51
|
Zou G, Wan J, Balupillai A, David E, Ranganathan B, Saravanan K. Geraniol enhances peroxiredoxin-1, and prevents isoproterenol-induced oxidative stress and inflammation associated with myocardial infarction in experimental animal models. J Biochem Mol Toxicol 2022; 36:e23098. [PMID: 35608392 DOI: 10.1002/jbt.23098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023]
Abstract
This study has explored the fact that geraniol prevents isoproterenol (ISO)-induced oxidative stress and inflammation-mediated myocardial infarction (MI) through enhanced expression of peroxiredoxin-1 (Prdx-1) in experimental animal models. The experimental strategies of MI were stimulated through the subcutaneous direction of ISO (85 mg/kg body weight) for 14 days. ISO-directed models showed elevated heart rate levels and cardiac markers (serum creatine kinase [CK], serum CK-myocardial band, serum C-reactive proteins, and plasma homocysteine); increased cardiac-troponins-T, and troponin-I levels in both serum and myocardium. Moreover, we perceived that a higher level of lipid peroxidation molecules (thiobarbituric acid reactive substances and lipid hydroperoxides) reduced the antioxidant enzyme levels in plasma and heart tissue of ISO-directed rats. However, geraniol treatment prevents ISO-directed enhancement of the heart rate, cardiac and lipid peroxidative genes; reverted the blood pressure, and antioxidant status in ISO-directed rats. Furthermore, gene expression results revealed that geraniol treatment inhibited the mitogen-activated protein kinase (MAPK) proteins, inflammatory responder (tumor necrosis factor-α, interleukin 6, nuclear factor-κB), and cardiac fibrotic proteins (matrix metalloproteinase-2[MMP-2], MMP-9) in ISO directed rats. Prdx-1 is an antioxidant response element, and it can regulate all the antioxidant proteins and it scavenges harmful radicals. Therefore, enhanced Prdx-1 expression is considered to have a pivotal role in preventing cardiac infarction. In this study, an elevated expression of Prdx1 was noticed in geraniol treated with ISO-directed rats. Hence, we concluded that geraniol is considered a potential phytodrug, and it prevents ISO-directed MAPKs, inflammation, and cardiac markers by enhancing the expression of Prdx1.
Collapse
Affiliation(s)
- Gangqiang Zou
- Department of Macrovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Jia Wan
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Agilan Balupillai
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | | | - Kalaimani Saravanan
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| |
Collapse
|
52
|
Safety, toxicity and pharmacokinetic assessment of oral Withaferin-A in mice. Toxicol Rep 2022; 9:1204-1212. [DOI: 10.1016/j.toxrep.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 11/16/2022] Open
|
53
|
Tewari D, Chander V, Dhyani A, Sahu S, Gupta P, Patni P, Kalick LS, Bishayee A. Withania somnifera (L.) Dunal: Phytochemistry, structure-activity relationship, and anticancer potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153949. [PMID: 35151215 DOI: 10.1016/j.phymed.2022.153949] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ayurveda is a highly recognized, well-documented, and well-accepted traditional medicine system. This system utilizes many natural products in various forms for therapeutic purposes. Thousands of plants mentioned in the Ayurvedic system are useful in disease mitigation and health preservation. One potential plant of the Ayurvedic system is "Ashwagandha" [Withania somnifera (L.) Dunal], commonly regarded as Indian Ginseng. It possesses various therapeutic activities, such as neuroprotective, hypoglycemic, hepatoprotective, antiarthritic, and anticancer effects. PURPOSE Here we present a comprehensive insight on the anticancer effects of W. somnifera and mechanistic attributes of its bioactive phytocompounds. This review also provides updated information on the clinical studies pertaining to cancer, safety evaluation and opportunities for chemical modifications of withanolides, a group of specialized phytochemicals of W. somnifera. METHODS The present study was performed in accordance with the guidelines of the Preferred Reporting Items for Systemic Reviews and Meta-Analysis. Various scientific databases, such as PubMed, Science Direct, Scopus, Google Scholar, were explored for related studies published up to May 2021. RESULTS An updated review on the anticancer potential and mechanisms of action of the major bioactive components of W. somnifera, including withanolides, withaferin A and withanone, is presented. Comprehensive information on clinical attributes of W. somnifera and its active components are presented with the structure-activity relationship (SAR) and toxicity evaluation. CONCLUSION The outcome of the work clearly indicates that W. somnifera has a significant potential for cancer therapy. The SAR revealed that various withanolides in general and withaferin A in particular have binding energies against various proteins and tremendous potential to serve as the lead for new chemical entities. Nevertheless, additional studies, particularly well-designed clinical trials are required before therapeutic application of withanolides for cancer treatment.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Vikas Chander
- Department of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Archana Dhyani
- Department of Pharmaceutics, School of Pharmacy, Graphic Era Hill University, Dehradun 248001, Uttarakhand, India
| | - Sanjeev Sahu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pawan Gupta
- Shree SK Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Pooja Patni
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Lindsay S Kalick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
54
|
Kashyap VK, Peasah-Darkwah G, Dhasmana A, Jaggi M, Yallapu MM, Chauhan SC. Withania somnifera: Progress towards a Pharmaceutical Agent for Immunomodulation and Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14030611. [PMID: 35335986 PMCID: PMC8954542 DOI: 10.3390/pharmaceutics14030611] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy is one of the prime treatment options for cancer. However, the key issues with traditional chemotherapy are recurrence of cancer, development of resistance to chemotherapeutic agents, affordability, late-stage detection, serious health consequences, and inaccessibility. Hence, there is an urgent need to find innovative and cost-effective therapies that can target multiple gene products with minimal adverse reactions. Natural phytochemicals originating from plants constitute a significant proportion of the possible therapeutic agents. In this article, we reviewed the advances and the potential of Withania somnifera (WS) as an anticancer and immunomodulatory molecule. Several preclinical studies have shown the potential of WS to prevent or slow the progression of cancer originating from various organs such as the liver, cervix, breast, brain, colon, skin, lung, and prostate. WS extracts act via various pathways and provide optimum effectiveness against drug resistance in cancer. However, stability, bioavailability, and target specificity are major obstacles in combination therapy and have limited their application. The novel nanotechnology approaches enable solubility, stability, absorption, protection from premature degradation in the body, and increased circulation time and invariably results in a high differential uptake efficiency in the phytochemical’s target cells. The present review primarily emphasizes the insights of WS source, chemistry, and the molecular pathways involved in tumor regression, as well as developments achieved in the delivery of WS for cancer therapy using nanotechnology. This review substantiates WS as a potential immunomodulatory, anticancer, and chemopreventive agent and highlights its potential use in cancer treatment.
Collapse
Affiliation(s)
- Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Godwin Peasah-Darkwah
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| |
Collapse
|
55
|
Guo B, Liu J, Wang B, Zhang C, Su Z, Zhao M, Qin L, Zhang W, Zheng R. Withaferin A Promotes White Adipose Browning and Prevents Obesity Through Sympathetic Nerve-Activated Prdm16-FATP1 Axis. Diabetes 2022; 71:249-263. [PMID: 34732538 DOI: 10.2337/db21-0470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022]
Abstract
The increasing prevalence of obesity has resulted in demands for the development of new effective strategies for obesity treatment. Withaferin A (WA) shows a great potential for prevention of obesity by sensitizing leptin signaling in the hypothalamus. However, the mechanism underlying the weight- and adiposity-reducing effects of WA remains to be elucidated. In this study, we report that WA treatment induced white adipose tissue (WAT) browning, elevated energy expenditure, decreased respiratory exchange ratio, and prevented high-fat diet-induced obesity. The sympathetic chemical denervation dampened the WAT browning and also impeded the reduction of adiposity in WA-treated mice. WA markedly upregulated the levels of Prdm16 and FATP1 (Slc27a1) in the inguinal WAT (iWAT), and this was blocked by sympathetic denervation. Prdm16 or FATP1 knockdown in iWAT abrogated the WAT browning-inducing effects of WA and restored the weight gain and adiposity in WA-treated mice. Together, these findings suggest that WA induces WAT browning through the sympathetic nerve-adipose axis, and the adipocytic Prdm16-FATP1 pathway mediates the promotive effects of WA on white adipose browning.
