51
|
Wang J, Zhou Y, Yang Y, Gao X, Liu Z, Hong G, Yao L, Yin J, Gu X, Li K. S100B gene polymorphisms are associated with the S100B level and Alzheimer's disease risk by altering the miRNA binding capacity. Aging (Albany NY) 2021; 13:13954-13967. [PMID: 33982673 PMCID: PMC8202836 DOI: 10.18632/aging.203005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/26/2021] [Indexed: 11/25/2022]
Abstract
To examine the role of S100B in genetic susceptibility to Alzheimer’s disease (AD), we conducted a case-control study to analyze four polymorphism loci (rs2839364, rs1051169, rs2300403, and rs9722) of the S100B gene and AD risk. We found an independent increased risk of AD in ApoE ε4(-) subjects carrying the rs9722 AA-genotype (OR = 2.622, 95% CI = 1.399–4.915, P = 0.003). Further investigation revealed the serum S100B levels to be lower in rs9722 GG carriers than in rs9722 AA carriers (P = 0.003). We identified three miRNAs (miR-340-3p, miR-593-3p, miR-6827-3p) in which the seed match region covered locus rs9722. Luciferase assays indicated that the rs9722 G allele has a higher binding affinity to miR-6827-3p than the rs9722 A allele, leading to a significantly decreased fluorescence intensity. Subsequent western blot analysis showed that the S100B protein level of SH-SY5Y cells, which carry the rs9722 G allele, decreased significantly following miR-6827-3p stimulation (P = 0.009). The present study suggests that the rs9722 polymorphism may upregulate the expression of S100B by altering the miRNA binding capacity and may thus increase the AD risk. This finding would be of great help for the early diagnosis of AD.
Collapse
Affiliation(s)
- Jiafeng Wang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yulan Zhou
- Clinical Medicine Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yixia Yang
- Clinical Medicine Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhibin Liu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Guanhao Hong
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Keshen Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
52
|
Shao W, Xiang S, Zhang Z, Huang K, Zhang J. Hyper-graph based sparse canonical correlation analysis for the diagnosis of Alzheimer's disease from multi-dimensional genomic data. Methods 2021; 189:86-94. [PMID: 32360353 DOI: 10.1016/j.ymeth.2020.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022] Open
Abstract
The effective and accurate diagnosis of Alzheimer's disease (AD), especially in the early stage (i.e., mild cognitive impairment (MCI)) remains a big challenge in AD research. So far, multiple biomarkers have been associated with AD diagnosis and progression. However, most of the existing research only utilized single modality data for diagnostic biomarker identification, which did not take the advantages of multi-modal data that provide comprehensive and complementary information at multiple levels into consideration. In this paper, we integrate multi-modal genomic data from postmortem AD brains (i.e., mRNA, miRNA and epigenomic data) and propose a hyper-graph based sparse canonical correlation analysis (HGSCCA) method to extract the most correlated multi-modal biomarkers associated with AD and MCI. Specifically, our model utilizes the sparse canonical correlation analysis framework (SCCA), which aims at finding the best linear projections for each input modality so that the strongest correlation within the selected features of multi-dimensional genomic data can be captured. In addition, with the consideration of high-order relationships among different subjects, we also introduce a hyper-graph-based regularization term that will lead to the selection of more discriminative biomarkers. To evaluate the effectiveness of the proposed method, we conduct the experiments on the well-known AD cohort study, The Religious Orders Study and Memory and Aging Project (ROSMAP) dataset, and the results show that our method can not only identify meaningful biomarkers for the diagnosis AD disease, but also achieve superior classification performance than the comparing methods.
Collapse
Affiliation(s)
- Wei Shao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Shunian Xiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China; Department of Medical & Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Zuoyi Zhang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA; Regenstrief Institute, Indianapolis, IN 46202, USA
| | - Kun Huang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA; Regenstrief Institute, Indianapolis, IN 46202, USA.
