51
|
Ciobanasu C. Peptides-based therapy and diagnosis. Strategies for non-invasive therapies in cancer. J Drug Target 2021; 29:1063-1079. [PMID: 33775187 DOI: 10.1080/1061186x.2021.1906885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, remarkable progress was registered in the field of cancer research. Though, cancer still represents a major cause of death and cancer metastasis a problem seeking for urgent solutions as it is the main reason for therapeutic failure. Unfortunately, the most common chemotherapeutic agents are non-selective and can damage healthy tissues and cause side effects that affect dramatically the quality of life of the patients. Targeted therapy with molecules that act specifically at the tumour sites interacting with overexpressed cancer receptors is a very promising strategy for achieving the specific delivery of anticancer drugs, radioisotopes or imaging agents. This review aims to give an overview on different strategies for targeting cancer cell receptors localised either at the extracellular matrix or at the cell membrane. Molecules like antibodies, aptamers and peptides targeting the cell surface are presented with advantages and disadvantages, with emphasis on peptides. The most representative peptides are described, including cell penetrating peptides, homing and anticancer peptides with particular consideration on recent discoveries.
Collapse
Affiliation(s)
- Corina Ciobanasu
- Sciences Department, Institute for Interdisciplinary Research, Alexandru I. Cuza University, Iaşi, Romania
| |
Collapse
|
52
|
Damase TR, Sukhovershin R, Boada C, Taraballi F, Pettigrew RI, Cooke JP. The Limitless Future of RNA Therapeutics. Front Bioeng Biotechnol 2021; 9:628137. [PMID: 33816449 PMCID: PMC8012680 DOI: 10.3389/fbioe.2021.628137] [Citation(s) in RCA: 297] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advances in the generation, purification and cellular delivery of RNA have enabled development of RNA-based therapeutics for a broad array of applications. RNA therapeutics comprise a rapidly expanding category of drugs that will change the standard of care for many diseases and actualize personalized medicine. These drugs are cost effective, relatively simple to manufacture, and can target previously undruggable pathways. It is a disruptive therapeutic technology, as small biotech startups, as well as academic groups, can rapidly develop new and personalized RNA constructs. In this review we discuss general concepts of different classes of RNA-based therapeutics, including antisense oligonucleotides, aptamers, small interfering RNAs, microRNAs, and messenger RNA. Furthermore, we provide an overview of the RNA-based therapies that are currently being evaluated in clinical trials or have already received regulatory approval. The challenges and advantages associated with use of RNA-based drugs are also discussed along with various approaches for RNA delivery. In addition, we introduce a new concept of hospital-based RNA therapeutics and share our experience with establishing such a platform at Houston Methodist Hospital.
Collapse
Affiliation(s)
- Tulsi Ram Damase
- RNA Therapeutics Program, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Roman Sukhovershin
- RNA Therapeutics Program, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Christian Boada
- Colleges of Medicine, Engineering, Texas A&M University and Houston Methodist Hospital, Houston, TX, United States
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Roderic I. Pettigrew
- Colleges of Medicine, Engineering, Texas A&M University and Houston Methodist Hospital, Houston, TX, United States
| | - John P. Cooke
- RNA Therapeutics Program, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
53
|
Connelly RP, Madalozzo PF, Mordeson JE, Pratt AD, Gerasimova YV. Promiscuous dye binding by a light-up aptamer: application for label-free multi-wavelength biosensing. Chem Commun (Camb) 2021; 57:3672-3675. [PMID: 33725073 DOI: 10.1039/d1cc00594d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Light-up DNA aptamers are promising label-free signal-transducers for biosensing applications due to their high chemical stability and low synthetic cost. Herein, we demonstrate that a dapoxyl DNA aptamer DAP-10-42 can be converted into a sensor generating a fluorescence signal at different wavelengths in the range of 500-660 nm depending on the dye that is present. This results from the discovered promiscuity of DAP-10-42 in binding fluorogenic dyes including arylmethane dyes. We have designed a split DAP-10-42 aptasensor for the detection of a katG gene fragment from Mycobacterium tuberculosis with a point mutation causing isoniazid resistance. Efficient interrogation of the gene fragment after nucleic acid sequence-based amplification (NASBA) is achieved directly in a protein-containing NASBA sample. This report lays a foundation for the application of the DAP-10-42 aptamer as a versatile sensing platform.
