEK, we proposed a strategy of combined phosphate and calcium surface-functionalization, in which ozone-gas treatment and wet chemistry were used for introduction of hydroxyl groups and modification of phosphate and/or calcium, respectively. Surface functionalization significantly elevated the surface hydrophilicity without changing the surface roughness or topography. The cell study demonstrated that immobilization of phosphate or calcium increased the osteogenesis of rat mesenchymal stem cells compared with bare PEEK, including cell proliferation, alkaline phosphatase activity, and bone-like nodule formation. Interestingly, further enhancement was observed for samples co-immobilized with phosphate and calcium. Furthermore, in the animal study, phosphate and calcium co-functionalized PEEK demonstrated significantly enhanced osseointegration, as revealed by a greater direct bone-to-implant contact ratio and bond strength between the bone and implant than unfunctionalized and phosphate-functionalized PEEK, which paves the way for the orthopedic and dental application of PEEK.
Collapse
Affiliation(s)
- Sunarso
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
- Department of Dental Materials, Faculty of Dentistry, Universitas Indonesia, Jalan Salemba Raya No. 4, Jakarta 10430, Indonesia
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
| | - Riki Toita
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
- Section of Bioengineering, Department of Dental Engineering, Fukuoka Dental College, 2-15-1 Tamura, Sawara, Fukuoka 814-0193, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
| |
Collapse
|
98
|
Abstract
Several drugs including diuretics and proton-pump inhibitors can cause magnesium loss and hypomagnesemia. Magnesium and drugs use the same transport and metabolism pathways in the body for their intestinal absorption, metabolism, and elimination. This means that when one or more drug is taken, there is always a potential risk of interaction with the magnesium status. Consequently the action of a drug may be adversely affected by magnesium (e.g., magnesium, calcium, and zinc can interfere with the gastrointestinal absorption of tetracycline antibiotics) and simultaneously the physiological function of minerals such as magnesium may be impaired by a drug (e.g., diuretics induce renal magnesium loss). Given the ever-increasing number of drugs on the market and the frequency with which they are used, greater attention must be paid in daily medical and pharmaceutical practice focused in particular on the adverse effects of drug therapy on magnesium status in order to minimize the potential risk to the health of patients.
Collapse
Affiliation(s)
- Uwe Gröber
- Academy of Micronutrient Medicine, Zweigertstr. 55, 45130 Essen, Germany.
| |
Collapse
|