51
|
Jafaryazdi R, Shams S, Setoodeh A, Badv RS, Ziaee V, Abbasi F, Haghi Ashtiani MT, Mozafari F, Shafeghat L. Evaluation of Patients Referred to Children's Medical Center Laboratory for Diagnosis of Mucopolysaccharidoses: Eight Years' Experience from Iran. JOURNAL OF CHILD SCIENCE 2021. [DOI: 10.1055/s-0041-1740059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractMucopolysaccharidoses (MPSs) are rare lysosomal storage diseases, resulting from deficiencies of enzymes responsible for Glycosaminoglycans (GAGs) degradation. This leads to accumulation of GAGs in tissues and their excretion in urine, with a wide variety of manifestations. Early diagnosis of MPSs is strictly recommended due to available therapy that can slow down disease progression during the early ages. This study aimed to evaluate patients with suspected MPS referred to Children's Medical Center laboratory over eight years. We also evaluated the usefulness of urine GAG as a screening test for identification of such patients. A total of 1414 patients (40% female, 60% male, with mean age 3.1 ± 4.1years) have participated in this study. The urinary GAG analysis (uGAG) was performed by 1, 9-dimethyl-methylene blue (DMMB) and Berry spot test (BST). All patients with positive and mild positive results or with disease-related symptoms were evaluated in terms of definitive diagnosis, received treatments, morbidity, and mortality rate. In 407 (36.5%) patients uGAG were positive or mild positive, of which 26.3% suffered from one of the types of MPSs, 28.5% suffered from other diseases, 32.9% were undiagnosed, 12.3% were apparently healthy, and 19 died. The negative predictive value of uGAG test in our study was 100%. About 21% of MPSs patients received enzyme replacement therapy, while four patients underwent stem cell transplants. The rest received supportive care. We concluded that a combination of DMMB and BST methods has acceptable sensitivity for screening suspicious MPS patients.
Collapse
Affiliation(s)
| | - Sedigheh Shams
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aria Setoodeh
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ziaee
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Abbasi
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Haghi Ashtiani
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mozafari
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
| | - Lila Shafeghat
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
| |
Collapse
|
52
|
İnci A, Okur İ, Tümer L, Biberoğlu G, Öktem M, Ezgü F. Clinical and event-based outcomes of patients with mucopolysaccharidosis VI receiving enzyme replacement therapy in Turkey: a case series. Orphanet J Rare Dis 2021; 16:438. [PMID: 34666789 PMCID: PMC8524901 DOI: 10.1186/s13023-021-02060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this study was to describe clinical manifestations and events of patients with mucopolysaccharidosis (MPS) VI in Turkey who are treated with galsulfase enzyme replacement therapy (ERT). Clinical data of 14 children with MPS VI who were followed up at the Department of Pediatrics of the Gazi University Faculty of Medicine in Ankara, Turkey were retrospectively collected from the patients’ medical records. Patients were selected based on availability of a pre-ERT baseline and follow-up clinical data for a similar period of time (1.9–3.2 years). Event data (occurrence of acute clinical events, onset of chronic events, surgeries) collected during hospital visits and telemedicine were available for up to 10 years after initiation of ERT (2.5–10 years). Results Age at initiation of ERT ranged from 2.8 to 15.8 years (mean age 7.5 years). All patients presented with reduced endurance and skeletal abnormalities (dysostosis multiplex) on radiography. Other common clinical manifestations were cardiac valve disease (N = 13), short stature (N = 11), cranial abnormalities on MRI (N = 10), spinal abnormalities on MRI (N = 7), and mild cognitive impairment (N = 6). School attendance was generally poor, and several patients had urinary incontinence. After 1.9 to 3.2 years of ERT, most patients showed improvements in endurance in the 6-min walk test and 3-min stair climb tests; the frequency of urinary incontinence decreased. ERT did not seem to prevent progression of cardiac valve disease, eye disorders, hearing loss, or bone disease. Long-term event-based data showed a high incidence of respiratory tract infections, adenotonsillectomy/adenoidectomy, reduced sleep quality, sleep apnea, and depression before initiation of ERT. The number of events tended to remain stable or decrease in all patients over 2.5–10 years follow-up. However, the nature of the events shifted over time, with a reduction in the frequency of respiratory tract infections and sleep problems and an increase in ophthalmologic events, ear tube insertions, and depression. Conclusions This case series shows the high disease burden of the MPS VI population in Turkey and provides a unique insight into their clinical journey based on real-life clinical and event-based data collected before and after initiation of ERT. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02060-4.
