51
|
Li HY, Lu Y, Zheng JW, Yang WD, Liu JS. Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis. Mar Drugs 2014; 12:153-66. [PMID: 24402175 PMCID: PMC3917266 DOI: 10.3390/md12010153] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 11/16/2022] Open
Abstract
The role of diatoms as a source of bioactive compounds has been recently explored. Diatom cells store a high amount of fatty acids, especially certain polyunsaturated fatty acids (PUFAs). However, many aspects of diatom metabolism and the production of PUFAs remain unclear. This review describes a number of technical strategies, such as modulation of environmental factors (temperature, light, chemical composition of culture medium) and culture methods, to influence the content of PUFAs in diatoms. Genetic engineering, a newly emerging field, also plays an important role in controlling the synthesis of fatty acids in marine microalgae. Several key points in the biosynthetic pathway of PUFAs in diatoms as well as recent progresses are also a critical part and are summarized here.
Collapse
Affiliation(s)
- Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China.
| | - Yang Lu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China.
| | - Jian-Wei Zheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China.
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China.
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
52
|
Pacheco LFCDM, Uribe E, Pino J, Troncoso J, Quiróz A. The Effect of UV Light and CO<sub>2</sub> in the Production of Polyunsaturated Aldehydes in <i>Skeletonema costatum</i> (Bacillariophycea). ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.524379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
53
|
Design and synthesis of pro-apoptotic compounds inspired by diatom oxylipins. Mar Drugs 2013; 11:4527-43. [PMID: 24232667 PMCID: PMC3853743 DOI: 10.3390/md11114527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 12/30/2022] Open
Abstract
Oxylipins are a large and diverse family of fatty acid derivatives exhibiting different levels of oxidation of the carbon chain. They are involved in many biological functions in mammals, plants and diatoms. In this last group of organisms, they are suggested to play a role in the reproductive failure of copepod predators, showing clear pro-apoptotic effects on newborn nauplii. In this work, these compounds were tested for the ability to induce mitotic arrest in sea urchin embryos. We show for the first time that oxylipins have an increased efficacy in their corresponding methylated form. Natural oxylipins were also used as an inspiration for the rational design and synthesis of stable chemical analogs with apoptotic activity against tumor cell lines. This approach led to the synthesis of the linear C15-ketol (22) that was shown to induce apoptosis in human leukemia U-937 cells. These results are proof of the concept of the use of eco-physiological considerations as a platform to guide the search for novel drug candidates.
Collapse
|
54
|
Lamari N, Ruggiero MV, d’Ippolito G, Kooistra WHCF, Fontana A, Montresor M. Specificity of lipoxygenase pathways supports species delineation in the marine diatom genus Pseudo-nitzschia. PLoS One 2013; 8:e73281. [PMID: 24014077 PMCID: PMC3754938 DOI: 10.1371/journal.pone.0073281] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/18/2013] [Indexed: 01/08/2023] Open
Abstract
Oxylipins are low-molecular weight secondary metabolites derived from the incorporation of oxygen into the carbon chains of polyunsaturated fatty acids (PUFAs). Oxylipins are produced in many prokaryotic and eukaryotic lineages where they are involved in a broad spectrum of actions spanning from stress and defense responses, regulation of growth and development, signaling, and innate immunity. We explored the diversity in oxylipin patterns in the marine planktonic diatom Pseudo-nitzschia. This genus includes several species only distinguishable with the aid of molecular markers. Oxylipin profiles of cultured strains were obtained by reverse phase column on a liquid chromatograph equipped with UV photodiode detector and q-ToF mass spectrometer. Lipoxygenase compounds were mapped on phylogenies of the genus Pseudo-nitzschia inferred from the nuclear encoded hyper-variable region of the LSU rDNA and the plastid encoded rbcL. Results showed that the genus Pseudo-nitzschia exhibits a rich and varied lipoxygenase metabolism of eicosapentaenoic acid (EPA), with a high level of specificity for oxylipin markers that generally corroborated the genotypic delineation, even among genetically closely related cryptic species. These results suggest that oxylipin profiles constitute additional identification tools for Pseudo-nitzschia species providing a functional support to species delineation obtained with molecular markers and morphological traits. The exploration of the diversity, patterns and plasticity of oxylipin production across diatom species and genera will also provide insights on the ecological functions of these secondary metabolites and on the selective pressures driving their diversification.
