51
|
Abreu Ramos A, Malhão F, Ferreira A, Alves Â, Castro-Carvalho B, Prata-Sena M, Gargiulo D, Dethoup T, Buttachon S, Lobo-da-Cunha A, Kijjoa A, Rocha E. Marine and Soil Fungi Extracts with Antiproliferative Activity Induce Morphological Alterations in Breast Cancer Cells. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21 Suppl 5:83-84. [PMID: 26227722 DOI: 10.1017/s1431927615014221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Alice Abreu Ramos
- 1Interdisciplinary Center for Marine and Environmental Research (CIIMAR),CIMAR Associated Laboratory (CIMAR LA),University of Porto (U.Porto),Porto,Portugal
| | - Fernanda Malhão
- 1Interdisciplinary Center for Marine and Environmental Research (CIIMAR),CIMAR Associated Laboratory (CIMAR LA),University of Porto (U.Porto),Porto,Portugal
| | - Ana Ferreira
- 2Microscopy Department,Institute of Biomedical Sciences Abel Salazar (ICBAS),University of Porto (U.Porto),Porto,Portugal
| | - Ângela Alves
- 1Interdisciplinary Center for Marine and Environmental Research (CIIMAR),CIMAR Associated Laboratory (CIMAR LA),University of Porto (U.Porto),Porto,Portugal
| | - Bruno Castro-Carvalho
- 1Interdisciplinary Center for Marine and Environmental Research (CIIMAR),CIMAR Associated Laboratory (CIMAR LA),University of Porto (U.Porto),Porto,Portugal
| | - Maria Prata-Sena
- 1Interdisciplinary Center for Marine and Environmental Research (CIIMAR),CIMAR Associated Laboratory (CIMAR LA),University of Porto (U.Porto),Porto,Portugal
| | - Daniela Gargiulo
- 1Interdisciplinary Center for Marine and Environmental Research (CIIMAR),CIMAR Associated Laboratory (CIMAR LA),University of Porto (U.Porto),Porto,Portugal
| | - Tida Dethoup
- 4Faculty of Agriculture,Kasetsart University,Bangkok,Thailand
| | - Sudaret Buttachon
- 1Interdisciplinary Center for Marine and Environmental Research (CIIMAR),CIMAR Associated Laboratory (CIMAR LA),University of Porto (U.Porto),Porto,Portugal
| | - Alexandre Lobo-da-Cunha
- 1Interdisciplinary Center for Marine and Environmental Research (CIIMAR),CIMAR Associated Laboratory (CIMAR LA),University of Porto (U.Porto),Porto,Portugal
| | - Anake Kijjoa
- 1Interdisciplinary Center for Marine and Environmental Research (CIIMAR),CIMAR Associated Laboratory (CIMAR LA),University of Porto (U.Porto),Porto,Portugal
| | - Eduardo Rocha
- 1Interdisciplinary Center for Marine and Environmental Research (CIIMAR),CIMAR Associated Laboratory (CIMAR LA),University of Porto (U.Porto),Porto,Portugal
| |
Collapse
|
52
|
Antitumor Effects and Related Mechanisms of Penicitrinine A, a Novel Alkaloid with a Unique Spiro Skeleton from the Marine Fungus Penicillium citrinum. Mar Drugs 2015; 13:4733-53. [PMID: 26264002 PMCID: PMC4557002 DOI: 10.3390/md13084733] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 12/13/2022] Open
Abstract
Penicitrinine A, a novel alkaloid with a unique spiro skeleton, was isolated from a marine-derived fungus Penicillium citrinum. In this study, the isolation, structure and biosynthetic pathway elucidation of the new compound were described. This new compound showed anti-proliferative activity on multiple tumor types. Among them, the human malignant melanoma cell A-375 was confirmed to be the most sensitive. Morphologic evaluation, apoptosis rate analysis, Western blot and real-time quantitative PCR (RT-qPCR) results showed penicitrinine A could significantly induce A-375 cell apoptosis by decreasing the expression of Bcl-2 and increasing the expression of Bax. Moreover, we investigated the anti-metastatic effects of penicitrinine A in A-375 cells by wound healing assay, trans-well assay, Western blot and RT-qPCR. The results showed penicitrinine A significantly suppressed metastatic activity of A-375 cells by regulating the expression of MMP-9 and its specific inhibitor TIMP-1. These findings suggested that penicitrinine A might serve as a potential antitumor agent, which could inhibit the proliferation and metastasis of tumor cells.
Collapse
|
53
|
Gomes NGM, Lefranc F, Kijjoa A, Kiss R. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents? Mar Drugs 2015; 13:3950-91. [PMID: 26090846 PMCID: PMC4483665 DOI: 10.3390/md13063950] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 01/03/2023] Open
Abstract
Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.
Collapse
Affiliation(s)
- Nelson G M Gomes
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium.