Collapse
Affiliation(s)
- Aslı İnci
- Department of Pediatrics, Division of Pediatric Metabolic Diseases, Faculty of Medicine, Gazi University, Mevlana Bulvarı No 29, Emniyet Mahallesi, Yenimahalle, Ankara, 06560, Turkey
| | - İlyas Okur
- Department of Pediatrics, Division of Pediatric Metabolic Diseases, Faculty of Medicine, Gazi University, Mevlana Bulvarı No 29, Emniyet Mahallesi, Yenimahalle, Ankara, 06560, Turkey
| | - Leyla Tümer
- Department of Pediatrics, Division of Pediatric Metabolic Diseases, Faculty of Medicine, Gazi University, Mevlana Bulvarı No 29, Emniyet Mahallesi, Yenimahalle, Ankara, 06560, Turkey
| | - Gürsel Biberoğlu
- Department of Pediatrics, Division of Pediatric Metabolic Diseases, Faculty of Medicine, Gazi University, Mevlana Bulvarı No 29, Emniyet Mahallesi, Yenimahalle, Ankara, 06560, Turkey
| | - Murat Öktem
- Department of Pediatrics, Division of Pediatric Metabolic Diseases, Faculty of Medicine, Gazi University, Mevlana Bulvarı No 29, Emniyet Mahallesi, Yenimahalle, Ankara, 06560, Turkey
| | - Fatih Ezgü
- Department of Pediatrics, Division of Pediatric Metabolic Diseases, Faculty of Medicine, Gazi University, Mevlana Bulvarı No 29, Emniyet Mahallesi, Yenimahalle, Ankara, 06560, Turkey.
| |
Collapse
|
53
|
Arguello A, Meisner R, Thomsen ER, Nguyen HN, Ravi R, Simms J, Lo I, Speckart J, Holtzman J, Gill TM, Chan D, Cheng Y, Chiu CL, Dugas JC, Fang M, Lopez IA, Solanoy H, Tsogtbaatar B, Zhu Y, Bhalla A, Henne KR, Henry AG, Delucchi A, Costanzo S, Harris JM, Diaz D, Scearce-Levie K, Sanchez PE. Iduronate-2-sulfatase transport vehicle rescues behavioral and skeletal phenotypes in a mouse model of Hunter syndrome. JCI Insight 2021; 6:145445. [PMID: 34622797 PMCID: PMC8525587 DOI: 10.1172/jci.insight.145445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 09/01/2021] [Indexed: 02/05/2023] Open
Abstract
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by deficiency of the iduronate-2-sulfatase (IDS) enzyme, resulting in cellular accumulation of glycosaminoglycans (GAGs) throughout the body. Treatment of MPS II remains a considerable challenge as current enzyme replacement therapies do not adequately control many aspects of the disease, including skeletal and neurological manifestations. We developed an IDS transport vehicle (ETV:IDS) that is engineered to bind to the transferrin receptor; this design facilitates receptor-mediated transcytosis of IDS across the blood-brain barrier and improves its distribution into the brain while maintaining distribution to peripheral tissues. Here we show that chronic systemic administration of ETV:IDS in a mouse model of MPS II reduced levels of peripheral and central nervous system GAGs, microgliosis, and neurofilament light chain, a biomarker of neuronal injury. Additionally, ETV:IDS rescued auricular and skeletal abnormalities when introduced in adult MPS II mice. These effects were accompanied by improvements in several neurobehavioral domains, including motor skills, sensorimotor gating, and learning and memory. Together, these results highlight the therapeutic potential of ETV:IDS for treating peripheral and central abnormalities in MPS II. DNL310, an investigational ETV:IDS molecule, is currently in clinical trials as a potential treatment for patients with MPS II.
Collapse
Affiliation(s)
- Annie Arguello
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - René Meisner
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | - Hoang N Nguyen
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Ritesh Ravi
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Jeffrey Simms
- Behavioral Core, Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Iris Lo
- Behavioral Core, Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Jessica Speckart
- Behavioral Core, Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Julia Holtzman
- Behavioral Core, Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Thomas M Gill
- Behavioral Core, Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Darren Chan
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Yuhsiang Cheng
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Chi-Lu Chiu
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Jason C Dugas
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Meng Fang
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Isabel A Lopez
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Hilda Solanoy
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | - Yuda Zhu
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Akhil Bhalla
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Kirk R Henne
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | | | - Simona Costanzo
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | - Dolores Diaz
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | | |
Collapse
|
54
|
Ricci S, Cacialli P. Stem Cell Research Tools in Human Metabolic Disorders: An Overview. Cells 2021; 10:cells10102681. [PMID: 34685661 PMCID: PMC8534517 DOI: 10.3390/cells10102681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolic disorders are very common in the population worldwide and are among the diseases with the highest health utilization and costs per person. Despite the ongoing efforts to develop new treatments, currently, for many of these disorders, there are no approved therapies, resulting in a huge economic hit and tension for society. In this review, we recapitulate the recent advancements in stem cell (gene) therapy as potential tools for the long-term treatment of both inherited (lysosomal storage diseases) and acquired (diabetes mellitus, obesity) metabolic disorders, focusing on the main promising results observed in human patients and discussing the critical hurdles preventing the definitive jump of this approach from the bench to the clinic.