Collapse
Affiliation(s)
- Bingbing Guo
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Bingwei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Chenyu Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Zhijie Su
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Miao Zhao
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Lihua Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Weiguang Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing, China
| |
Collapse
|
56
|
Potential of Withaferin-A, Withanone and Caffeic Acid Phenethyl ester as ATP-competitive inhibitors of BRAF: A bioinformatics study. Curr Res Struct Biol 2022; 3:301-311. [PMID: 35028596 PMCID: PMC8714769 DOI: 10.1016/j.crstbi.2021.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
Serine/threonine-protein kinase B-raf (BRAF) plays a significant role in regulating cell division and proliferation through MAPK/ERK pathway. The constitutive expression of wild-type BRAF (BRAFWT) and its mutant forms, especially V600E (BRAFV600E), has been linked to multiple cancers. Various synthetic drugs have been approved and are in clinical trials, but most of them are reported to become ineffective within a short duration. Therefore, combinational therapy involving multiple drugs are often recruited for cancer treatment. However, they lead to toxicity and adverse side effects. In this computational study, we have investigated three natural compounds, namely Withaferin-A (Wi-A), Withanone (Wi-N) and Caffeic Acid Phenethyl ester (CAPE) for anti-BRAFWT and anti-BRAFV600E activity. We found that these compounds could bind stably at ATP-binding site in both BRAFWT and BRAFV600E proteins. In-depth analysis revealed that these compounds maintained the active conformation of wild-type BRAF protein by inducing αC-helix-In, DFG-In, extended activation segment and well-aligned R-spine residues similar to already known drugs Vemurafenib (VEM), BGB283 and Ponatinib. In terms of binding energy, among the natural compounds, CAPE showed better affinity towards both wild-type and V600E mutant proteins than the other two compounds. These data suggested that CAPE, Wi-A and Wi-N have potential to block constitutive autophosphorylation of BRAF and hence warrant in vitro and in vivo experimental validation. Out of all the human cancers approximately 8% involve BRAF mutations. The 40–50% of the commercialized drugs in the market are from the natural sources or inspired by it. Three natural compounds Withaferin-A , Withanone and Caffeic acid phenethyl ester (CAPE) have been studied against BRAF. CAPE binds with higher binding affinity with BRAF wild type protein and BRAF V600E mutant protein than other natural compounds.
Collapse
|
57
|
Sekar P, Ravitchandirane R, Khanam S, Muniraj N, Cassinadane AV. Novel molecules as the emerging trends in cancer treatment: an update. Med Oncol 2022; 39:20. [PMID: 34982273 DOI: 10.1007/s12032-021-01615-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
As per World Health Organization cancer remains as a leading killer disease causing nearly 10 million deaths in 2020. Since the burden of cancer increases worldwide, warranting an urgent search for anti-cancer compounds from natural sources. Secondary metabolites from plants, marine organisms exhibit a novel chemical and structural diversity holding a great promise as therapeutics in cancer treatment. These natural metabolites target only the cancer cells and the normal healthy cells are left unharmed. In the emerging trends of cancer treatment, the natural bioactive compounds have long become a part of cancer chemotherapy. In this review, we have tried to compile about eight bioactive compounds from plant origin viz. combretastatin, ginsenoside, lycopene, quercetin, resveratrol, silymarin, sulforaphane and withaferin A, four marine-derived compounds viz. bryostatins, dolastatins, eribulin, plitidepsin and three microorganisms viz. Clostridium, Mycobacterium bovis and Streptococcus pyogenes with their well-established anticancer potential, mechanism of action and clinical establishments are presented.
Collapse
Affiliation(s)
- Priyanka Sekar
- Sri Venkateshwaraa Medical College Hospital and Research Centre, Pondicherry, 605102, India
| | | | - Sofia Khanam
- Calcutta Institute of Pharmaceutical Technology and Allied Health Sciences, Howrah, WB, 711316, India
| | - Nethaji Muniraj
- Centre for Cancer Immunology Research, Children's National Hospital, Children's National Research Institute, 111 Michigan Ave NW, Washington, D.C, 20010, USA.
| | | |
Collapse
|
58
|
Sharifi-Rad J, Quispe C, Ayatollahi SA, Kobarfard F, Staniak M, Stępień A, Czopek K, Sen S, Acharya K, Matthews KR, Sener B, Devkota HP, Kırkın C, Özçelik B, Victoriano M, Martorell M, Rasul Suleria HA, Alshehri MM, Chandran D, Kumar M, Cruz-Martins N, Cho WC. Chemical Composition, Biological Activity, and Health-Promoting Effects of Withania somnifera for Pharma-Food Industry Applications. J FOOD QUALITY 2021; 2021:1-14. [DOI: 10.1155/2021/8985179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
The Withania genus comes from the Solanaceae family and includes around 23 species, spread over some areas of the Mediterranean, Asia, and East Africa. Widely used in traditional medicine for thousands of years, these plants are rich in secondary metabolites, with special emphasis on steroidal lactones, named withanolides which are used as ingredients in numerous formulations for a plethora of diseases, such as asthma, diabetes, arthritis, impotence, amnesia, hypertension, anxiety, stress, cancer, neurodegenerative, and cardiovascular diseases, and many others. Among them, Withania somnifera (L.) Dunal is the most widely addressed species from a pharmacological and agroindustrial point of view. In this sense, this review provides an overview of the folk uses, phytochemical composition, and biological activity, such as antioxidant, antimicrobial, anti-inflammatory, and cytotoxic activity of W. somnifera, although more recently other species have also been increasingly investigated. In addition, their health-promoting effects, i.e., antistress, anxiolytic, adaptogenic, antirheumatoid arthritis, chemoprotective, and cardiorespiratory-enhancing abilities, along with safety and adverse effects are also discussed.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mariola Staniak
- Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, Puławy 24-100, Poland
| | - Anna Stępień
- Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, Puławy 24-100, Poland
| | - Katarzyna Czopek
- Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, Puławy 24-100, Poland
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Karl R. Matthews
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Bilge Sener
- Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara 06330, Turkey
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Celale Kırkın
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Beraat Özçelik
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Bioactive Research & Innovation Food Manufacturing Industry Trade Ltd. Co., Maslak, Istanbul 34469, Turkey
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | | | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, Gandra 4585-116, Portugal
- TOXRUN–Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
59
|
Xia Y, Yan M, Wang P, Hamada K, Yan N, Hao H, Gonzalez FJ, Yan T. Withaferin A in the treatment of liver diseases: progress and pharmacokinetic insights. Drug Metab Dispos 2021; 50:685-693. [PMID: 34903587 DOI: 10.1124/dmd.121.000455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Withaferin A (WA) is a natural steroidal compound used in Ayurvedic medicine in India and elsewhere. While WA was used as an anti-cancer reagent for decades, its role in the treatment of liver diseases has only recently been experimentally explored. Here, the effects of WA in the treatment of liver injury, systematic inflammation, and liver cancer are reviewed, and the toxicity and metabolism of WA as well as pharmacological potentials of other extracts from W. somnifera discussed. The pharmacokinetic behaviors of WA are summarized and pharmacokinetic insights into current progress and future opportunities are highlighted. Significance Statement This review outlines the current experimental progress of WA hepatoprotective activities and highlights gaps in the field. This work also discusses the pharmacokinetics of WA that can be used to guide future studies for the possible treatment of liver diseases with this compound.