| | - Jie Zhang
- Department of Medical & Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
53
|
Li X, Zhang J, Yang Y, Wu Q, Ning H. MicroRNA-340-5p increases telomere length by targeting telomere protein POT1 to improve Alzheimer's disease in mice. Cell Biol Int 2021; 45:1306-1315. [PMID: 33624913 DOI: 10.1002/cbin.11576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/15/2021] [Accepted: 02/20/2021] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder which is the primary cause of dementia in the elderly. Telomere attrition has been proposed as a hallmark of aging. Our study aimed to explore the mechanism of the protection of telomere 1 (POT1) in regulating telomere length and affecting cellular senescence in AD. The AD mouse model was established by d-galactose and aluminum chloride, and the water maze test and dark avoidance test were used to detect the behaviors of mice and confirm the success of AD mouse model. AD cell model was established with HT22 cells induced by Aβ42 oligomers. POT1 expression in the AD model was detected by quantitative real-time polymerase chain reaction. Cellular telomere length in hippocampal tissue was analyzed by telomere restriction fragment. Localization of intracellular POT1, telomerase, and telomeres was analyzed by immunofluorescence and fluorescence in situ hybridization. Dual-luciferase assay was used to validate the targeted binding relationship between microRNA-340-5p (miR-340-5p) and POT1. After inhibiting POT1 expression, the symptoms of AD in mice were improved. Aβ1-42 deposition was reduced, whereas telomere length and telomerase activity was increased. Dual-luciferase assay verified the binding relationship between miR-340-5p and POT1. An increase in miR-340-5p expression could alleviate cellular senescence and AD symptoms. miR-340-5p increased cellular telomere length and delayed cell senescence by inhibiting POT1 expression to improve AD symptoms. This study made a conclusion that miR-340-5p increased cellular telomere length and delayed cell senescence by inhibiting POT1 expression to improve AD symptoms in mice.
Collapse
Affiliation(s)
- Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangkuan Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhang Yang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Wu
- Department of Neurology, Xinyang Central Hospital, Xinyang, Henan, China
| | - Hanbing Ning
- Department of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
54
|
McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, Brown J, Anderson-Jackson L, Williams L, Latore L, Thompson R, Alexander-Lindo R. Cerebrospinal Fluid Biomarkers of Alzheimer's Disease: Current Evidence and Future Perspectives. Brain Sci 2021; 11:215. [PMID: 33578866 PMCID: PMC7916561 DOI: 10.3390/brainsci11020215] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer's disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer's disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer's disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer's disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.
Collapse
Affiliation(s)
- Donovan A. McGrowder
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Fabian Miller
- Department of Physical Education, Faculty of Education, The Mico University College, 1A Marescaux Road, Kingston 5, Jamaica;
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Kurt Vaz
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Cameil Wilson-Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Melisa Anderson-Cross
- School of Allied Health and Wellness, College of Health Sciences, University of Technology, Kingston 7, Jamaica;
| | - Jabari Brown
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lennox Anderson-Jackson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lowen Williams
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Lyndon Latore
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Rory Thompson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Ruby Alexander-Lindo
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| |
Collapse
|
55
|
Abstract
This paper was aimed to analyze the microRNA (miRNA) signatures in Alzheimer disease (AD) and find the significant expressions of miRNAs, their target genes, the functional enrichment analysis of the confirmed genes, and potential drug treatment. The miRNA expression information of the gene expression profile data was downloaded from the Gene Expression Omnibus database. The total data sample size is 1309, including 1021 AD samples and 288 normal samples. A total of 21 differentially expressed miRNAs were obtained, of which 16 (hsa-miR-6761-3p, hsa-miR-6747-3p, hsa-miR-6875-3p, hsa-miR-6754-3p, hsa-miR-6736-3p, hsa-miR-6762-3p, hsa-miR-6787-3p, hsa-miR-208a-5p, hsa-miR-6740-3p, hsa-miR-6778-3p, hsa-miR-595, hsa-miR-6753-3p, hsa-miR-4747-3p, hsa-miR-3646, hsa-miR-6716-3p and hsa-miR-4435) were up-regulated and 5 (hsa-miR-125a-3p, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-6131 and hsa-miR-125b-1-3p) were down-regulated in AD. A total of 6 miRNAs (hsa-miR-595, hsa-miR-3646, hsa-miR-4435 hsa-miR-125a-3p, hsa-miR-22-3p and hsa-miR-24-3p) and 78 miRNA-disease-related gene sub-networks were predicted, and 116 ceRNA regulatory relationship pairs, and the ceRNA regulatory network were obtained. The results of enrichment analysis suggested that the main target pathways of several miRNAs differentially expressed in AD were mitogen-activated protein kinase signal pathway. According to the prediction results of Drug-Gene Interaction database 2.0, we obtained 53 pairs of drug-gene interaction, including 7 genes (PTGS2, EGFR, CALM1, PDE4D, FGFR2, HMGCR, cdk6) and 53 drugs. We hope our results are helpful to find a viable way to prevent, delay the onset, diagnose, and treat AD.