Collapse
Affiliation(s)
- Serena Ricci
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Rue Michel Servet 1, 1206 Geneva, Switzerland;
| | - Pietro Cacialli
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Rue Michel Servet 1, 1206 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
55
|
Gene Therapy for Neuronopathic Mucopolysaccharidoses: State of the Art. Int J Mol Sci 2021; 22:ijms22179200. [PMID: 34502108 PMCID: PMC8430935 DOI: 10.3390/ijms22179200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
The need for long-lasting and transformative therapies for mucopolysaccharidoses (MPS) cannot be understated. Currently, many forms of MPS lack a specific treatment and in other cases available therapies, such as enzyme replacement therapy (ERT), do not reach important areas such as the central nervous system (CNS). The advent of newborn screening procedures represents a major step forward in early identification and treatment of individuals with MPS. However, the treatment of brain disease in neuronopathic MPS has been a major challenge to date, mainly because the blood brain barrier (BBB) prevents penetration of the brain by large molecules, including enzymes. Over the last years several novel experimental therapies for neuronopathic MPS have been investigated. Gene therapy and gene editing constitute potentially curative treatments. However, despite recent progress in the field, several considerations should be taken into account. This review focuses on the state of the art of in vivo and ex vivo gene therapy-based approaches targeting the CNS in neuronopathic MPS, discusses clinical trials conducted to date, and provides a vision for the future implications of these therapies for the medical community. Recent advances in the field, as well as limitations relating to efficacy, potential toxicity, and immunogenicity, are also discussed.
Collapse
|
56
|
Differences in MPS I and MPS II Disease Manifestations. Int J Mol Sci 2021; 22:ijms22157888. [PMID: 34360653 PMCID: PMC8345985 DOI: 10.3390/ijms22157888] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mucopolysaccharidosis (MPS) type I and II are two closely related lysosomal storage diseases associated with disrupted glycosaminoglycan catabolism. In MPS II, the first step of degradation of heparan sulfate (HS) and dermatan sulfate (DS) is blocked by a deficiency in the lysosomal enzyme iduronate 2-sulfatase (IDS), while, in MPS I, blockage of the second step is caused by a deficiency in iduronidase (IDUA). The subsequent accumulation of HS and DS causes lysosomal hypertrophy and an increase in the number of lysosomes in cells, and impacts cellular functions, like cell adhesion, endocytosis, intracellular trafficking of different molecules, intracellular ionic balance, and inflammation. Characteristic phenotypical manifestations of both MPS I and II include skeletal disease, reflected in short stature, inguinal and umbilical hernias, hydrocephalus, hearing loss, coarse facial features, protruded abdomen with hepatosplenomegaly, and neurological involvement with varying functional concerns. However, a few manifestations are disease-specific, including corneal clouding in MPS I, epidermal manifestations in MPS II, and differences in the severity and nature of behavioral concerns. These phenotypic differences appear to be related to different ratios between DS and HS, and their sulfation levels. MPS I is characterized by higher DS/HS levels and lower sulfation levels, while HS levels dominate over DS levels in MPS II and sulfation levels are higher. The high presence of DS in the cornea and its involvement in the arrangement of collagen fibrils potentially causes corneal clouding to be prevalent in MPS I, but not in MPS II. The differences in neurological involvement may be due to the increased HS levels in MPS II, because of the involvement of HS in neuronal development. Current treatment options for patients with MPS II are often restricted to enzyme replacement therapy (ERT). While ERT has beneficial effects on respiratory and cardiopulmonary function and extends the lifespan of the patients, it does not significantly affect CNS manifestations, probably because the enzyme cannot pass the blood-brain barrier at sufficient levels. Many experimental therapies, therefore, aim at delivery of IDS to the CNS in an attempt to prevent neurocognitive decline in the patients.
Collapse
|
57
|
Kong W, Zhang J, Lu C, Ding Y, Meng Y. Glaucoma in mucopolysaccharidoses. Orphanet J Rare Dis 2021; 16:312. [PMID: 34266471 PMCID: PMC8281695 DOI: 10.1186/s13023-021-01935-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/27/2021] [Indexed: 11/30/2022] Open
Abstract
Mucopolysaccharidoses are a group of lysosomal storage disorders that are caused by deficiency of enzymes involved in glycosaminoglycans degradation. Due to low prevalence and high childhood mortality, researches on mucopolysaccharidoses were mainly focused on the fatal manifestations. With the development of treatments, more and more mucopolysaccharidoses patients were treated by approved therapies, thereby getting prolonged life span and improved quality of life. Abnormal accumulation of glycosaminoglycans in the eye may block trabecular meshwork, thicken sclera and change mechanical behavior of lamina cribrosa, which, by increasing intraocular pressure and damaging optic nerve, could cause glaucoma. Glaucoma was the leading cause of irreversible blindness worldwide, but it was rarely reported in mucopolysaccharidoses patients. Although non-fatal, it seriously affected quality of life. Prevalence of glaucoma in mucopolysaccharidoses patients (ranged from 2.1 to 12.5%) indicated that glaucoma in patients with mucopolysaccharidoses was worthy of attention and further study, thereby improving the quality of life for MPSs patients.