Collapse
Affiliation(s)
- Yangliu Xia
- School of Life Science and Medicine, Dalian University of Technology, China
| | - Mingrui Yan
- School of Life Science and Medicine, Dalian University of Technology, China
| | - Ping Wang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Keisuke Hamada
- Laboratory of Metabolism, National Cancer Institute, United States
| | - Nana Yan
- Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, China
| | - Haiping Hao
- State Key laboratory of Natural Medicines, China Pharmaceutical University, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, United States
| | | |
Collapse
|
60
|
Greene ES, Maynard C, Owens CM, Meullenet JF, Dridi S. Effects of Herbal Adaptogen Feed-Additive on Growth Performance, Carcass Parameters, and Muscle Amino Acid Profile in Heat-Stressed Modern Broilers. Front Physiol 2021; 12:784952. [PMID: 34899401 PMCID: PMC8654188 DOI: 10.3389/fphys.2021.784952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Heat stress has strong adverse effects on poultry production and, thereby, threats its sustainability, which energized scientists to search for innovative and effective solutions. Here, we undertook this study to evaluate the effects of in-feed herbal adaptogen (stress response modifier) supplementation on growth performances, meat quality, and breast amino acid profile in chronic cyclic heat-stressed broilers. Day-old male Cobb 500 chicks (n = 720) were randomly assigned, in environmental chambers (n = 12, 24 pens), to three diet-treatments: a three-phase corn-soybean based diet fed as such (Control, C), or supplemented with the herbal adaptogen at 500 g/1000 kg control diet (NR-PHY-500) or at 1 kg/1000 kg control diet (NR-PHY-1000). From d29 to d42, birds from 9 chambers were exposed to cyclic heat stress (HS, 35°C from 9:30 am-5:30 pm), however, the rest of the chamber were maintained at thermoneutral conditions (24°C, TN), which creates 4 experimental groups: C-TN, C-HS, NR-PHY-500HS, and NR-PHY-1000HS (6 pens/group, 168 birds/group). HS altered growth performance via depression of feed intake and body weight. Adaptogen supplementation stimulated feed intake and averaged 65.95 and 83.25 g better body weight and 5 and 10 points better FCR at low and high dose, respectively, compared to heat-stressed birds. This increase in body weight was mirrored in enhanced weights of body parts (breast, tender, wings, and legs). Adaptogen supplementation modulated also breast amino acid profile, pH, color, and quality. Together, these data suggested that adaptogen supplementation could be a promising solution to alleviate heat stress, however further in-depth investigation for its mode of action and its underlying mechanisms are warranted.
Collapse
Affiliation(s)
- Elizabeth S. Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Clay Maynard
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Casey M. Owens
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Jean-François Meullenet
- Arkansas Agricultural Experiment Station, University of Arkansas System Division of Agriculture, Fayetteville, AR, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
61
|
Abstract
Covering: March 2010 to December 2020. Previous review: Nat. Prod. Rep., 2011, 28, 705This review summarizes the latest progress and perspectives on the structural classification, biological activities and mechanisms, metabolism and pharmacokinetic investigations, biosynthesis, chemical synthesis and structural modifications, as well as future research directions of the promising natural withanolides. The literature from March 2010 to December 2020 is reviewed, and 287 references are cited.
Collapse
Affiliation(s)
- Gui-Yang Xia
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shi-Jie Cao
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
62
|
Preparation, Characterization, and Pharmacological Investigation of Withaferin-A Loaded Nanosponges for Cancer Therapy; In Vitro, In Vivo and Molecular Docking Studies. Molecules 2021; 26:molecules26226990. [PMID: 34834081 PMCID: PMC8623412 DOI: 10.3390/molecules26226990] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 11/17/2022] Open
Abstract
The rapidly growing global burden of cancer poses a major challenge to public health and demands a robust approach to access promising anticancer therapeutics. In parallel, nanotechnology approaches with various pharmacological properties offer efficacious clinical outcomes. The use of new artificial variants of nanosponges (NS) as a transporter of chemotherapeutic drugs to target cells has emerged as a very promising tool. Therefore, in this research, ethylcellulose (EC) NS were prepared using the ultrasonication assisted-emulsion solvent evaporation technique. Withaferin-A (WFA), an active ingredient in Withania somnifera, has been implanted into the nanospongic framework with enhanced anticancer properties. Inside the polymeric structure, WFA was efficiently entrapped (85 ± 11%). The drug (WFA) was found to be stable within polymeric nanosponges, as demonstrated by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) studies. The WFA-NS had a diameter of 117 ± 4 nm and zeta potential of −39.02 ± 5.71 mV with a polydispersity index (PDI) of 0.419 ± 0.073. In addition, scanning electron microscopy (SEM) revealed the porous surface texture of WFA-NS. In vitro anticancer activity (SRB assay) results showed that WFA–NS exhibited almost twice the anticancer efficacy against MCF-7 cells (IC50 = 1.57 ± 0.091 µM), as quantified by flow cytometry and comet tests. Moreover, fluorescence microscopy with DAPI staining and analysis of DNA fragmentation revealed apoptosis as a mechanism of cancer cell death. The anticancer activity of WFA-NS was further determined in vivo and results were compared to cisplatin. The anticancer activity of WFA-NS was further investigated in vivo, and the data were consistent to those obtained with cisplatin. At Day 10, WFA-NS (10 mg/kg) significantly reduced tumour volume to 72 ± 6%, which was comparable to cisplatin (10 mg/kg), which reduced tumour volume to 78 ± 8%. Finally, the outcomes of molecular modeling (in silico) also suggested that WFA established a stable connection with nanosponges, generating persistent hydrophobic contacts (polar and nonpolar) and helping with the attractive delayed-release features of the formulation. Collectively, all the findings support the use of WFA in nanosponges as a prototype for cancer treatment, and opened up new avenues for increasing the efficacy of natural product-derived medications.
Collapse
|
63
|
Recart VM, Spohr L, Soares MSP, Luduvico KP, Stefanello FM, Spanevello RM. Therapeutic approaches employing natural compounds and derivatives for treating bipolar disorder: emphasis on experimental models of the manic phase. Metab Brain Dis 2021; 36:1481-1499. [PMID: 34264451 DOI: 10.1007/s11011-021-00776-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/06/2021] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is a complex psychiatric disease characterized by mood swings that include episodes of mania and depression. Given its cyclical nature, BD is especially hard to model; however, the standard practice has been to mimic manic episodes in animal models. Despite scientific advances, the pathophysiology of BD is not fully understood, and treatment remains limited. In the last years, natural products have emerged as potential neuroprotective agents for the treatment of psychiatric diseases. Thus, the aim of this review was to explore the therapeutic potential of natural compounds and derivatives against BD, taking into account preclinical and clinical studies. Reliable articles indexed in databases such as PubMed, Web of Science and Science Direct were used. In clinical studies, treatment with herbal plants extracts, omega-3, inositol, n-acetylcysteine and vitamin D has been associated with a clinical improvement in symptoms of mania and depression in BD patients. In animal models, it has been shown that red fruits extracts, curcumin, quercetin, gallic acid, alpha-lipoic acid and carvone can modulate many neurochemical pathways involved in the pathophysiology of manic episodes. Thus, this review appointed the advances in the consumption of natural compounds and derivatives as an important therapeutic strategy to mitigate the symptoms of BD.