Collapse
Affiliation(s)
- Liu Lu
- Department of Neurology, The Affiliated WuXi No.2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wen-Zhuo Dai
- Department of Neurology, The Affiliated WuXi No.2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xi-Chen Zhu
- Department of Neurology, The Affiliated WuXi No.2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of Neurology, the WuXi NO.2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu, China
| | - Tao Ma
- Department of Neurology, The Affiliated WuXi No.2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of Neurology, the WuXi NO.2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu, China
| |
Collapse
|
56
|
Zeng L, Jiang HL, Ashraf GM, Li ZR, Liu R. MicroRNA and mRNA profiling of cerebral cortex in a transgenic mouse model of Alzheimer's disease by RNA sequencing. Neural Regen Res 2021; 16:2099-2108. [PMID: 33642400 PMCID: PMC8343333 DOI: 10.4103/1673-5374.308104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In a previous study, we found that long non-coding genes in Alzheimer’s disease (AD) are a result of endogenous gene disorders caused by the recruitment of microRNA (miRNA) and mRNA, and that miR-200a-3p and other representative miRNAs can mediate cognitive impairment and thus serve as new biomarkers for AD. In this study, we investigated the abnormal expression of miRNA and mRNA and the pathogenesis of AD at the epigenetic level. To this aim, we performed RNA sequencing and an integrative analysis of the cerebral cortex of the widely used amyloid precursor protein and presenilin-1 double transgenic mouse model of AD. Overall, 129 mRNAs and 68 miRNAs were aberrantly expressed. Among these, eight down-regulated miRNAs and seven up-regulated miRNAs appeared as promising noninvasive biomarkers and therapeutic targets. The main enriched signaling pathways involved mitogen-activated kinase protein, phosphatidylinositol 3-kinase-protein kinase B, mechanistic target of rapamycin kinase, forkhead box O, and autophagy. An miRNA-mRNA network between dysregulated miRNAs and corresponding target genes connected with AD progression was also constructed. These miRNAs and mRNAs are potential biomarkers and therapeutic targets for new treatment strategies, early diagnosis, and prevention of AD. The present results provide a novel perspective on the role of miRNAs and mRNAs in AD. This study was approved by the Experimental Animal Care and Use Committee of Institute of Medicinal Biotechnology of Beijing, China (approval No. IMB-201909-D6) on September 6, 2019.
Collapse
Affiliation(s)
- Li Zeng
- Organic Chemistry and Function Laboratory, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Lun Jiang
- Organic Chemistry and Function Laboratory, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zhuo-Rong Li
- Organic Chemistry and Function Laboratory, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Liu
- Organic Chemistry and Function Laboratory, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
57
|
Kumar S, Reddy PH. The role of synaptic microRNAs in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165937. [PMID: 32827646 PMCID: PMC7680400 DOI: 10.1016/j.bbadis.2020.165937] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
Structurally and functionally active synapses are essential for neurotransmission and for maintaining normal synaptic and cognitive functions. Researchers have found that synaptic dysfunction is associated with the onset and progression of neurodegenerative diseases, such as Alzheimer's disease (AD), and synaptic dysfunction is even one of the main physiological hallmarks of AD. MiRNAs are present in small, subcellular compartments of the neuron such as neural dendrites, synaptic vesicles, and synaptosomes are known as synaptic miRNAs. Synaptic miRNAs involved in governing multiple synaptic functions that lead to healthy brain functioning and synaptic activity. However, the precise role of synaptic miRNAs has not been determined in AD progression. This review emphasizes the presence of miRNAs at the synapse, synaptic compartments and roles of miRNAs in multiple synaptic functions. We focused on synaptic miRNAs alteration in AD, and how the modulation of miRNAs effect the synaptic functions in AD. We also discussed the impact of synaptic miRNAs in AD progression concerning the synaptic ATP production, mitochondrial function, and synaptic activity.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
58
|