Collapse
Affiliation(s)
- Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jing Zhang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Cheng Lu
- Beijing Hong Jian Medical Device Company, Beijing, 100176, China
| | - Yingxue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Yan Meng
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
58
|
Therapy-type related long-term outcomes in mucopolysaccaridosis type II (Hunter syndrome) - Case series. Mol Genet Metab Rep 2021; 28:100779. [PMID: 34258227 PMCID: PMC8251508 DOI: 10.1016/j.ymgmr.2021.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is a rare, X-linked recessive multisystem lysosomal storage disease due to iduronate-2-sulfatase enzyme deficiency. We presented three unrelated Slovenian patients with the severe form of MPS II that received three different management approaches: natural course of the disease without received specific treatment, enzyme replacement therapy (ERT), and hematopoietic stem cell transplantation (HSCT). The decision on the management depended on disease severity, degree of cognitive impairment, and parent's informed decision. The current benefits of MPS II treatments are limited. The lifelong costly intravenous ERT brings significant benefits but the patients with severe phenotypes and neurological involvement progress to cognitive decline and disability regardless of ERT, as demonstrated in published reviews and our case series. The patient after HSCT was the only one of the three cases reported to show a slowly progressing cognitive development. The type of information from the case series is insufficient for generalized conclusions, but with advanced myeloablative conditioning, HSCT may be a preferred treatment option in early diagnosed MPS II patients with the severe form of the disease and low disease burden at the time of presentation.
Collapse
|
59
|
Marchetti M, Faggiano S, Mozzarelli A. Enzyme Replacement Therapy for Genetic Disorders Associated with Enzyme Deficiency. Curr Med Chem 2021; 29:489-525. [PMID: 34042028 DOI: 10.2174/0929867328666210526144654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
Mutations in human genes might lead to loss of functional proteins, causing diseases. Among these genetic disorders, a large class is associated with the deficiency in metabolic enzymes, resulting in both an increase in the concentration of substrates and a loss in the metabolites produced by the catalyzed reactions. The identification of therapeutic actions based on small molecules represents a challenge to medicinal chemists because the target is missing. Alternative approaches are biology-based, ranging from gene and stem cell therapy, CRISPR/Cas9 technology, distinct types of RNAs, and enzyme replacement therapy (ERT). This review will focus on the latter approach that since the 1990s has been successfully applied to cure many rare diseases, most of them being lysosomal storage diseases or metabolic diseases. So far, a dozen enzymes have been approved by FDA/EMA for lysosome storage disorders and only a few for metabolic diseases. Enzymes for replacement therapy are mainly produced in mammalian cells and some in plant cells and yeasts and are further processed to obtain active, highly bioavailable, less degradable products. Issues still under investigation for the increase in ERT efficacy are the optimization of enzymes interaction with cell membrane and internalization, the reduction in immunogenicity, and the overcoming of blood-brain barrier limitations when neuronal cells need to be targeted. Overall, ERT has demonstrated its efficacy and safety in the treatment of many genetic rare diseases, both saving newborn lives and improving patients' life quality, and represents a very successful example of targeted biologics.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Biopharmanet-TEC Interdepartmental Center, University of Parma, Parco Area delle Scienze, Bldg 33., 43124, Parma, Italy
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Andrea Mozzarelli
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
60
|
Garcia P, Phillips D, Johnson J, Martin K, Randolph LM, Rosenfeld H, Harmatz P. Long-term outcomes of patients with mucopolysaccharidosis VI treated with galsulfase enzyme replacement therapy since infancy. Mol Genet Metab 2021; 133:100-108. [PMID: 33775523 DOI: 10.1016/j.ymgme.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Long-term outcomes of patients with mucopolysaccharidosis (MPS) VI treated with galsulfase enzyme replacement therapy (ERT) since infancy were evaluated. METHODS The study was a multicenter, prospective evaluation using data from infants with MPS VI generated during a phase 4 study (ASB-008; Clinicaltrials.govNCT00299000) and clinical data collected ≥5 years after completion of the study. RESULTS Parents of three subjects from ASB-008 (subjects 1, 2, and 4) provided written informed consent to participate in the follow-up study. One subject was excluded as consent was not provided. Subjects 1, 2, and 4 were aged 0.7, 0.3, and 1.1 years, respectively, at initiation of galsulfase and 10.5, 7.9, and 10.5 years, respectively, at follow-up. All subjects had classical MPS VI based on pre-treatment urinary glycosaminoglycans and the early onset of clinical manifestations. At follow-up, subject 4 had normal stature for age; subjects 1 and 2 had short stature, but height remained around the 90th percentile of growth curves for untreated classical MPS VI. Six-minute walk distance was normal for age/height in subjects 1 (550 m) and 4 (506 m), and reduced for subject 2 (340 m). Subject 2 preserved normal respiratory function, while percent predicted forced vital capacity and forced expiratory volume in 1 s decreased over time in the other subjects. Skeletal dysplasia was already apparent in all subjects at baseline and continued to progress. Cardiac valve disease showed mild progression in subject 1, mild improvement in subject 4, and remained trivial in subject 2. All subjects had considerably reduced pinch and grip strength at follow-up, but functional dexterity was relatively normal for age and there was limited impact on activities of daily living. Bruininks-Oseretsky Test of Motor Proficiency (BOT-2) results showed that subjects 2 and 4 had numerous fine and gross motor competencies. Corneal clouding progressed in all subjects, while progression of hearing impairment was variable. Liver size normalized from baseline in subjects 1 and 4, and remained normal in subject 2. CONCLUSION Very early and continuous ERT appears to slow down the clinical course of MPS VI, as shown by preservation of endurance, functional dexterity, and several fine and gross motor competencies after 7.7-9.8 years of treatment, and less growth impairment or progression of cardiac disease than could be expected based on the patients' classical phenotype. ERT does not seem to prevent progression of skeletal or eye disease in the long term.