Collapse
Affiliation(s)
- Vânia Machado Recart
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil
| | - Karina Pereira Luduvico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
64
|
Dash MK, Joshi N, Gautam D, Jayakumar R, Tripathi Y. Ayurvedic supportive therapy in the management of breast cancer. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
65
|
Prabhu A. Anti-angiogenic, apoptotic and matrix metalloproteinase inhibitory activity of Withania somnifera (ashwagandha) on lung adenocarcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153639. [PMID: 34280829 DOI: 10.1016/j.phymed.2021.153639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Withania somnifera belongs to the family Solanaceae, known as Queen of medicinal plants for its enormous use in the medicinal field. Traditionally ashwagandha is used to treat several neurological disorders. This study evaluates the cytotoxic, apoptotic, antiangiogenic and matrix metalloproteinase (MMP) inhibitory activity of W. somnifera on lung adenocarcinoma. METHODOLOGY Aqueous and ethanolic extracts were prepared from the roots of the W. somnifera. Qualitative and quantitative phytochemical analyses were performed using the standard protocols. Cytotoxicity was assessed using MTT assay. Further experiments were carried out with IC50 concentration of the extract. Apoptosis and DNA damage were evaluated using AO-EB dual staining, Hoechst staining and Comet assay. Effect of the extract on cell migration was evaluated using scratch assay. Angiogenesis inhibition was evaluated using in ovo CAM assay and angiogenic pathway alterations were evaluated using qRT-PCR and western blotting. Autophagy induction was studied via western blotting. RESULTS In this study, we found antioxidant activity and the presence of certain secondary metabolites in the ethanolic extracts. The extract showed cytotoxic activity on lung adenocarcinoma cells with an IC50 of 99.7 μg/ml. The extract showed significant anti-angiogenic, apoptotic and autophagy induction activity. W. somnifera extract induced significant decrease in the cell migration at lower concentrations indicating the anti-migratory potential. CONCLUSION Our investigation revealed ethanolic extract of W. somnifera possess significant anti-angiogenic and MMP inhibitory activity and helps in inhibiting the lung adenocarcinoma cells proliferation. Further, our study revealed that the enhanced autophagy induction and apoptotic effects of W. somnifera are responsible for the potential anticancer activity of the extract.
Collapse
Affiliation(s)
- Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, India.
| |
Collapse
|
66
|
Deng T, Gong Y, Liao X, Wang X, Zhou X, Zhu G, Mo L. Integrative Analysis of a Novel Eleven-Small Nucleolar RNA Prognostic Signature in Patients With Lower Grade Glioma. Front Oncol 2021; 11:650828. [PMID: 34164339 PMCID: PMC8215672 DOI: 10.3389/fonc.2021.650828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Objective The present study used the RNA sequencing (RNA-seq) dataset to identify prognostic snoRNAs and construct a prognostic signature of The Cancer Genome Atla (TCGA) lower grade glioma (LGG) cohort, and comprehensive analysis of this signature. Methods RNA-seq dataset of 488 patients from TCGA LGG cohort were included in this study. Comprehensive analysis including function enrichment, gene set enrichment analysis (GSEA), immune infiltration, cancer immune microenvironment, and connectivity map (CMap) were used to evaluate the snoRNAs prognostic signature. Results We identified 21 LGG prognostic snoRNAs and constructed a novel eleven-snoRNA prognostic signature for LGG patients. Survival analysis suggests that this signature is an independent prognostic risk factor for LGG, and the prognosis of LGG patients with a high-risk phenotype is poor (adjusted P = 0.003, adjusted hazard ratio = 2.076, 95% confidence interval = 1.290–3.340). GSEA and functional enrichment analysis suggest that this signature may be involved in the following biological processes and signaling pathways: such as cell cycle, Wnt, mitogen-activated protein kinase, janus kinase/signal transducer and activator of tran-ions, T cell receptor, nuclear factor-kappa B signaling pathway. CMap analysis screened out ten targeted therapy drugs for this signature: 15-delta prostaglandin J2, MG-262, vorinostat, 5155877, puromycin, anisomycin, withaferin A, ciclopirox, chloropyrazine and megestrol. We also found that high- and low-risk score phenotypes of LGG patients have significant differences in immune infiltration and cancer immune microenvironment. Conclusions The present study identified a novel eleven-snoRNA prognostic signature of LGG and performed a integrative analysis of its molecular mechanisms and relationship with tumor immunity.
Collapse
Affiliation(s)
- Teng Deng
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yizhen Gong
- Evidence-based Medicine Teaching and Research Section, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
67
|
Withaferin A inhibits lymphocyte proliferation, dendritic cell maturation in vitro and prolongs islet allograft survival. Sci Rep 2021; 11:10661. [PMID: 34021233 PMCID: PMC8140140 DOI: 10.1038/s41598-021-90181-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/28/2021] [Indexed: 01/11/2023] Open
Abstract
The immunosuppressive regimen for clinical allogeneic islet transplantation uses beta cell–toxic compounds such as tacrolimus that cause islet graft loss. Previously we reported that the plant-derived steroidal lactone Withaferin A (WA) can protect islet grafts by inhibiting nuclear factor-kappa B (NF-κB). Since the NF-κB signaling pathway is essential for T-cell activation, we hypothesized that long-term WA administration may also provide an immunosuppressive effect. Treatment of BALB/c donor islets and C57BL/6N recipients with WA alone resulted in 80% islet graft long-term survival vs. 40% in low-dose FK506-treated mice. In vitro, WA significantly blocked mouse and human T-cell proliferation by CD3/CD28 bead stimulation and in mixed lymphocyte reaction assay. Treatment of immature dendritic cells with WA prevented their maturation in response to inflammatory stimuli, as seen by decreased expression of CD83 and human leukocyte antigen–DR isotype. Exosomes released by islets treated with WA contained significantly fewer proinflammatory molecules interleukin-6, interleukin-8, monocyte chemoattractant protein-1, interferon-gamma-induced protein-10, inducible nitric oxide synthase, and cyclooxygenase-2. In conclusion, WA treatment not only reduced inflammation but also prolonged allograft survival, possibly through suppression of dendritic cell maturation and T-cell proliferation. WA has the potential to inhibit both the innate and adaptive immune response to prolong allograft survival.
Collapse
|
68
|
Halder T, Ghosh B. Cytological, genetical and phytochemically stable meta-Topolin (mT) - induced mass propagation of underutilized Physalis minima L. for production of withaferin A. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
69
|
Withaferin A-A Promising Phytochemical Compound with Multiple Results in Dermatological Diseases. Molecules 2021; 26:molecules26092407. [PMID: 33919088 PMCID: PMC8122412 DOI: 10.3390/molecules26092407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Withaferin A (WFA) was identified as the most active phytocompound of the plant Withania somnifera (WS) and as having multiple therapeutic/ameliorating properties (anticancer, antiangiogenic, anti-invasive, anti-inflammatory, proapoptotic, etc.) in case of various diseases. In drug chemistry, WFA in silico approaches have identified favorite biological targets, stimulating and accelerating research to evaluate its pharmacological activity—numerous anticancer effects manifested in various organs (breast, pancreas, skin, colon, etc.), antivirals, anti-infective, etc., which are not yet sufficiently explored. This paper is a synthesis of the most relevant specialized papers in the field that are focused on the use of WFA in dermatological diseases, describing its mechanism of action while providing, at the same time, details about the results of its testing in in vitro/in vivo studies.