Zhao Y, Jaber V, Alexandrov PN, Vergallo A, Lista S, Hampel H, Lukiw WJ. microRNA-Based Biomarkers in Alzheimer's Disease (AD). Front Neurosci 2020; 14:585432. [PMID: 33192270 PMCID: PMC7664832 DOI: 10.3389/fnins.2020.585432] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, age-related neurological disease characterized by complex pathophysiological dynamics taking place at multiple biological levels, including molecular, genetic, epigenetic, cellular and large-scale brain networks. These alterations account for multiple pathophysiological mechanisms such as brain protein accumulation, neuroinflammatory/neuro-immune processes, synaptic dysfunction, and neurodegeneration that eventually lead to cognitive and behavioral decline. Alterations in microRNA (miRNA) signaling have been implicated in the epigenetics and molecular genetics of all neurobiological processes associated with AD pathophysiology. These changes encompass altered miRNA abundance, speciation and complexity in anatomical regions of the CNS targeted by the disease, including modified miRNA expression patterns in brain tissues, the systemic circulation, the extracellular fluid (ECF) and the cerebrospinal fluid (CSF). miRNAs have been investigated as candidate biomarkers for AD diagnosis, disease prediction, prognosis and therapeutic purposes because of their involvement in multiple brain signaling pathways in both health and disease. In this review we will: (i) highlight the significantly heterogeneous nature of miRNA expression and complexity in AD tissues and biofluids; (ii) address how information may be extracted from these data to be used as a diagnostic, prognostic and/or screening tools across the entire continuum of AD, from the preclinical stage, through the prodromal, i.e., mild cognitive impairment (MCI) phase all the way to clinically overt dementia; and (iii) consider how specific miRNA expression patterns could be categorized using miRNA reporters that span AD pathophysiological initiation and disease progression.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | | | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’Hôpital, Paris, France
- Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’hôpital, Paris, France
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Russian Academy of Medical Sciences, Moscow, Russia
- Department of Ophthalmology, LSU Neuroscience Center Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Neurology, LSU Neuroscience Center Louisiana State University Health Science Center, New Orleans, LA, United States
| |
Collapse
|
59
|
Tecalco-Cruz AC, Ramírez-Jarquín JO, Alvarez-Sánchez ME, Zepeda-Cervantes J. Epigenetic basis of Alzheimer disease. World J Biol Chem 2020; 11:62-75. [PMID: 33024518 PMCID: PMC7520642 DOI: 10.4331/wjbc.v11.i2.62] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/30/2020] [Accepted: 09/10/2020] [Indexed: 02/05/2023] Open
Abstract
Alzheimer disease (AD) is the primary form of dementia that occurs spontaneously in older adults. Interestingly, the epigenetic profile of the cells forming the central nervous system changes during aging and may contribute to the progression of some neurodegenerative diseases such as AD. In this review, we present general insights into relevant epigenetic mechanisms and their relationship with aging and AD. The data suggest that some epigenetic changes during aging could be utilized as biomarkers and target molecules for the prevention and control of AD.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico 03100, Mexico
| | - Josué O Ramírez-Jarquín
- División de neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico 04510, Mexico
| | | | - Jesus Zepeda-Cervantes
- Biología celular y de desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico 04510, Mexico
| |
Collapse
|
60
|
Manna I, De Benedittis S, Quattrone A, Maisano D, Iaccino E, Quattrone A. Exosomal miRNAs as Potential Diagnostic Biomarkers in Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:ph13090243. [PMID: 32932746 PMCID: PMC7559720 DOI: 10.3390/ph13090243] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD), a neurodegenerative disease, is linked to a variety of internal and external factors present from the early stages of the disease. There are several risk factors related to the pathogenesis of AD, among these exosomes and microRNAs (miRNAs) are of particular importance. Exosomes are nanocarriers released from many different cell types, including neuronal cells. Through the transfer of bioactive molecules, they play an important role both in the maintenance of physiological and in pathological conditions. Exosomes could be carriers of potential biomarkers useful for the assessment of disease progression and for therapeutic applications. miRNAs are small noncoding endogenous RNA sequences active in the regulation of protein expression, and alteration of miRNA expression can result in a dysregulation of key genes and pathways that contribute to disease development. Indeed, the involvement of exosomal miRNAs has been highlighted in various neurodegenerative diseases, and this opens the possibility that dysregulated exosomal miRNA profiles may influence AD disease. The advances in exosome-related biomarker detection in AD are summarized. Finally, in this review, we highlight the use of exosomal miRNAs as essential biomarkers in preclinical and clinical studies in Alzheimer’s disease, also taking a look at their potential clinical value.