Collapse
Affiliation(s)
- Paula Garcia
- Hospital Pediátrico de Coimbra, Coimbra, Portugal
| | - Dawn Phillips
- UNC Chapel Hill Division of Physical Therapy, School of Medicine, Chapel Hill, NC, USA
| | - JoAnn Johnson
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Kenneth Martin
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | | | | | - Paul Harmatz
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA.
| |
Collapse
|
61
|
Hoytema van Konijnenburg EMM, Wortmann SB, Koelewijn MJ, Tseng LA, Houben R, Stöckler-Ipsiroglu S, Ferreira CR, van Karnebeek CDM. Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app. Orphanet J Rare Dis 2021; 16:170. [PMID: 33845862 PMCID: PMC8042729 DOI: 10.1186/s13023-021-01727-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The Treatable ID App was created in 2012 as digital tool to improve early recognition and intervention for treatable inherited metabolic disorders (IMDs) presenting with global developmental delay and intellectual disability (collectively 'treatable IDs'). Our aim is to update the 2012 review on treatable IDs and App to capture the advances made in the identification of new IMDs along with increased pathophysiological insights catalyzing therapeutic development and implementation. METHODS Two independent reviewers queried PubMed, OMIM and Orphanet databases to reassess all previously included disorders and therapies and to identify all reports on Treatable IDs published between 2012 and 2021. These were included if listed in the International Classification of IMDs (ICIMD) and presenting with ID as a major feature, and if published evidence for a therapeutic intervention improving ID primary and/or secondary outcomes is available. Data on clinical symptoms, diagnostic testing, treatment strategies, effects on outcomes, and evidence levels were extracted and evaluated by the reviewers and external experts. The generated knowledge was translated into a diagnostic algorithm and updated version of the App with novel features. RESULTS Our review identified 116 treatable IDs (139 genes), of which 44 newly identified, belonging to 17 ICIMD categories. The most frequent therapeutic interventions were nutritional, pharmacological and vitamin and trace element supplementation. Evidence level varied from 1 to 3 (trials, cohort studies, case-control studies) for 19% and 4-5 (case-report, expert opinion) for 81% of treatments. Reported effects included improvement of clinical deterioration in 62%, neurological manifestations in 47% and development in 37%. CONCLUSION The number of treatable IDs identified by our literature review increased by more than one-third in eight years. Although there has been much attention to gene-based and enzyme replacement therapy, the majority of effective treatments are nutritional, which are relatively affordable, widely available and (often) surprisingly effective. We present a diagnostic algorithm (adjustable to local resources and expertise) and the updated App to facilitate a swift and accurate workup, prioritizing treatable IDs. Our digital tool is freely available as Native and Web App (www.treatable-id.org) with several novel features. Our Treatable ID endeavor contributes to the Treatabolome and International Rare Diseases Research Consortium goals, enabling clinicians to deliver rapid evidence-based interventions to our rare disease patients.
Collapse
Affiliation(s)
| | - Saskia B Wortmann
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
- On Behalf of United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Marina J Koelewijn
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura A Tseng
- Department of Pediatrics, Amsterdam UMC, Amsterdam, The Netherlands
- On Behalf of United for Metabolic Diseases, Amsterdam, The Netherlands
| | | | - Sylvia Stöckler-Ipsiroglu
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, V6H 3V4, Canada
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clara D M van Karnebeek
- Department of Pediatrics, Amsterdam UMC, Amsterdam, The Netherlands.
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
- On Behalf of United for Metabolic Diseases, Amsterdam, The Netherlands.