Collapse
|
70
|
Verma S, Pandey AK. Exploring Nature’s Treasure to Inhibit β-Barrel Assembly Machinery of Antibiotic Resistant Bacteria: An In silico Approach. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180818999201224121342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The development of antibiotic resistance in bacteria is a matter of global
concern due to the exceptionally high morbidity and mortality rates. The outer membrane of most
gram-negative bacteria acts as a highly efficient barrier and blocks the entry of the majority of antibiotics,
making them ineffective. The Bam complex, β-barrel assembly machinery complex, contains
five subunits (BamA, B, C, D, E), which plays a vital role in folding and inserting essential
outer membrane proteins into the membrane, thus maintaining outer membrane integrity. BamA
and BamD are essential subunits to fulfill this purpose. Therefore, targeting this complex to treat
antibiotic resistance can be an incredibly effective approach. Natural bacterial pigments like
violacein, phytochemicals like withanone, semasin, and several polyphenols have often been reported
for their effective antibiotic, antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic
properties.
Objective:
Structural inhibition of the Bam complex by natural compounds can provide safe and
effective treatment for antibiotic resistance by targeting outer membrane integrity.
Methods:
In-silico ADMET and molecular docking analysis was performed with ten natural compounds,
namely violacein, withanone, sesamin, resveratrol, naringenin, quercetin, epicatechin, gallic
acid, ellagic acid, and galangin, to analyse their inhibitory potential against the Bam complex.
Results:
Docking complexes of violacein gave high binding energies of -10.385 and -9.46 Kcal/mol
at C and D subunits interface and at A subunits of the Bam complex, respectively.
Conclusion:
Henceforth, violacein can be an effective antibiotic against to date reported resistant
gram-negative bacteria by inhibiting the Bam complex of their outer membrane. Therefore the urgent
need for exhaustive research in this concern is highly demanded.
Collapse
Affiliation(s)
- Shalja Verma
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi- 284128,India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi- 284128,India
| |
Collapse
|
71
|
Balkrishna A, Pokhrel S, Singh H, Joshi M, Mulay VP, Haldar S, Varshney A. Withanone from Withania somnifera Attenuates SARS-CoV-2 RBD and Host ACE2 Interactions to Rescue Spike Protein Induced Pathologies in Humanized Zebrafish Model. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1111-1133. [PMID: 33737804 PMCID: PMC7961299 DOI: 10.2147/dddt.s292805] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Purpose SARS-CoV-2 engages human ACE2 through its spike (S) protein receptor binding domain (RBD) to enter the host cell. Recent computational studies have reported that withanone and withaferin A, phytochemicals found in Withania somnifera, target viral main protease (MPro) and host transmembrane TMPRSS2, and glucose related protein 78 (GRP78), respectively, implicating their potential as viral entry inhibitors. Absence of specific treatment against SARS-CoV-2 infection has encouraged exploration of phytochemicals as potential antivirals. Aim This study aimed at in silico exploration, along with in vitro and in vivo validation of antiviral efficacy of the phytochemical withanone. Methods Through molecular docking, molecular dynamic (MD) simulation and electrostatic energy calculation the plausible biochemical interactions between withanone and the ACE2-RBD complex were investigated. These in silico observations were biochemically validated by ELISA-based assays. Withanone-enriched extract from W. somnifera was tested for its ability to ameliorate clinically relevant pathological features, modelled in humanized zebrafish through SARS-CoV-2 recombinant spike (S) protein induction. Results Withanone bound efficiently at the interacting interface of the ACE2-RBD complex and destabilized it energetically. The electrostatic component of binding free energies of the complex was significantly decreased. The two intrachain salt bridge interactions (K31-E35) and the interchain long-range ion-pair (K31-E484), at the ACE2-RBD interface were completely abolished by withanone, in the 50 ns simulation. In vitro binding assay experimentally validated that withanone efficiently inhibited (IC50=0.33 ng/mL) the interaction between ACE2 and RBD, in a dose-dependent manner. A withanone-enriched extract, without any co-extracted withaferin A, was prepared from W. somnifera leaves. This enriched extract was found to be efficient in ameliorating human-like pathological responses induced in humanized zebrafish by SARS-CoV-2 recombinant spike (S) protein. Conclusion In conclusion, this study provided experimental validation for computational insight into the potential of withanone as a potent inhibitor of SARS-CoV-2 coronavirus entry into the host cells.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India.,Department of Allied and Applied Sciences, University of Patanjali, Haridwar, 249405, Uttarakhand, India
| | - Subarna Pokhrel
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India
| | - Hoshiyar Singh
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India
| | - Monali Joshi
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India
| | - Vallabh Prakash Mulay
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India
| | - Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India.,Department of Allied and Applied Sciences, University of Patanjali, Haridwar, 249405, Uttarakhand, India
| |
Collapse
|
72
|
Withaferin A mitigates metastatic traits in human oral squamous cell carcinoma caused by aberrant claudin-1 expression. Cell Biol Toxicol 2021; 38:147-165. [PMID: 33665778 DOI: 10.1007/s10565-021-09584-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/24/2021] [Indexed: 12/27/2022]
Abstract
Abnormal expression of claudin-1 (CLDN1) has important roles in carcinogenesis and metastasis in various cancers. The role of CLDN1 in human oral squamous cell carcinoma (OSCC) remains unknown. Here, we report the functional role of CLDN1 in metastasis of human OSCC, as a potential target regulated by withaferin A. From gene expression profiling with microarray technology, we found that the majority of notable differentially expressed genes were classified into migration/invasion category. Withaferin A impaired the motility of human OSCC cells in vitro and suppressed metastatic nodule formation in an in vivo metastasis model, both associated with reduced CLDN1. CLDN1 overexpression enhanced metastatic nodule formation in vivo, resulting in severe metastatic lesions in lung tissue. Moreover, CLDN1 expression was positively correlated to lymphatic metastasis in OSCC patients. The impaired motility of human OSCC cells upon withaferin A treatment was restored by CLDN1 overexpression. Furthermore, upregulation of let-7a induced by withaferin A was inversely correlated to CLDN1 expression. Overall, these give us an insight into the function of CLDN1 for prognosis and treatment of human OSCC, substantiating further investigation into the use of withaferin A as good anti-metastatic drug candidate.