Collapse
Affiliation(s)
- Nadia Lamari
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Maria Valeria Ruggiero
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Napoli, Italy
- * E-mail:
| | - Giuliana d’Ippolito
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Wiebe H. C. F. Kooistra
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Angelo Fontana
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Marina Montresor
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
55
|
Bushnell EAC, Gherib R, Gauld JW. Insights into the Catalytic Mechanism of Coral Allene Oxide Synthase: A Dispersion Corrected Density Functional Theory Study. J Phys Chem B 2013; 117:6701-10. [DOI: 10.1021/jp403405b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric A. C. Bushnell
- Department of Chemistry and Biochemistry,
University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Rami Gherib
- Department of Chemistry and Biochemistry,
University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - James W. Gauld
- Department of Chemistry and Biochemistry,
University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
56
|
Abstract
Lipids provide the densest form of energy in marine ecosystems. They are also a solvent and absorption carrier for organic contaminants and thus can be drivers of pollutant bioaccumulation. Among the lipids, certain essential fatty acids and sterols are considered to be important determinants of ecosystem health and stability. Fatty acids and sterols are also susceptible to oxidative damage leading to cytotoxicity and a decrease in membrane fluidity. The physical characteristics of biological membranes can be defended from the influence of changing temperature, pressure, or lipid peroxidation by altering the fatty acid and sterol composition of the lipid bilayer. Marine lipids are also a valuable tool to measure inputs, cycling, and loss of materials. Their heterogeneous nature makes them versatile biomarkers that are widely used in marine trophic studies, often with the help of multivariate statistics, to delineate carbon cycling and transfer of materials. Principal components analysis has a strong following as it permits data reduction and an objective interpretation of results, but several more sophisticated multivariate analyses which are more quantitative are emerging too. Integrating stable isotope and lipid data can facilitate the interpretation of both data sets and can provide a quantitative estimate of transfer across trophic levels.
Collapse
Affiliation(s)
- Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada A1C 5S7
| |
Collapse
|
57
|
Taylor RL, Rand JD, Caldwell GS. Treatment with algae extracts promotes flocculation, and enhances growth and neutral lipid content in Nannochloropsis oculata--a candidate for biofuel production. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:774-781. [PMID: 22527265 DOI: 10.1007/s10126-012-9441-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 03/20/2012] [Indexed: 05/31/2023]
Abstract
Marine microalgae represent a potentially valuable feedstock for biofuel production; however, large-scale production is not yet economically viable. Optimisation of productivity and lipid yields is required and the cost of biomass harvesting and dewatering must be significantly reduced. Microalgae produce a wide variety of biologically active metabolites, many of which are involved in inter- and intra-specific interactions (the so-called infochemicals). The majority of infochemicals remain unidentified or uncharacterised. Here, we apply known and candidate (undefined extracts) infochemicals as a potential means to manipulate the growth and lipid content of Nannochloropsis oculata-a prospective species for biofuel production. Five known infochemicals (β-cyclocitral, trans,trans-2,4-decadienal, hydrogen peroxide, norharman and tryptamine) and crude extracts prepared from Skeletonema marinoi and Dunaliella salina cultures at different growth stages were assayed for impacts on N. oculata over 24 h. The neutral lipid content of N. oculata increased significantly with exposure to three infochemicals (β-cyclocitral, decadienal and norharman); however the effective concentrations affected a significant decrease in growth. Exposure to particular crude extracts significantly increased both growth and neutral lipid levels. In addition, water-soluble extracts of senescent S. marinoi cultures induced a degree of flocculation in the N. oculata. These preliminary results indicate that artificial manipulation of N. oculata cultures by application of algae infochemicals could provide a valuable tool towards achieving economically viable large-scale algae biofuel production.