Collapse
Affiliation(s)
- Ida Manna
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, 88100 Catanzaro, Italy;
- Correspondence: (I.M.); (E.I.)
| | - Selene De Benedittis
- Department of Medical and Surgical Sciences, University “Magna Graecia,” Germaneto, 88100 Catanzaro, Italy;
| | - Andrea Quattrone
- Institute of Neurology, Department of Medical and Surgical Sciences, University “Magna Graecia,” Germaneto, 88100 Catanzaro, Italy;
| | - Domenico Maisano
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
- Correspondence: (I.M.); (E.I.)
| | - Aldo Quattrone
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, 88100 Catanzaro, Italy;
- Neuroscience Research Center, University Magna Graecia, 88100 Catanzaro, Italy
| |
Collapse
|
61
|
The P53/microRNA network: A potential tumor suppressor with a role in anticancer therapy. Pharmacol Res 2020; 160:105179. [PMID: 32890739 DOI: 10.1016/j.phrs.2020.105179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are endogenous and small non-coding RNAs that have been identified as mediators of tumor suppression as well as stress responses mediated by p53 suppressors. MiRNAs may act as tumor suppressors under certain conditions. MiRNAs regulated by p53 may control the expression of processes such as cell cycle progression, cell survival, and angiogenesis. P53 activity and expression are also controlled by miRNA; consequently alterations in the p53-miRNA network may be essential for tumor initiation and progression. Future studies on the p53-miRNA network presumably would find it helpful in diagnostic and therapeutic approaches or as tools for various cancers.
Collapse
|
62
|
MicroRNAs Modulate the Pathogenesis of Alzheimer's Disease: An In Silico Analysis in the Human Brain. Genes (Basel) 2020; 11:genes11090983. [PMID: 32846925 PMCID: PMC7564652 DOI: 10.3390/genes11090983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs involved in the post-transcriptional regulation of their target genes, causing a decrease in protein translation from the mRNA. Different miRNAs are found in the nervous system, where they are involved in its physiological functions, but altered miRNAs expression was also reported in neurodegenerative disorders, including Alzheimer's disease (AD). AD is characterized by memory loss, cognitive function abnormalities, and various neuropsychiatric disturbances. AD hallmarks are amyloid β (Aβ) aggregates, called senile plaques, and neurofibrillary tangles (NFTs) formed by hyperphosphorylated Tau protein. In this study, we performed an in silico analysis to evaluate altered patterns of miRNAs expression in the brains of AD patients compared to healthy subjects. We found 12 miRNAs that were differentially expressed in AD compared to healthy individuals. These miRNAs have target genes involved in AD pathogenesis. In particular, some miRNAs influence Aβ production, having as target secretase and amyloid precursor protein (APP). Some miRNAs were reported to be involved in nervous system functions, and their alteration can cause neuronal dysfunction.
Collapse
|
63
|
Su Y, Sun B, Gao X, Dong X, Fu L, Zhang Y, Li Z, Wang Y, Jiang H, Han B. Intranasal Delivery of Targeted Nanoparticles Loaded With miR-132 to Brain for the Treatment of Neurodegenerative Diseases. Front Pharmacol 2020; 11:1165. [PMID: 32848773 PMCID: PMC7424054 DOI: 10.3389/fphar.2020.01165] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Effective treatments for neurodegenerative diseases need to be developed. MiR132 is abundantly expressed in the brain, and it modulates neuron morphology and plays a key role in maintaining neuron survival. Regulating miR132 can effectively improve the symptoms of Alzheimer’s disease. It can also reduce cell death after cerebral hemorrhage, improve the microenvironment of hematoma lesions and provide a certain protective effect from brain damage after cerebral ischemia. MiR132 has great potential in the treatment of cerebral ischemia and Alzheimer’s disease. To prevent the decline of miR132 of miR132 levels in the blood, we used mouse and rat models of Alzheimer’s disease with ischemic brain injury, and then delivered Wheat germ agglutinin (WGA)-NPs-miR132 intranasally to treat neurological damage after cerebral ischemia. Synaptic protein expression levels in Alzheimer’s mouse models increased significantly after administration. We propose that, nasal delivery of WGA-NPs-miR132 is an interesting novel therapeutic approach for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu Su
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Bixi Sun
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xiaoshu Gao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xinyue Dong
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Lanbo Fu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yingxin Zhang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zhulin Li
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yue Wang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongyu Jiang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
64
|
Lukiw WJ. microRNA-146a Signaling in Alzheimer's Disease (AD) and Prion Disease (PrD). Front Neurol 2020; 11:462. [PMID: 32670176 PMCID: PMC7331828 DOI: 10.3389/fneur.2020.00462] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
The mouse- and human-brain-resident, nuclear factor kappa B (NF-κB)-regulated, micro RNA-146a-5p (miRNA-146a-5p) is an inducible, 22-nucleotide, single-stranded non-coding RNA (sncRNA) easily detected in several brain and immunological cell types, and an important epigenetic modulator of inflammatory signaling and the innate-immune response in several neurological disorders. Among all studied microRNAs, miRNA-146a-5p (typically referred to as just miRNA-146a) has been well characterized and its pathological function in progressive, age-related, and lethal human inflammatory neurodegenerative disease states is well documented. This communication will review our current understanding of miRNA-146a, its induction by the NF-kB-stimulating actions of inflammatory mediators, including the secretory products of certain microbial species such as viral vectors, and Gram-negative bacteria (such as Bacteroides fragilis) that are normal residents of the human gastrointestinal (GI) tract microbiome, and how miRNA-146a appears to contribute to neuro-pathological, neuro-inflammatory, and altered neuro-immunological aspects of both Alzheimer's disease (AD) and prion disease (PrD).