Collapse
|
73
|
Kim SH, Singh KB, Hahm ER, Singh SV. The Role of Forkhead Box Q1 Transcription Factor in Anticancer Effects of Withaferin A in Breast Cancer. Cancer Prev Res (Phila) 2021; 14:421-432. [PMID: 33509807 DOI: 10.1158/1940-6207.capr-20-0590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
Elimination of both rapidly dividing epithelial mammary cancer cells as well as breast cancer stem-like cells (bCSC) is essential for maximizing antitumor response. Withaferin A (WA), a small molecule derived from a medicinal plant (Withania somnifera), is highly effective in reducing burden and/or incidence of breast cancer in vivo in various preclinical models. We have shown previously that suppression of breast cancer incidence by WA administration in a rat model is associated with a decrease in self-renewal of bCSC but the underlying mechanism is still elusive. This study investigated the role of forkhead box Q1 (FoxQ1) transcription factor in antitumor responses to WA. Exposure of MDA-MB-231 and SUM159 cells to WA resulted in downregulation of protein and mRNA levels of FoxQ1 as well as inhibition of its transcriptional activity. FoxQ1 overexpression in SUM159 and MCF-7 cells resulted in a marked protection against WA-mediated inhibition of bCSC as judged by flow cytometric analysis of CD49fhigh population and mammosphere assay. RNA-sequencing analysis revealed upregulation of many bCSC-associated genes by FoxQ1 overexpression in SUM159 cells, including IL8 whose expression was decreased by WA treatment in SUM159 and MCF-7 cells. FoxQ1 was recruited to the promoter of IL8 that was inhibited significantly by WA treatment. On the other hand, WA-mediated inhibition of cell proliferation or migration was not affected by FoxQ1 overexpression. The FoxQ1 overexpression partially attenuated WA-mediated G2-M phase cell cycle arrest in SUM159 cells only. These results indicate that FoxQ1 is a target of WA for inhibition of bCSC fraction. PREVENTION RELEVANCE: Withaferin A (WA) is highly effective in reducing burden and/or incidence of breast cancer in various preclinical models. However, the mechanism underlying breast cancer prevention by WA is not fully understood. This study shows a role for FoxQ1 in antitumor response to WA.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Krishna B Singh
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
74
|
Malik V, Kumar V, Kaul SC, Wadhwa R, Sundar D. Computational Insights into the Potential of Withaferin-A, Withanone and Caffeic Acid Phenethyl Ester for Treatment of Aberrant-EGFR Driven Lung Cancers. Biomolecules 2021; 11:biom11020160. [PMID: 33530424 PMCID: PMC7911128 DOI: 10.3390/biom11020160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
The anticancer activities of Withaferin-A (Wi-A) and Withanone (Wi-N) from Ashwagandha and Caffeic Acid Phenethyl Ester (CAPE) from honeybee propolis have been well documented. Here, we examined the binding potential of these natural compounds to inhibit the constitutive phosphorylation of epidermal growth factor receptors (EGFRs). Exon 20 insertion mutants of EGFR, which show resistance to various FDA approved drugs and are linked to poor prognosis of lung cancer patients, were the primary focus of this study. Apart from exon 20 insertion mutants, the potential of natural compounds to serve as ATP competitive inhibitors of wildtype protein and other common mutants of EGFR, namely L858R and exon19del, were also examined. The potential of natural compounds was compared to the positive controls such as erlotinib, TAS6417 and poziotinib. Similar to known inhibitors, Wi-A and Wi-N could displace and binds at the ATP orthosteric site of exon19del, L858R and exon20, while CAPE was limited to wildtype EGFR and exon 20 insertion mutants only. Moreover, the binding free energy of the natural drugs against EGFRs was also comparable to the positive controls. This computational study suggests that Wi-A and Wi-N have potential against multiple mutated EGFRs, warranting further in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Vidhi Malik
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (V.M.); (V.K.)
| | - Vipul Kumar
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (V.M.); (V.K.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan;
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan;
- Correspondence: (R.W.); (D.S.); Tel.: +81-29-861-9464 (R.W.); +91-11-2659-1066 (D.S.)
| | - Durai Sundar
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (V.M.); (V.K.)
- Correspondence: (R.W.); (D.S.); Tel.: +81-29-861-9464 (R.W.); +91-11-2659-1066 (D.S.)
| |
Collapse
|
75
|
Behl T, Sharma A, Sharma L, Sehgal A, Zengin G, Brata R, Fratila O, Bungau S. Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives. Biomedicines 2020; 8:E571. [PMID: 33291236 PMCID: PMC7762146 DOI: 10.3390/biomedicines8120571] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Withaferin A (WA), a manifold studied, C28-steroidal lactone withanolide found in Withania somnifera. Given its unique beneficial effects, it has gathered attention in the era of modern science. Cancer, being considered a "hopeless case and the leading cause of death worldwide, and the available conventional therapies have many lacunae in the form of side effects. The poly pharmaceutical natural compound, WA treatment, displayed attenuation of various cancer hallmarks by altering oxidative stress, promoting apoptosis, and autophagy, inhibiting cell proliferation, reducing angiogenesis, and metastasis progression. The cellular proteins associated with antitumor pathways were also discussed. WA structural modifications attack multiple signal transduction pathways and enhance the therapeutic outcomes in various diseases. Moreover, it has shown validated pharmacological effects against multiple neurodegenerative diseases by inhibiting acetylcholesterinases and butyrylcholinesterases enzyme activity, antidiabetic activity by upregulating adiponectin and preventing the phosphorylation of peroxisome proliferator-activated receptors (PPARγ), cardioprotective activity by AMP-activated protein kinase (AMPK) activation and suppressing mitochondrial apoptosis. The current review is an extensive survey of various WA associated disease targets, its pharmacokinetics, synergistic combination, modifications, and biological activities.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India; (A.S.); (L.S.)
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India; (A.S.); (L.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42250, Turkey;
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.B.); (O.F.)
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.B.); (O.F.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
76
|
Philips CA, Ahamed R, Rajesh S, George T, Mohanan M, Augustine P. Comprehensive review of hepatotoxicity associated with traditional Indian Ayurvedic herbs. World J Hepatol 2020; 12:574-595. [PMID: 33033566 PMCID: PMC7522561 DOI: 10.4254/wjh.v12.i9.574] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/16/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023] Open
Abstract
With growing antipathy toward conventional prescription drugs due to the fear of adverse events, the general and patient populations have been increasingly using complementary and alternative medications (CAMs) for managing acute and chronic diseases. The general misconception is that natural herbal-based preparations are devoid of toxicity, and hence short- and long-term use remain justified among people as well as the CAM practitioners who prescribe these medicines. In this regard, Ayurvedic herbal medications have become one of the most utilized in the East, specifically the Indian sub-continent, with increasing use in the West. Recent well-performed observational studies have confirmed the hepatotoxic potential of Ayurvedic drugs. Toxicity stems from direct effects or from indirect effects through herbal metabolites, unknown herb-herb and herb-drug interactions, adulteration of Ayurvedic drugs with other prescription medicines, and contamination due to poor manufacturing practices. In this exhaustive review, we present details on their hepatotoxic potential, discuss the mechanisms, clinical presentation, liver histology and patient outcomes of certain commonly used Ayurvedic herbs which will serve as a knowledge bank for physicians caring for liver disease patients, to support early identification and treatment of those who present with CAM-induced liver injury.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi 682028, Kerala, India.
| | - Rizwan Ahamed
- Gastroenterology and Advanced GI Endoscopy, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi 682028, Kerala, India
| | - Sasidharan Rajesh
- Division of Hepatobiliary Interventional Radiology, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi 682028, Kerala, India
| | - Tom George
- Division of Hepatobiliary Interventional Radiology, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi 682028, Kerala, India
| | - Meera Mohanan
- Anesthesia and Critical Care, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi 682028, Kerala, India
| | - Philip Augustine
- Gastroenterology and Advanced GI Endoscopy, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi 682028, Kerala, India
| |
Collapse
|
77
|
Singh P, Gupta A, Qayoom I, Singh S, Kumar A. Orthobiologics with phytobioactive cues: A paradigm in bone regeneration. Biomed Pharmacother 2020; 130:110754. [PMID: 34321168 DOI: 10.1016/j.biopha.2020.110754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023] Open
Abstract
Bone injuries occur due to various traumatic and disease conditions. Healing of bone injury occurs via a multi-stage intricate process. Body has the potential to rectify most of the bone injuries but some severe traumatic cases with critical size defects may require interventions. Autografts are still considered the "gold standard" for fracture healing but due to limitations associated with it, new alternatives are warranted. The field of orthobiologics has provided novel approaches using scaffolds, bioactive molecules, stem cells for the treatment of bone defects. Phyto-bioactives have been widely used in alternative medicine and folklore practices for curing bone ailments. It is believed that different bioactive constituents in plants work synergistically to give the therapeutic efficacy. Bioactives in plants extracts act upon different signal transduction pathways aiding in bone healing. The present review focuses on the use, chemical composition, mode of delivery, mechanism of action, and possible future strategies of three medicinal plants popularly used in traditional medicine for bone healing: Cissus quadrangularis, Withania somnifera and Tinospora cordifolia. Plants extracts seem to be a natural and non-toxic therapeutic alternative in treating bone injuries. Most of the studies on bone healing for these plants have reported oral administration of the extracts and presented them as a safe alternative without any side effects despite giving higher doses. Forthcoming studies could be directed towards the local delivery of extracts at the defect site. Unification of herbal extracts and orthobiologics could be an interesting direction in the field of bone healing in future. The present review intends to provide a bird's eye view of different strategies used in bone healing, mechanisms involved and future direction of advancements using phytobioactives and orthobiologics.