- Department of Pediatrics - Metabolic Diseases, Amalia Children's Hospital, Geert Grooteplein 10, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
62
|
McBride KL, Flanigan KM. Update in the Mucopolysaccharidoses. Semin Pediatr Neurol 2021; 37:100874. [PMID: 33892850 DOI: 10.1016/j.spen.2021.100874] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
The mucopolysaccharidoses (MPS) are a genetically heterogenous group of enzyme deficiencies marked by accumulation of glycosaminoglycans in lysosomes leading to multisystem disease. Although significant therapeutic advances have been made for the MPS disorders, including recombinant enzyme replacement approaches, the neuronopathic features of MPS lack adequate treatment. Gene therapies, including adeno-associated virus vectors targeting the central nervous system, hold significant promise for this group of disorders. Optimal outcomes of all therapies will require early disease identification and treatment, ideally by newborn screening.
Collapse
Affiliation(s)
- Kim L McBride
- The Center for Cardiovascular Research and the Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital; and the Ohio State University, Columbus, OH; Department of Pediatrics, the Ohio State University, Columbus, OH.
| | - Kevin M Flanigan
- Department of Pediatrics, the Ohio State University, Columbus, OH; Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital; and the Ohio State University, Columbus, OH.
| |
Collapse
|
63
|
Hampe CS, Wesley J, Lund TC, Orchard PJ, Polgreen LE, Eisengart JB, McLoon LK, Cureoglu S, Schachern P, McIvor RS. Mucopolysaccharidosis Type I: Current Treatments, Limitations, and Prospects for Improvement. Biomolecules 2021; 11:189. [PMID: 33572941 PMCID: PMC7911293 DOI: 10.3390/biom11020189] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal disease, caused by a deficiency of the enzyme alpha-L-iduronidase (IDUA). IDUA catalyzes the degradation of the glycosaminoglycans dermatan and heparan sulfate (DS and HS, respectively). Lack of the enzyme leads to pathologic accumulation of undegraded HS and DS with subsequent disease manifestations in multiple organs. The disease can be divided into severe (Hurler syndrome) and attenuated (Hurler-Scheie, Scheie) forms. Currently approved treatments consist of enzyme replacement therapy (ERT) and/or hematopoietic stem cell transplantation (HSCT). Patients with attenuated disease are often treated with ERT alone, while the recommended therapy for patients with Hurler syndrome consists of HSCT. While these treatments significantly improve disease manifestations and prolong life, a considerable burden of disease remains. Notably, treatment can partially prevent, but not significantly improve, clinical manifestations, necessitating early diagnosis of disease and commencement of treatment. This review discusses these standard therapies and their impact on common disease manifestations in patients with MPS I. Where relevant, results of animal models of MPS I will be included. Finally, we highlight alternative and emerging treatments for the most common disease manifestations.
Collapse
Affiliation(s)
| | | | - Troy C. Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.); (J.B.E.)
| | - Paul J. Orchard
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.); (J.B.E.)
| | - Lynda E. Polgreen
- The Lundquist Institute at Harbor, UCLA Medical Center, Torrance, CA 90502, USA;
| | - Julie B. Eisengart
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.); (J.B.E.)
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Sebahattin Cureoglu
- Department of Otolaryngology, Head and Neck Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.C.); (P.S.)
| | - Patricia Schachern
- Department of Otolaryngology, Head and Neck Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.C.); (P.S.)
| | - R. Scott McIvor
- Immusoft Corp, Minneapolis, MN 55413, USA;
- Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
64
|
Kubaski F, Vairo F, Baldo G, de Oliveira Poswar F, Corte AD, Giugliani R. Therapeutic Options for Mucopolysaccharidosis II (Hunter Disease). Curr Pharm Des 2020; 26:5100-5109. [PMID: 33138761 DOI: 10.2174/1381612826666200724161504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mucopolysaccharidosis type II (Hunter syndrome, or MPS II) is an X-linked lysosomal disorder caused by the deficiency of iduronate-2-sulfatase, which leads to the accumulation of glycosaminoglycans (GAGs) in a variety of tissues, resulting in a multisystemic disease that can also impair the central nervous system (CNS). OBJECTIVE This review focuses on providing the latest information and expert opinion about the therapies available and under development for MPS II. METHODS We have comprehensively revised the latest studies about hematopoietic stem cell transplantation (HSCT), enzyme replacement therapy (ERT - intravenous, intrathecal, intracerebroventricular, and intravenous with fusion proteins), small molecules, gene therapy/genome editing, and supportive management. RESULTS AND DISCUSSION Intravenous ERT is a well-established specific therapy, which ameliorates the somatic features but not the CNS manifestations. Intrathecal or intracerebroventricular ERT and intravenous ERT with fusion proteins, presently under development, seem to be able to reduce the levels of GAGs in the CNS and have the potential of reducing the impact of the neurological burden of the disease. Gene therapy and/or genome editing have shown promising results in preclinical studies, bringing hope for a "one-time therapy" soon. Results with HSCT in MPS II are controversial, and small molecules could potentially address some disease manifestations. In addition to the specific therapeutic options, supportive care plays a major role in the management of these patients. CONCLUSION At this time, the treatment of individuals with MPS II is mainly based on intravenous ERT, whereas HSCT can be a potential alternative in specific cases. In the coming years, several new therapy options that target the neurological phenotype of MPS II should be available.