Collapse
Affiliation(s)
- Walter J Lukiw
- Bollinger Professor of Alzheimer's Disease, Louisiana State University School of Medicine, New Orleans, LA, United States.,LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Ophthalmology, LSUHSC, New Orleans, LA, United States.,Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
65
|
Serpente M, Fenoglio C, D'Anca M, Arcaro M, Sorrentino F, Visconte C, Arighi A, Fumagalli GG, Porretti L, Cattaneo A, Ciani M, Zanardini R, Benussi L, Ghidoni R, Scarpini E, Galimberti D. MiRNA Profiling in Plasma Neural-Derived Small Extracellular Vesicles from Patients with Alzheimer's Disease. Cells 2020; 9:cells9061443. [PMID: 32531989 PMCID: PMC7349735 DOI: 10.3390/cells9061443] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Small extracellular vesicles (EVs) are able to pass from the central nervous system (CNS) into peripheral blood and contain molecule markers of their parental origin. The aim of our study was to isolate and characterize total and neural-derived small EVs (NDEVs) and their micro RNA (miRNA) cargo in Alzheimer's disease (AD) patients. Small NDEVs were isolated from plasma in a population consisting of 40 AD patients and 40 healthy subjects (CTRLs) using high throughput Advanced TaqMan miRNA OpenArrays®, which enables the simultaneous determination of 754 miRNAs. MiR-23a-3p, miR-223-3p, miR-100-3p and miR-190-5p showed a significant dysregulation in small NDEVs from AD patients as compared with controls (1.16 ± 0.49 versus 7.54 ± 2.5, p = 0.026; 9.32 ± 2.27 versus 0.66 ± 0.18, p <0.0001; 0.069 ± 0.01 versus 0.5 ± 0.1, p < 0.0001 and 2.9 ± 1.2 versus 1.93 ± 0.9, p < 0.05, respectively). A further validation analysis confirmed that miR-23a-3p, miR-223-3p and miR-190a-5p levels in small NDEVs from AD patients were significantly upregulated as compared with controls (p = 0.008; p = 0.016; p = 0.003, respectively) whereas miR-100-3p levels were significantly downregulated (p = 0.008). This is the first study that carries out the comparison between total plasma small EV population and NDEVs, demonstrating the presence of a specific AD NDEV miRNA signature.