Collapse
Affiliation(s)
- Prerna Singh
- Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Archita Gupta
- Department of Bioengineering, Birla Institute of Technology Mesra (BIT Mesra), Ranchi, 835215, Jharkhand, India
| | - Irfan Qayoom
- Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Sneha Singh
- Department of Bioengineering, Birla Institute of Technology Mesra (BIT Mesra), Ranchi, 835215, Jharkhand, India
| | - Ashok Kumar
- Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| |
Collapse
|
78
|
Akhtar N, Baig MW, Haq IU, Rajeeve V, Cutillas PR. Withanolide Metabolites Inhibit PI3K/AKT and MAPK Pro-Survival Pathways and Induce Apoptosis in Acute Myeloid Leukemia Cells. Biomedicines 2020; 8:E333. [PMID: 32899914 PMCID: PMC7555989 DOI: 10.3390/biomedicines8090333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease and, despite advances, its treatment remains challenging. Therefore, it remains important to identify new agents for the management of this disease. Withanolides, a group of steroidal lactones found in Solanaceae plants are of potential interest due to their reported anticancer activities in different settings. In this study we investigated the anti-proliferative effects and mode of action of Solanaceae-derived withanolides in AML cell models; these metabolites include withametelin (WTH) and Coagulansin A (CoA) isolated from Datura innoxia and Withania coagluanse, respectively. Both withanolides inhibited the proliferation of AML cells and induced cell death, with WTH being more potent than CoA in the AML models tested. Quantitative label-free proteomics and phosphoproteomics were employed to define the mechanism of action of the studied withanolides. We identified and quantified 5269 proteins and 17,482 phosphosites in cells treated with WTH, CoA or vehicle control. Withanolides modulated the expression of proteins involved in regulating key cellular processes including cell cycle, metabolism, signaling, protein degradation and gene expression. Enrichment analysis of the phosphoproteomics data against kinase substrates, kinase-kinase relationships and canonical pathways showed that the withanolides decreased the activity of kinases such as phosphoinositide 3-kinase (PI3K), protein kinase B (PKB; also known as RAC-alpha serine/threonine-protein kinase or AKT), mammalian target of rapamycin (mTOR), extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) and the serine/threonine-protein kinase A-Raf (ARAF), while increasing the activation of DNA repair kinases. These results indicate that withanolide metabolites have pleiotropic effects in the modulation of oncogenic pro-survival and pro-apoptotic signaling pathways that regulate the induction of apoptosis. Withanolide mediated apoptosis was confirmed by immunoblotting showing increased expression of cleaved PARP and Caspases 3, 8 and 9 as a result of treatment. Overall, our results suggest that WTH and CoA have therapeutic potential against AML with WTH exhibiting more potent effects and should be explored further.
Collapse
Affiliation(s)
- Nosheen Akhtar
- Cell Signalling and Proteomics Group, Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK;
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Muhammad Waleed Baig
- Department of Pharmacy, Quaid-e-Azam University, Islamabad 45320, Pakistan; (M.W.B.); (I.-u.H.)
| | - Ihsan-ul Haq
- Department of Pharmacy, Quaid-e-Azam University, Islamabad 45320, Pakistan; (M.W.B.); (I.-u.H.)
| | - Vinothini Rajeeve
- Cell Signalling and Proteomics Group, Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Pedro Rodriguez Cutillas
- Cell Signalling and Proteomics Group, Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| |
Collapse
|
79
|
Hahm ER, Singh SV. Cytoprotective autophagy induction by withaferin A in prostate cancer cells involves GABARAPL1. Mol Carcinog 2020; 59:1105-1115. [PMID: 32743846 DOI: 10.1002/mc.23240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022]
Abstract
Withaferin A (WA) is a naturally occurring steroidal lactone with proven cancer chemopreventive activity in preclinical models of different cancers including prostate adenocarcinoma. Previously we compared the RNA-seq data from control and WA-treated 22Rv1 human prostate cancer cells to identify mechanistic targets of this phytochemical. The Gene Ontology pathway analysis of the RNA-seq data revealed significant upregulation of genes associated with autophagy upon WA treatment in 22Rv1 cells. In this study, we extended these findings to investigate the mechanism underlying WA-induced autophagy. Initially, we confirmed autophagy induction by WA treatment by transmission electron microscopy using three prostate cancer cell lines (LNCaP, 22Rv1, and PC-3). Fourteen common genes altered by 8- and 16-hour exposure to WA were identified from human autophagy PCR array and these results were consistent with the RNA-seq data. Two key autophagy markers (LC3BII and SQSTM1) were robustly increased in WA-exposed LNCaP, 22Rv1, and PC-3 cells as determined by immunoblotting, and this effect was elevated in the presence of autophagy inhibitor bafilomycin A1 (BafA1). BafA1 treatment augmented WA's cytotoxicity and subsequently its proapoptotic potential. WA treatment induced GABARAPL1 (ATG8L) protein expression in all three cell lines and its knockdown by RNA interference attenuated WA-mediated apoptosis. WA-induced autophagy was not affected in the presence of an antioxidant (EUK134). Taken together, the present study reveals that WA-mediated autophagy is cytoprotective and mediated by GABARAPL1.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
80
|
Straughn AR, Kakar SS. Withaferin A: a potential therapeutic agent against COVID-19 infection. J Ovarian Res 2020; 13:79. [PMID: 32684166 PMCID: PMC7369003 DOI: 10.1186/s13048-020-00684-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
The outbreak and continued spread of the novel coronavirus disease 2019 (COVID-19) is a preeminent global health threat that has resulted in the infection of over 11.5 million people worldwide. In addition, the pandemic has claimed the lives of over 530,000 people worldwide. Age and the presence of underlying comorbid conditions have been found to be key determinants of patient mortality. One such comorbidity is the presence of an oncological malignancy, with cancer patients exhibiting an approximate two-fold increase in mortality rate. Due to a lack of data, no consensus has been reached about the best practices for the diagnosis and treatment of cancer patients. Interestingly, two independent research groups have discovered that Withaferin A (WFA), a steroidal lactone with anti-inflammatory and anti-tumorigenic properties, may bind to the viral spike (S-) protein of SARS-CoV-2. Further, preliminary data from our research group has demonstrated that WFA does not alter expression of ACE2 in the lungs of tumor-bearing female mice. Downregulation of ACE2 has recently been demonstrated to increase the severity of COVID-19. Therefore, WFA demonstrates real potential as a therapeutic agent to treat or prevent the spread of COVID-19 due to the reported interference in viral S-protein to host receptor binding and its lack of effect on ACE2 expression in the lungs.