Collapse
Affiliation(s)
- Rebecca L Taylor
- School of Marine Science and Technology, Newcastle University, Ridley Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, England, UK
| | | | | |
Collapse
|
58
|
Lauritano C, Carotenuto Y, Miralto A, Procaccini G, Ianora A. Copepod population-specific response to a toxic diatom diet. PLoS One 2012; 7:e47262. [PMID: 23056617 PMCID: PMC3466246 DOI: 10.1371/journal.pone.0047262] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/11/2012] [Indexed: 12/23/2022] Open
Abstract
Diatoms are key phytoplankton organisms and one of the main primary producers in aquatic ecosystems. However, many diatom species produce a series of secondary metabolites, collectively termed oxylipins, that disrupt development in the offspring of grazers, such as copepods, that feed on these unicellular algae. We hypothesized that different populations of copepods may deal differently with the same oxylipin-producing diatom diet. Here we provide comparative studies of expression level analyses of selected genes of interest for three Calanus helgolandicus populations (North Sea, Atlantic Ocean and Mediterranean Sea) exposed to the same strain of the oxylipin-producing diatom Skeletonema marinoi using as control algae the flagellate Rhodomonas baltica. Expression levels of detoxification enzymes and stress proteins (e.g. glutathione S-transferase, glutathione synthase, superoxide dismutase, catalase, aldehyde dehydrogenases and heat shock proteins) and proteins involved in apoptosis regulation and cell cycle progression were analyzed in copepods after both 24 and 48 hours of feeding on the diatom or on a control diet. Strong differences occurred among copepod populations, with the Mediterranean population of C. helgolandicus being more susceptible to the toxic diet compared to the others. This study opens new perspectives for understanding copepod population-specific responses to diatom toxins and may help in underpinning the cellular mechanisms underlying copepod toxicity during diatom blooms.
Collapse
|
59
|
Lauritano C, Procaccini G, Ianora A. Gene expression patterns and stress response in marine copepods. MARINE ENVIRONMENTAL RESEARCH 2012; 76:22-31. [PMID: 22030210 DOI: 10.1016/j.marenvres.2011.09.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/16/2011] [Accepted: 09/30/2011] [Indexed: 05/31/2023]
Abstract
Aquatic organisms are constantly exposed to both physical (e.g. temperature and salinity variations) and chemical (e.g. endocrine disruptor chemicals, heavy metals, hydrocarbons, diatom toxins, and other toxicants) stressors which they react to by activating a series of defense mechanisms. This paper reviews the literature on the defense systems, including detoxification enzymes and proteins (e.g. glutathione S-transferases, heat shock proteins, superoxide dismutase and catalase), studied in copepods at the molecular level. The data indicate high inter- and intra-species variability in copepod response, depending on the type of stressor tested, the concentration and exposure time, and the enzyme isoform studied. Ongoing -omics approaches will allow the identification of new genes which will give a more comprehensive overview of how copepods respond to specific stressors in laboratory and/or field conditions and the effects of these responses on higher trophic levels.
Collapse
Affiliation(s)
- Chiara Lauritano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | | | | |
Collapse
|
60
|
Marrone V, Piscopo M, Romano G, Ianora A, Palumbo A, Costantini M. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS One 2012; 7:e31750. [PMID: 22363721 PMCID: PMC3282763 DOI: 10.1371/journal.pone.0031750] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/12/2012] [Indexed: 12/30/2022] Open
Abstract
Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.
Collapse
Affiliation(s)
- Vincenzo Marrone
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marina Piscopo
- Department of Structural and Functional Biology, University of Naples Federico II, Naples, Italy
| | - Giovanna Romano
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Adrianna Ianora
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Anna Palumbo
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Costantini
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
- * E-mail:
| |
Collapse
|
61
|
Characteristics of the phytoplankton community and bioaccumulation of heavy metals during algal blooms in Xiangjiang River (Hunan, China). SCIENCE CHINA-LIFE SCIENCES 2011; 54:931-8. [DOI: 10.1007/s11427-011-4222-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/25/2011] [Indexed: 12/26/2022]
|
62
|