Collapse
Affiliation(s)
- Maria Serpente
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, 20122 Milan, Italy
| | - Chiara Fenoglio
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, 20122 Milan, Italy
| | - Marianna D'Anca
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, 20122 Milan, Italy
| | - Marina Arcaro
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Federica Sorrentino
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Dino Ferrari Center, CRC Molecular Basis of Neuro-Psycho-Geriatrics Diseases, University of Milan, 20122 Milan, Italy
| | - Caterina Visconte
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Arighi
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giorgio G Fumagalli
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Laura Porretti
- Flow Cytometry Service, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alessandra Cattaneo
- Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Roberta Zanardini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Elio Scarpini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Dino Ferrari Center, CRC Molecular Basis of Neuro-Psycho-Geriatrics Diseases, University of Milan, 20122 Milan, Italy
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Dino Ferrari Center, CRC Molecular Basis of Neuro-Psycho-Geriatrics Diseases, University of Milan, 20122 Milan, Italy
| |
Collapse
|
66
|
A Potential Biomarker MicroRNAs in the Diagnosis of Some Psychiatric and Neurodegenerative Disorders. JOURNAL OF CONTEMPORARY MEDICINE 2020. [DOI: 10.16899/jcm.773570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
67
|
Endometrial microRNAs and their aberrant expression patterns. Med Mol Morphol 2020; 53:131-140. [PMID: 32350620 DOI: 10.1007/s00795-020-00252-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression. They play fundamental roles in several biological processes, including cell differentiation and proliferation, embryo development, organ development, and organ metabolism. Besides regulating the physiological processes, miRNAs regulate various pathological conditions such as tumors, metastases, metabolic diseases, and osteoporosis. Although several studies have been performed on miRNAs, only few studies have described the miRNA expression and functions in human reproductive tract tissues. During menstruation, the human endometrium undergoes extensive cyclic morphological and biochemical modifications before embryo implantation. In addition to the ovarian steroid hormones (estrogen and progesterone), endometrial autocrine or paracrine factors and embryo-derived signals play a significant role in endometrial functions. miRNAs are considered key regulators of gene expression in the human endometrium and implantation process, and their aberrant expression levels are associated with the development of various disorders, including tumorigenesis. In this review, we summarize the studies that show the role of miRNAs in regulating the physiological conditions of the endometrium and the implantation process and discuss the aberrant expression of miRNAs in ectopic pregnancy, endometriosis, and endometrial cancer.
Collapse
|
68
|
Kou X, Chen D, Chen N. The Regulation of microRNAs in Alzheimer's Disease. Front Neurol 2020; 11:288. [PMID: 32362867 PMCID: PMC7180504 DOI: 10.3389/fneur.2020.00288] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are small non-coding nucleic acids that are responsible for regulating the gene expression by binding to the coding region and 3' and 5' un-translated region of target messenger RNA. Approximately 70% of known microRNAs are expressed in the brain and increasing evidences demonstrate the possible involvement of microRNAs in Alzheimer's disease (AD) according to the statistics. The characteristic symptoms of AD are the progressive loss of memory and cognitive functions due to the deposition of amyloid β (Aβ) peptide, intracellular aggregation of hyperphosphorylated Tau protein, the loss of synapses, and neuroinflammation, as well as dysfunctional autophagy. Therefore, microRNA-mediated regulation for above-mentioned changes may be the potential therapeutic strategies for AD. In this review, the role of specific microRNAs involved in AD and corresponding applications are systematically discussed, including positive effects associated with the reduction of Aβ or Tau protein, the protection of synapses, the inhibition of neuroinflammation, the mitigation of aging, and the induction of autophagy in AD. It will be beneficial to develop effective targets for establishing a cross link between pharmacological intervention and AD in the near future.
Collapse
Affiliation(s)
- Xianjuan Kou
- Hubei Key Laboratory of Exercise Training and Monitoring, Tianjiu Research and Development Center for Exercise Nutrition and Foods, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Dandan Chen
- Hubei Key Laboratory of Exercise Training and Monitoring, Tianjiu Research and Development Center for Exercise Nutrition and Foods, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Ning Chen
- Hubei Key Laboratory of Exercise Training and Monitoring, Tianjiu Research and Development Center for Exercise Nutrition and Foods, College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
69
|
Gu L, Lu J, Li Q, Wu N, Zhang L, Li H, Xing W, Zhang X. A network-based analysis of key pharmacological pathways of Andrographis paniculata acting on Alzheimer's disease and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112488. [PMID: 31866509 DOI: 10.1016/j.jep.2019.112488] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Andrographis paniculata (AP) is a native plant with anti-inflammatory and antioxidant properties and used as an official herbal medicine. Recently more and more researches have indicated that AP shows pharmacological effects on Alzheimer's disease (AD) but its mechanism is unclear. AIMS OF THE STUDY Network pharmacology approach combined with experimental validation was developed to reveal the underlying molecular mechanisms of AP in treating AD. MATERIALS AND METHODS The compounds of AP from TCM database, the AD-related targets from disease database and the targets corresponding to compounds from swissTargetPrediction were collected. Then DAVID database was used for annotation and enrichment pathways, meanwhile the compound-target, protein-protein interaction from String database and compound-target-pathway network was constructed, molecular modeling was performed using Sybyl-x. Okadaic acid (OKA)-induced cytotoxicity model in PC12 cells was established to verify the mechanism of AP and the key proteins were detected by western blotting. RESULTS 28 AP components were identified after ADME filter analysis and 52 targets were gained via mapping predicted targets into AD-related proteins. In addition, after multiple network analysis, the 22 hub target genes were enriched onto pathways involved in AD, such as neuroactive ligand-receptor interaction, serotonergic synapse, Alzheimer's disease, PI3K-Akt and NF-kB signaling pathway. Interestingly, molecular docking simulation revealed that the targets including PTGS2, BACE1, GSK3B and IKBKB had good ability to combine with AP components. Experimental validation in an in vitro system proved that AP treatment obviously increased in levels inactive of p-GSK3β (P < 0.05) and decreased in levels of BACE (P < 0.05), PTGS2 (namely COX2, P < 0.05) and NF-kB protein (P < 0.05) compare with OKA treated group. CONCLUSION Our data provided convincing evidence that the neuroprotective effects of AP might be partially related to their regulation of the APP-BACE1-GSK3B signal axis and inflammation, which should be the focus of study in this field in the future.