Collapse
Affiliation(s)
- Alex R Straughn
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Sham S Kakar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
- Department of Physiology, University of Louisville School of Medicine, 500 South Floyd Street, Louisville, KY, 40202, USA.
| |
Collapse
|
81
|
Sivasankarapillai VS, Madhu Kumar Nair R, Rahdar A, Bungau S, Zaha DC, Aleya L, Tit DM. Overview of the anticancer activity of withaferin A, an active constituent of the Indian ginseng Withania somnifera. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26025-26035. [PMID: 32405942 DOI: 10.1007/s11356-020-09028-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Cancer is still considered a "hopeless case", besides all of the advancements in oncology research. On the other hand, the natural products, as effective lead molecules, have gained significant interest for research due to the absence of toxic and harmful side effects usually associated with conventional treatment methods. Medicinal properties of herbal plants are strongly evidenced in traditional medicine from ancient times. In the context above, withaferin A (WA) was identified as the active principle of the plant Withania somnifera, its molecule being reported to have excellent anticancer and tumour inhibition activities in various cell lines. Furthermore, the in silico approaches in the medicinal chemistry of WA revealed the biological targets and gave momentum for the research that leads to many amazing pharmacological activities of WA which are not yet explored. This includes a broad spectrum of anticancer actions manifested in different organs (breast, pancreas, colon), melanoma and B cell lymphoma, etc. This review is an extensive survey of the most recent anticancer studies reported for WA, along with its mechanism of action and details about its in vitro and/or in vivo behaviour.
Collapse
Affiliation(s)
| | | | - Abbas Rahdar
- Department of Physics, Faculty of Science,, University of Zabol, Zabol, Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy,, University of Oradea, 410028, Oradea, Romania
| | - Dana Carmen Zaha
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy,, University of Oradea, 410028, Oradea, Romania
| | - Lotfi Aleya
- Laboratoire Chrono-environnement CNRS 6249, Université de Franche-Comté, Besançon, France.
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy,, University of Oradea, 410028, Oradea, Romania
| |
Collapse
|
82
|
Saggam A, Tillu G, Dixit S, Chavan-Gautam P, Borse S, Joshi K, Patwardhan B. Withania somnifera (L.) Dunal: A potential therapeutic adjuvant in cancer. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112759. [PMID: 32173425 DOI: 10.1016/j.jep.2020.112759] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/05/2020] [Accepted: 03/08/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal (WS) is one of the moststudied Rasayana botanicals used in Ayurveda practice for its immunomodulatory, anti-aging, adaptogenic, and rejuvenating effects. The botanical is being used for various clinical indications, including cancer. Several studies exploring molecular mechanisms of WS suggest its possible role in improving clinical outcomes in cancer management. Therefore, research on WS may offer new insights in rational development of therapeutic adjuvants for cancer. AIM OF THIS REVIEW The review aims at providing a detailed analysis of in silico, in vitro, in vivo, and clinical studies related to WS and cancer. It suggests possible role of WS in regulating molecular mechanisms associated with carcinogenesis. The review discusses potential of WS in cancer management in terms of cancer prevention, anti-cancer activity, and enhancing efficacy of cancer therapeutics. MATERIAL AND METHODS The present narrative review offers a critical analysis of published literature on WS studies in cancer. The reported studies were analysed in the context of pathophysiology of cancer, commonly referred as 'cancer hallmarks'. The review attempts to bridge Ayurveda knowledge with biological insights into molecular mechanisms of cancer. RESULTS Critical analysisof the published literature suggests an anti-cancer potential of WS with a key role in cancer prevention. The possible mechanisms for these effects are associated with the modulation of apoptotic, proliferative, and metastatic markers in cancer. WS can attenuate inflammatory responses and enzymes involved in invasion and metastatic progression of cancer.The properties of WS are likely to be mediated through withanolides, which may activate tumor suppressor proteins to restrict proliferation of cancer cells. Withanolides also regulate the genomic instability, and energy metabolism of cancer cells. The reported studies indicate the need for deeper understanding of molecular mechanisms of WS in inhibiting angiogenesis and promoting immunosurveillance. Additionally, WS can augment efficacy and safety of cancer therapeutics. CONCLUSION The experimentally-supported evidence of immunomodulatory, anti-cancer, adaptogenic, and regenerative attributes of WS suggest its therapeutic adjuvant potential in cancer management. The adjuvant properties of withanolides can modulate multidrug resistance and reverse chemotherapy-induced myelosuppression. These mechanisms need to be further explored in systematically designed translational and clinical studies that will pave the way for integration of WS as a therapeutic adjuvant in cancer management.
Collapse
Affiliation(s)
- Akash Saggam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Girish Tillu
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | | | - Preeti Chavan-Gautam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Swapnil Borse
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Kalpana Joshi
- Department of Biotechnology, Sinhgad College of Engineering, Pune, India
| | - Bhushan Patwardhan
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
83
|
Cappadone C, Mandrone M, Chiocchio I, Sanna C, Malucelli E, Bassi V, Picone G, Poli F. Antitumor Potential and Phytochemical Profile of Plants from Sardinia (Italy), a Hotspot for Biodiversity in the Mediterranean Basin. PLANTS (BASEL, SWITZERLAND) 2019; 9:E26. [PMID: 31878127 PMCID: PMC7020228 DOI: 10.3390/plants9010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 12/15/2022]
Abstract
Sardinia (Italy), with its wide range of habitats and high degree of endemism, is an important area for plant-based drug discovery studies. In this work, the antitumor activity of 35 samples from Sardinian plants was evaluated on human osteosarcoma cells U2OS. The results showed that five plants were strongly antiproliferative: Arbutus unedo (AuL), Cynara cardunculus (CyaA), Centaurea calcitrapa (CcA), Smilax aspera (SaA), and Tanacetum audibertii (TaA), the latter endemic to Sardinia and Corsica. Thus, their ability to induce cell cycle arrest and apoptosis was tested. All extracts determined cell cycle block in G2/M phase. Nevertheless, the p53 expression levels were increased only by TaA. The effector caspases were activated mainly by CycA, TaA, and CcA, while AuL and SaA did not induce apoptosis. The antiproliferative effects were also tested on human umbilical vein endothelial cells (HUVEC). Except for AuL, all the extracts were able to reduce significantly cell population, suggesting a potential antiangiogenic activity. The phytochemical composition was first explored by 1H NMR profiling, followed by further purifications to confirm the structure of the most abundant metabolites, such as phenolic compounds and sesquiterpene lactones, which might play a role in the measured bioactivity.
Collapse
Affiliation(s)
- Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 19/2, 40127 Bologna, Italy; (C.C.); (E.M.); (V.B.); (G.P.)
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio, 42, 40126 Bologna, Italy; (I.C.); (F.P.)
| | - Ilaria Chiocchio
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio, 42, 40126 Bologna, Italy; (I.C.); (F.P.)
| | - Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy;
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 19/2, 40127 Bologna, Italy; (C.C.); (E.M.); (V.B.); (G.P.)
| | - Vincenza Bassi
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 19/2, 40127 Bologna, Italy; (C.C.); (E.M.); (V.B.); (G.P.)
| | - Giovanna Picone
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 19/2, 40127 Bologna, Italy; (C.C.); (E.M.); (V.B.); (G.P.)
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio, 42, 40126 Bologna, Italy; (I.C.); (F.P.)
| |
Collapse
|