Lauritano C, Borra M, Carotenuto Y, Biffali E, Miralto A, Procaccini G, Ianora A. Molecular evidence of the toxic effects of diatom diets on gene expression patterns in copepods. PLoS One 2011; 6:e26850. [PMID: 22046381 PMCID: PMC3203911 DOI: 10.1371/journal.pone.0026850] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/05/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Diatoms are dominant photosynthetic organisms in the world's oceans and are considered essential in the transfer of energy through marine food chains. However, these unicellular plants at times produce secondary metabolites such as polyunsaturated aldehydes and other products deriving from the oxidation of fatty acids that are collectively termed oxylipins. These cytotoxic compounds are responsible for growth inhibition and teratogenic activity, potentially sabotaging future generations of grazers by inducing poor recruitment in marine organisms such as crustacean copepods. PRINCIPAL FINDINGS Here we show that two days of feeding on a strong oxylipin-producing diatom (Skeletonema marinoi) is sufficient to inhibit a series of genes involved in aldehyde detoxification, apoptosis, cytoskeleton structure and stress response in the copepod Calanus helgolandicus. Of the 18 transcripts analyzed by RT-qPCR at least 50% were strongly down-regulated (aldehyde dehydrogenase 9, 8 and 6, cellular apoptosis susceptibility and inhibitor of apoptosis IAP proteins, heat shock protein 40, alpha- and beta-tubulins) compared to animals fed on a weak oxylipin-producing diet (Chaetoceros socialis) which showed no changes in gene expression profiles. CONCLUSIONS Our results provide molecular evidence of the toxic effects of strong oxylipin-producing diatoms on grazers, showing that primary defense systems that should be activated to protect copepods against toxic algae can be inhibited. On the other hand other classical detoxification genes (glutathione S-transferase, superoxide dismutase, catalase, cytochrome P450) were not affected possibly due to short exposure times. Given the importance of diatom blooms in nutrient-rich aquatic environments these results offer a plausible explanation for the inefficient use of a potentially valuable food resource, the spring diatom bloom, by some copepod species.
Collapse
Affiliation(s)
| | - Marco Borra
- Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
63
|
Romano G, Costantini M, Buttino I, Ianora A, Palumbo A. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS One 2011; 6:e25980. [PMID: 22022485 PMCID: PMC3191173 DOI: 10.1371/journal.pone.0025980] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/14/2011] [Indexed: 11/18/2022] Open
Abstract
Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.
Collapse
Affiliation(s)
- Giovanna Romano
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Maria Costantini
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Isabella Buttino
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Adrianna Ianora
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Anna Palumbo
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| |
Collapse
|
64
|
The relevance of marine chemical ecology to plankton and ecosystem function: an emerging field. Mar Drugs 2011; 9:1625-1648. [PMID: 22131962 PMCID: PMC3225939 DOI: 10.3390/md9091625] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/05/2011] [Accepted: 09/09/2011] [Indexed: 12/25/2022] Open
Abstract
Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds), and/or cell-to-cell signaling (e.g., polyunsaturated aldehydes (PUAs) of diatoms). Among inducible chemical defenses in response to grazing, there is high species-specific variability in the effects on grazers, ranging from severe physical incapacitation and/or death to no apparent physiological response, depending on predator susceptibility and detoxification capability. Most bioactive compounds are present in very low concentrations, in both the producing organism and the surrounding aqueous medium. Furthermore, bioactivity may be subject to synergistic interactions with other natural and anthropogenic environmental toxicants. Most, if not all phycotoxins are classic secondary metabolites, but many other bioactive metabolites are simple molecules derived from primary metabolism (e.g., PUAs in diatoms, dimethylsulfoniopropionate (DMSP) in prymnesiophytes). Producing cells do not seem to suffer physiological impact due to their synthesis. Functional genome sequence data and gene expression analysis will provide insights into regulatory and metabolic pathways in producer organisms, as well as identification of mechanisms of action in target organisms. Understanding chemical ecological responses to environmental triggers and chemically-mediated species interactions will help define crucial chemical and molecular processes that help maintain biodiversity and ecosystem functionality.