Collapse
Affiliation(s)
- Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, PR China
| | - Jiaqi Lu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, PR China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, PR China
| | - Ningzi Wu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, PR China
| | - Lingxi Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, PR China
| | - Hongxing Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, PR China
| | - Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, PR China
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, PR China.
| |
Collapse
|
70
|
Osone T, Yoshida N. The Relationship Between the miRNA Sequence and Disease May be Revealed by Focusing on Hydrogen Bonding Sites in RNA-RNA Interactions. Cells 2019; 8:cells8121615. [PMID: 31835885 PMCID: PMC6952923 DOI: 10.3390/cells8121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs are important genes in biological processes. Although the function of microRNAs has been elucidated, the relationship between the sequence and the disease is not sufficiently clear. It is important to clarify the relationship between the sequence and the disease because it is possible to clarify the meaning of the microRNA genetic code consisting of four nucleobases. Since seed theory is based on sequences, its development can be expected to reveal the meaning of microRNA sequences. However, this method has many false positives and false negatives. On the other hand, disease-related microRNA searches using network analysis are not based on sequences, so it is difficult to clarify the relationship between sequences and diseases. Therefore, RNA–RNA interactions which are caused by hydrogen bonding were focused on. As a result, it was clarified that sequences and diseases were highly correlated by calculating the electric field in microRNA which is considered as the torus. It was also suggested that four diseases with different major classifications can be distinguished. Conventionally, RNA was interpreted as a one-dimensional array of four nucleobases, but a new approach to RNA from this study can be expected to provide a new perspective on RNA-RNA interactions.
Collapse
Affiliation(s)
- Tatsunori Osone
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
- Correspondence: ; Tel.: +81-50-3568-0281
| | - Naohiro Yoshida
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan;
| |
Collapse
|
71
|
miR-124 and Parkinson's disease: A biomarker with therapeutic potential. Pharmacol Res 2019; 150:104515. [PMID: 31707035 DOI: 10.1016/j.phrs.2019.104515] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a multifactorial disorder, attributed to a complex interplay between genetic and epigenetic factors. Although the exact etiology of the disease remains elusive, dysregulation of signaling pathways implicated in cell survival, apoptosis, protein aggregation, mitochondrial dysfunction, autophagy, oxidative damage and neuroinflammation, contributes to its pathogenesis. MicroRNAs (miRs) are endogenous short non-coding RNA molecules that negatively regulate gene expression at a post-transcriptional level. MiR-124 is one of the most abundantly expressed miRs in the brain that participates in neurogenesis, synapse morphology, neurotransmission, inflammation, autophagy and mitochondrial function. Accumulating pre-clinical evidence shows that miR-124 may act through calpain 1/p25/cyclin-dependent kinases 5 (CDK5), nuclear factor-kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), Bcl-2-interacting mediator of cell death (Bim), 5' adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-regulated kinase (ERK)-mediated pathways to regulate cell survival, apoptosis, autophagy, mitochondrial dysfunction, oxidative damage and neuroinflammation in PD. Moreover, clinical evidence indicates that reduced plasma miR-124 levels may serve as a potential diagnostic biomarker in PD. This review provides an update of the pathogenic implication of miR-124 activity in PD and discusses its targeting potential for the development of future therapeutic strategies.
Collapse
|