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, CP205/1, Boulevard du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|
54
|
Ye X, Yu S, Liang Y, Huang H, Lian XY, Zhang Z. Bioactive triterpenoid saponins and phenolic compounds against glioma cells. Bioorg Med Chem Lett 2014; 24:5157-63. [DOI: 10.1016/j.bmcl.2014.09.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 11/30/2022]
|
55
|
Moussavou G, Kwak DH, Obiang-Obonou BW, Maranguy CAO, Dinzouna-Boutamba SD, Lee DH, Pissibanganga OGM, Ko K, Seo JI, Choo YK. Anticancer effects of different seaweeds on human colon and breast cancers. Mar Drugs 2014; 12:4898-911. [PMID: 25255129 PMCID: PMC4178489 DOI: 10.3390/md12094898] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/02/2014] [Accepted: 09/09/2014] [Indexed: 11/16/2022] Open
Abstract
Seafoods and seaweeds represent some of the most important reservoirs of new therapeutic compounds for humans. Seaweed has been shown to have several biological activities, including anticancer activity. This review focuses on colorectal and breast cancers, which are major causes of cancer-related mortality in men and women. It also describes various compounds extracted from a range of seaweeds that have been shown to eradicate or slow the progression of cancer. Fucoidan extracted from the brown algae Fucus spp. has shown activity against both colorectal and breast cancers. Furthermore, we review the mechanisms through which these compounds can induce apoptosis in vitro and in vivo. By considering the ability of compounds present in seaweeds to act against colorectal and breast cancers, this review highlights the potential use of seaweeds as anticancer agents.
Collapse
Affiliation(s)
- Ghislain Moussavou
- Department of Biological Science, College of Natural Science, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | - Dong Hoon Kwak
- Department of Biological Science, College of Natural Science, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | | | - Cyr Abel Ogandaga Maranguy
- Department of Biological Science, College of Natural Science, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | | | - Dae Hoon Lee
- Department of Biological Science, College of Natural Science, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | | | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 156-756, Korea.
| | - Jae In Seo
- College of Pharmacy, Yonsei University, Veritas D, Yonsei International Campus, Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea.
| | - Young Kug Choo
- Department of Biological Science, College of Natural Science, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| |
Collapse
|
56
|
Robinet P, Baychelier F, Fontaine T, Picard C, Debré P, Vieillard V, Latgé JP, Elbim C. A polysaccharide virulence factor of a human fungal pathogen induces neutrophil apoptosis via NK cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:5332-42. [PMID: 24790151 DOI: 10.4049/jimmunol.1303180] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aspergillus fumigatus is an opportunistic human fungal pathogen that sheds galactosaminogalactan (GG) into the environment. Polymorphonuclear neutrophils (PMNs) and NK cells are both part of the first line of defense against pathogens. We recently reported that GG induces PMN apoptosis. In this study, we show that PMN apoptosis occurs via a new NK cell-dependent mechanism. Reactive oxygen species, induced by the presence of GG, play an indispensable role in this apoptotic effect by increasing MHC class I chain-related molecule A expression at the PMN surface. This increased expression enables interaction between MHC class I chain-related molecule A and NKG2D, leading to NK cell activation, which in turn generates a Fas-dependent apoptosis-promoting signal in PMNs. Taken together, our results demonstrate that the crosstalk between PMNs and NK cells is essential to GG-induced PMN apoptosis. NK cells might thus play a role in the induction of PMN apoptosis in situations such as unexplained neutropenia or autoimmune diseases.
Collapse
Affiliation(s)
- Pauline Robinet
- Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche-S CR7, Sorbonne Université, F-75005 Paris, France; INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France
| | - Florence Baychelier
- INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France
| | | | - Capucine Picard
- Centre D'étude des Déficits Immunitaires, Assistance Publique-Hôpitaux de Paris, L'hôpital Necker - Enfants Malades, 75743 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U980, Necker Medical School, 75015 Paris, France; and
| | - Patrice Debré
- Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche-S CR7, Sorbonne Université, F-75005 Paris, France; INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France; Département d'Immunologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Vincent Vieillard
- INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France
| | - Jean-Paul Latgé
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
| | - Carole Elbim
- Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche-S CR7, Sorbonne Université, F-75005 Paris, France; INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France;
| |
Collapse
|
57
|
Wang SX, Zhang XS, Guan HS, Wang W. Potential anti-HPV and related cancer agents from marine resources: an overview. Mar Drugs 2014; 12:2019-35. [PMID: 24705500 PMCID: PMC4012449 DOI: 10.3390/md12042019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 12/14/2022] Open
Abstract
Recently, the studies on the prevention and treatment of human papillomavirus (HPV) which is closely related to the cervical cancer and other genital diseases are attracting more and more attention all over the world. Marine-derived polysaccharides and other bioactive compounds have been shown to possess a variety of anti-HPV and related cancer activities. This paper will review the recent progress in research on the potential anti-HPV and related cancer agents from marine resources. In particular, it will provide an update on the anti-HPV actions of heparinoid polysaccharides and bioactive compounds present in marine organisms, as well as the therapeutic vaccines relating to marine organisms. In addition, the possible mechanisms of anti-HPV actions of marine bioactive compounds and their potential for therapeutic application will also be summarized in detail.
Collapse
Affiliation(s)
- Shi-Xin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Xiao-Shuang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Hua-Shi Guan
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|