Collapse
Affiliation(s)
- Francyne Kubaski
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| | - Filippo Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| | | | - Amauri Dalla Corte
- Postgraduation Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Brazil
| | - Roberto Giugliani
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
65
|
Sampayo-Cordero M, Miguel-Huguet B, Malfettone A, Pérez-García JM, Llombart-Cussac A, Cortés J, Pardo A, Pérez-López J. The Value of Case Reports in Systematic Reviews from Rare Diseases. The Example of Enzyme Replacement Therapy (ERT) in Patients with Mucopolysaccharidosis Type II (MPS-II). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6590. [PMID: 32927819 PMCID: PMC7558586 DOI: 10.3390/ijerph17186590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Case reports are usually excluded from systematic reviews. Patients with rare diseases are more dependent on novel individualized strategies than patients with common diseases. We reviewed and summarized the novelties reported by case reports in mucopolysaccharidosis type II (MPS-II) patients treated with enzyme replacement therapy (ERT). METHODS We selected the case reports included in a previous meta-analysis of patients with MPS-II treated with ERT. Later clinical studies evaluating the same topic of those case reports were reported. Our primary aim was to summarize novelties reported in previous case reports. Secondary objectives analyzed the number of novelties evaluated in subsequent clinical studies and the time elapsed between the publication of the case report to the publication of the clinical study. RESULTS We identified 11 innovative proposals in case reports that had not been previously considered in clinical studies. Only two (18.2%) were analyzed in subsequent nonrandomized cohort studies. The other nine novelties (81.8%) were analyzed in later case reports (five) or were not included in ulterior studies (four) after more than five years from their first publication. CONCLUSIONS Case reports should be included in systematic reviews of rare disease to obtain a comprehensive summary of the state of research and offer valuable information for healthcare practitioners.
Collapse
Affiliation(s)
- Miguel Sampayo-Cordero
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA; (A.M.); (J.M.P.-G.); (A.L.-C.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
| | - Bernat Miguel-Huguet
- Department of Surgery, Hospital de Bellvitge, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Andrea Malfettone
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA; (A.M.); (J.M.P.-G.); (A.L.-C.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
| | - José Manuel Pérez-García
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA; (A.M.); (J.M.P.-G.); (A.L.-C.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
- Institute of Breast Cancer, Quiron Group, 08023 Barcelona, Spain
| | - Antonio Llombart-Cussac
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA; (A.M.); (J.M.P.-G.); (A.L.-C.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
- Hospital Arnau de Vilanova, Universidad Católica de Valencia “San Vicente Mártir”, 46015 Valencia, Spain
| | - Javier Cortés
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA; (A.M.); (J.M.P.-G.); (A.L.-C.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
- Institute of Breast Cancer, Quiron Group, 08023 Barcelona, Spain
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Almudena Pardo
- Albiotech Consultores y Redacción Científica S.L., 28035 Madrid, Spain;
| | - Jordi Pérez-López
- Department of Internal Medicine, Hospital Vall d’Hebron, 08035 Barcelona, Spain;
| |
Collapse
|
66
|
Hearing Loss in Mucopolysaccharidoses: Current Knowledge and Future Directions. Diagnostics (Basel) 2020; 10:diagnostics10080554. [PMID: 32759694 PMCID: PMC7460463 DOI: 10.3390/diagnostics10080554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 01/03/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by a deficiency of one of the enzymes involved in the degradation of glycosaminoglycans. Hearing loss is a common clinical presentation in MPS. This paper reviews the literature on hearing loss for each of the seven recognized subtypes of MPS. Hearing loss was found to be common in MPS I, II, III, IVA, VI, and VII, and absent from MPS IVB and MPS IX. MPS VI presents primarily with conductive hearing loss, while the other subtypes (MPS I, MPS II, MPS III, MPS IVA, and MPS VII) can present with any type of hearing loss (conductive, sensorineural, or mixed hearing loss). The sensorineural component develops as the disease progresses, but there is no consensus on the etiology of the sensorineural component. Enzyme replacement therapy (ERT) is the most common therapy utilized for MPS, but the effects of ERT on hearing function have been inconclusive. This review highlights a need for more comprehensive and multidisciplinary research on hearing function that includes behavioral testing, objective testing, and temporal bone imaging. This information would allow for better understanding of the progression and etiology of hearing loss. Owing to the prevalence of hearing loss in MPS, early diagnosis of hearing loss and annual comprehensive audiological evaluations are recommended.