Collapse
|
65
|
Caldwell GS, Lewis C, Pickavance G, Taylor RL, Bentley MG. Exposure to copper and a cytotoxic polyunsaturated aldehyde induces reproductive failure in the marine polychaete Nereis virens (Sars). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 104:126-134. [PMID: 21570935 DOI: 10.1016/j.aquatox.2011.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 03/22/2011] [Accepted: 03/26/2011] [Indexed: 05/30/2023]
Abstract
A number of metabolites from microalgae, including polyunsaturated aldehydes (PUAs), have been implicated as inducers of reproductive failure in aquatic invertebrates. Current work describes the impacts of the model PUA 2E, 4E-decadienal and copper sulphate applied in isolation and combination on the reproductive performance of the infaunal polychaete, Nereis virens (Sars). The reproductive and life cycle parameters investigated were; fertilisation success, larval survival, sperm motility (percent motility and curvilinear velocity) and sperm DNA damage. Exposure to decadienal and copper sulphate in isolation resulted in dose- and time-dependent reductions for each evaluated endpoint. Fertilisation success was heavily impacted at concentrations of up to 10μM for both compounds. Copper sulphate was more toxic in larval survival assays. Sperm motility impacts, although variable, exhibited rapid onset with pronounced reductions in sperm swimming performance observed within 3min of exposure. The extent of DNA damage was dose-dependent, and in the case of decadienal, rapid in onset. Dual compound exposures resulted in enhanced overall toxicity in all assays. Logistic regression analysis of fertilisation and larval survival assays showed significant synergistic interactions between decadienal and copper sulphate; an increase in concentration of either compound resulted in enhanced toxicity of the other. Longer exposure durations during larval survival assays demonstrated a further increase in both toxicity and synergism. The results indicate that the effects of additional environmental stressors must be considered when attempting to extrapolate laboratory-derived single compound exposures to field situations.
Collapse
Affiliation(s)
- Gary S Caldwell
- School of Marine Science and Technology, Newcastle University, Ridley Building, Claremont Road, Newcastle upon Tyne, Tyne and Wear NE17RU, England, UK.
| | | | | | | | | |
Collapse
|
66
|
Cutignano A, Lamari N, d'ippolito G, Manzo E, Cimino G, Fontana A. LIPOXYGENASE PRODUCTS IN MARINE DIATOMS: A CONCISE ANALYTICAL METHOD TO EXPLORE THE FUNCTIONAL POTENTIAL OF OXYLIPINS(1). JOURNAL OF PHYCOLOGY 2011; 47:233-243. [PMID: 27021855 DOI: 10.1111/j.1529-8817.2011.00972.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Oxylipins are oxygenated derivatives of polyunsaturated fatty acids (PUFAs) that act as chemical mediators in many ecological and physiological processes in marine and freshwater diatoms. The occurrence and distribution of these molecules are relatively widespread within the lineage with considerable species-specific differences due to the variability of both the fatty acids recognized as substrates and the enzymatic transformations. The present review provides a general introduction to recent studies on diatom oxylipins and describes an analytical method for the detection and assessment of these elusive molecules in laboratory and field samples. This methodology is based on selective enrichment of the oxylipin fraction by solvent extraction, followed by parallel acquisition of full-scan UV and tandem mass spectra on reverse phase liquid chromatography (LC) peaks. The analytical procedure enables identification of potential genetic differences, enzymatic regulation, and ecophysiological conditions that result in different oxylipin signatures, thus providing an effective tool for probing the functional relevance of this class of lipids in plankton communities. Examples of oxylipin measurements in field samples are also provided as a demonstration of the analytical potential of the methodology.
Collapse
Affiliation(s)
- Adele Cutignano
- CNR-Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Nadia Lamari
- CNR-Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Giuliana d'ippolito
- CNR-Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Emiliano Manzo
- CNR-Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Guido Cimino
- CNR-Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Angelo Fontana
- CNR-Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| |
Collapse
|
67
|
Sieg RD, Poulson-Ellestad KL, Kubanek J. Chemical ecology of the marine plankton. Nat Prod Rep 2011; 28:388-99. [DOI: 10.1039/c0np00051e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
68
|
Teratogenic effects of diatom metabolites on sea urchin Paracentrotus lividus embryos. Mar Drugs 2010; 8:950-67. [PMID: 20479962 PMCID: PMC2866470 DOI: 10.3390/md8040950] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/06/2010] [Accepted: 03/24/2010] [Indexed: 01/04/2023] Open
Abstract
The diatom-derived polyunsaturated aldehydes (PUAs), 2-trans,4-trans-decadienal, 2-trans,4-trans-octadienal, 2-trans,4-trans,7-octatrienal, 2-trans,4-trans-heptadienal, as well as tridecanal were tested on early and later larval development in the sea urchin Paracentrotus lividus. We also tested the effect of some of the more abundant diatom polyunsaturated fatty acids (PUFAs) on development, in particular 5,8,11,14,17-eicosapentaenoic acid (EPA), one of the main precursors of diatom PUAs, as well as 4,7,10,13,16,19-docosahexaenoic acid (DHA), 6,9,12,15-octadecatetraenoic acid (stearidonic acid), 6,9,12-octadecatrienoic acid (γ-linolenic acid) and 9,12-octadecadienoic acid (linoleic acid). PUAs blocked sea urchin cell cleavage in a dose dependent manner and with increasing chain length from C7 to C10 PUAs, with arrest occurring at 27.27 μM with heptadienal, 16.13 μM with octadienal, 11.47 μM with octatrienal and 5.26 μM with decadienal. Of the PUFAs tested, only EPA and stearidonic acid blocked cleavage, but at much higher concentrations compared to PUAs (331 μM for EPA and 181 μM for stearidonic acid). Sub-lethal concentrations of decadienal (1.32–5.26 μM) delayed development of embryos and larvae which showed various degrees of malformations depending on the concentrations tested. Sub-lethal concentrations also increased the proportion of TUNEL-positive cells indicating imminent death in embryos and larvae. Using decadienal as a model PUA, we show that this aldehyde can be detected spectrophotometrically for up to 14 days in f/2 medium.
Collapse
|
69
|
Impact of marine drugs on cytoskeleton-mediated reproductive events. Mar Drugs 2010; 8:881-915. [PMID: 20479959 PMCID: PMC2866467 DOI: 10.3390/md8040881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/02/2010] [Accepted: 03/23/2010] [Indexed: 12/30/2022] Open
Abstract
Marine organisms represent an important source of novel bioactive compounds, often showing unique modes of action. Such drugs may be useful tools to study complex processes such as reproduction; which is characterized by many crucial steps that start at gamete maturation and activation and virtually end at the first developmental stages. During these processes cytoskeletal elements such as microfilaments and microtubules play a key-role. In this review we describe: (i) the involvement of such structures in both cellular and in vitro processes; (ii) the toxins that target the cytoskeletal elements and dynamics; (iii) the main steps of reproduction and the marine drugs that interfere with these cytoskeleton-mediated processes. We show that marine drugs, acting on microfilaments and microtubules, exert a wide range of impacts on reproductive events including sperm maturation and motility, oocyte maturation, fertilization, and early embryo development.
Collapse
|
70
|
Ianora A, Miralto A. Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:493-511. [PMID: 19924531 DOI: 10.1007/s10646-009-0434-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/21/2009] [Indexed: 05/28/2023]
Abstract
Traditionally, diatoms have been regarded as providing the bulk of the food that sustains the marine food chain and important fisheries. However, this view was challenged almost two decades ago on the basis of laboratory and field studies showing that when copepods, the principal predators of diatoms, feed on certain diatom diets, they produce abnormal eggs that either fail to develop to hatching or hatch into malformed (i.e. teratogenic) nauplii that die soon afterwards. Over the years, many explanations have been advanced to explain the causes for reproductive failure in copepods and other marine and freshwater invertebrates including diatom toxicity, or nutritional deficiency and poor assimilation of essential compounds in the animal gut. Here we review the literature concerning the first possibility, that diatoms produce cytotoxic compounds responsible for growth inhibition and teratogenic activity, potentially sabotaging future generations of grazers by inducing poor recruitment. The cytotoxic compounds responsible for these effects are short chain polyunsaturated aldehydes (PUAs) and other oxygenated fatty acid degradation products such as hydroxides, oxo-acids, and epoxyalcohols (collectively termed oxylipins) that are cleaved from fatty acid precursors by enzymes activated within seconds after crushing of cells. Such toxins are suggested to have multiple simultaneous functions in that they not only deter herbivore feeding but some also act as allelopathic agents against other phytoplankton cells, thereby affecting the growth of competitors, and also signalling population-level cell death and termination of blooms, with possible consequences for food web structure and community composition. Some oxylipins also play a role in driving marine bacterial community diversity, with neutral, positive or negative interactions depending on the species, thereby shaping the structure of bacterial communities during diatom blooms. Several reviews have already been published on diatom-grazer interactions so this paper does not attempt to provide a comprehensive overview, but rather to consider some of the more recent findings in this field. We also consider the role of diatom oxylipins in mediating physiological and ecological processes in the plankton and the multiple simultaneous functions of these secondary metabolites.
Collapse
Affiliation(s)
- Adrianna Ianora
- Functional and Evolutionary Ecology Laboratory, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | | |
Collapse
|