Collapse
|
67
|
Wang J, Bhalla A, Ullman JC, Fang M, Ravi R, Arguello A, Thomsen E, Tsogtbaatar B, Guo JL, Skuja LL, Dugas JC, Davis SS, Poda SB, Gunasekaran K, Costanzo S, Sweeney ZK, Henry AG, Harris JM, Henne KR, Astarita G. High-Throughput Liquid Chromatography-Tandem Mass Spectrometry Quantification of Glycosaminoglycans as Biomarkers of Mucopolysaccharidosis II. Int J Mol Sci 2020; 21:E5449. [PMID: 32751752 PMCID: PMC7432392 DOI: 10.3390/ijms21155449] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
We recently developed a blood-brain barrier (BBB)-penetrating enzyme transport vehicle (ETV) fused to the lysosomal enzyme iduronate 2-sulfatase (ETV:IDS) and demonstrated its ability to reduce glycosaminoglycan (GAG) accumulation in the brains of a mouse model of mucopolysaccharidosis (MPS) II. To accurately quantify GAGs, we developed a plate-based high-throughput enzymatic digestion assay coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously measure heparan sulfate and dermatan sulfate derived disaccharides in tissue, cerebrospinal fluid (CSF) and individual cell populations isolated from mouse brain. The method offers ultra-high sensitivity enabling quantitation of specific GAG species in as low as 100,000 isolated neurons and a low volume of CSF. With an LOD at 3 ng/mL and LLOQs at 5-10 ng/mL, this method is at least five times more sensitive than previously reported approaches. Our analysis demonstrated that the accumulation of CSF and brain GAGs are in good correlation, supporting the potential use of CSF GAGs as a surrogate biomarker for brain GAGs. The bioanalytical method was qualified through the generation of standard curves in matrix for preclinical studies of CSF, demonstrating the feasibility of this assay for evaluating therapeutic effects of ETV:IDS in future studies and applications in a wide variety of MPS disorders.
Collapse
|
68
|
Bhalla A, Ravi R, Fang M, Arguello A, Davis SS, Chiu CL, Blumenfeld JR, Nguyen HN, Earr TK, Wang J, Astarita G, Zhu Y, Fiore D, Scearce-Levie K, Diaz D, Cahan H, Troyer MD, Harris JM, Escolar ML. Characterization of Fluid Biomarkers Reveals Lysosome Dysfunction and Neurodegeneration in Neuronopathic MPS II Patients. Int J Mol Sci 2020; 21:ijms21155188. [PMID: 32707880 PMCID: PMC7432645 DOI: 10.3390/ijms21155188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022] Open
Abstract
Mucopolysaccharidosis type II is a lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS) and characterized by the accumulation of the primary storage substrate, glycosaminoglycans (GAGs). Understanding central nervous system (CNS) pathophysiology in neuronopathic MPS II (nMPS II) has been hindered by the lack of CNS biomarkers. Characterization of fluid biomarkers has been largely focused on evaluating GAGs in cerebrospinal fluid (CSF) and the periphery; however, GAG levels alone do not accurately reflect the broad cellular dysfunction in the brains of MPS II patients. We utilized a preclinical mouse model of MPS II, treated with a brain penetrant form of IDS (ETV:IDS) to establish the relationship between markers of primary storage and downstream pathway biomarkers in the brain and CSF. We extended the characterization of pathway and neurodegeneration biomarkers to nMPS II patient samples. In addition to the accumulation of CSF GAGs, nMPS II patients show elevated levels of lysosomal lipids, neurofilament light chain, and other biomarkers of neuronal damage and degeneration. Furthermore, we find that these biomarkers of downstream pathology are tightly correlated with heparan sulfate. Exploration of the responsiveness of not only CSF GAGs but also pathway and disease-relevant biomarkers during drug development will be crucial for monitoring disease progression, and the development of effective therapies for nMPS II.
Collapse
Affiliation(s)
- Akhil Bhalla
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
- Correspondence: (A.B.); (M.L.E.)
| | - Ritesh Ravi
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Meng Fang
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Annie Arguello
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Sonnet S. Davis
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Chi-Lu Chiu
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Jessica R. Blumenfeld
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
- Department of Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hoang N. Nguyen
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Timothy K. Earr
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Junhua Wang
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Giuseppe Astarita
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Yuda Zhu
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Damian Fiore
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Kimberly Scearce-Levie
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Dolores Diaz
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Heather Cahan
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Matthew D. Troyer
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Jeffrey M. Harris
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA; (R.R.); (M.F.); (A.A.); (S.S.D.); (C.-L.C.); (J.R.B.); (H.N.N.); (T.K.E.); (J.W.); (G.A.); (Y.Z.); (D.F.); (K.S.-L.); (D.D.); (H.C.); (M.D.T.); (J.M.H.)
| | - Maria L. Escolar
- Department of Pediatrics, Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Correspondence: (A.B.); (M.L.E.)
| |
Collapse
|