Collapse
Affiliation(s)
- Ryan P Connelly
- Department of Chemistry, University of Central Florida, 4111 Libra Dr, PSB 255, Orlando, Fl 32816, USA.
| | | | | | | | | |
Collapse
|
54
|
Chen J, Xu J, Wan T, Deng H, Li D. High-Sensitive Detection of Small-Cell Lung Cancer Cells Based on Terminal Deoxynucleotidyl Transferase-Mediated Extension Polymerization Aptamer Probe. ACS Biomater Sci Eng 2021; 7:1169-1180. [PMID: 33541073 DOI: 10.1021/acsbiomaterials.0c01633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small-cell lung cancer (SCLC) is characterized by early metastasis and high invasiveness, poor prognosis, and a low five-year survival rate. Therefore, the development of the effective detection of SCLC cells and imaging methods has potential significance for the prognosis and treatment of SCLC. We designed a terminal deoxynucleotidyl transferase (TdT)-mediated extension polymerization aptamer probe (denoted as TEPAP). Aptamer HCC03 was used as an element of recognizing SCLC, and it was extended as a long poly(T) tail at the 3'-hydroxyl terminus by TdT and then hybridized with short poly(A) labeled with 6-carboxyfluorescein (FAM) to construct TEPAP for the high-sensitivity detection of SCLC. The results showed that the probe could specifically recognize NCI-H446 cells. Compared with HCC03 labeled with FAM, TEPAP has demonstrated a higher fluorescence signal in recognizing NCI-H446 cells, and the fluorescence intensity of TEPAP recognizing the target cells was 10 times higher than that of nontarget cells. Flow cytometric analysis showed that the detection limit of this method was as low as 17 NCI-H446 cells in 200 μL of binding buffer. In the application of clinical cytology cell blocks, the sensitivity, specificity, and accuracy of TEPAP were 89.74, 94.44, and 91.23%, respectively. The high sensitivity and specificity of TEPAP in the application of clinical samples show that the proposed probe has great potential in the diagnosis of SCLC.
Collapse
Affiliation(s)
- Jialing Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jieru Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tao Wan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hongli Deng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dairong Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
55
|
Buglak AA, Samokhvalov AV, Zherdev AV, Dzantiev BB. Methods and Applications of In Silico Aptamer Design and Modeling. Int J Mol Sci 2020; 21:E8420. [PMID: 33182550 PMCID: PMC7698023 DOI: 10.3390/ijms21228420] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Aptamers are nucleic acid analogues of antibodies with high affinity to different targets, such as cells, viruses, proteins, inorganic materials, and coenzymes. Empirical approaches allow the design of in vitro aptamers that bind particularly to a target molecule with high affinity and selectivity. Theoretical methods allow significant expansion of the possibilities of aptamer design. In this study, we review theoretical and joint theoretical-experimental studies dedicated to aptamer design and modeling. We consider aptamers with different targets, such as proteins, antibiotics, organophosphates, nucleobases, amino acids, and drugs. During nucleic acid modeling and in silico design, a full set of in silico methods can be applied, such as docking, molecular dynamics (MD), and statistical analysis. The typical modeling workflow starts with structure prediction. Then, docking of target and aptamer is performed. Next, MD simulations are performed, which allows for an evaluation of the stability of aptamer/ligand complexes and determination of the binding energies with higher accuracy. Then, aptamer/ligand interactions are analyzed, and mutations of studied aptamers made. Subsequently, the whole procedure of molecular modeling can be reiterated. Thus, the interactions between aptamers and their ligands are complex and difficult to understand using only experimental approaches. Docking and MD are irreplaceable when aptamers are studied in silico.
Collapse
Affiliation(s)
- Andrey A. Buglak
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
- Physical Faculty, St. Petersburg State University, 7/9 Universitetskaya naberezhnaya, 199034 St. Petersburg, Russia
| | - Alexey V. Samokhvalov
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| | - Anatoly V. Zherdev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| | - Boris B. Dzantiev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| |
Collapse
|
56
|
Camorani S, Passariello M, Agnello L, Esposito S, Collina F, Cantile M, Di Bonito M, Ulasov IV, Fedele M, Zannetti A, De Lorenzo C, Cerchia L. Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer. J Exp Clin Cancer Res 2020; 39:180. [PMID: 32892748 PMCID: PMC7487859 DOI: 10.1186/s13046-020-01694-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a uniquely aggressive cancer with high rates of relapse due to resistance to chemotherapy. TNBC expresses higher levels of programmed cell death-ligand 1 (PD-L1) compared to other breast cancers, providing the rationale for the recently approved immunotherapy with anti-PD-L1 monoclonal antibodies (mAbs). A huge effort is dedicated to identify actionable biomarkers allowing for combination therapies with immune-checkpoint blockade. Platelet-derived growth factor receptor β (PDGFRβ) is highly expressed in invasive TNBC, both on tumor cells and tumor microenvironment. We recently proved that tumor growth and lung metastases are impaired in mouse models of human TNBC by a high efficacious PDGFRβ aptamer. Hence, we aimed at investigating the effectiveness of a novel combination treatment with the PDGFRβ aptamer and anti-PD-L1 mAbs in TNBC. METHODS The targeting ability of the anti-human PDGFRβ aptamer toward the murine receptor was verified by streptavidin-biotin assays and confocal microscopy, and its inhibitory function by transwell migration assays. The anti-proliferative effects of the PDGFRβ aptamer/anti-PD-L1 mAbs combination was assessed in human MDA-MB-231 and murine 4 T1 TNBC cells, both grown as monolayer or co-cultured with lymphocytes. Tumor cell lysis and cytokines secretion by lymphocytes were analyzed by LDH quantification and ELISA, respectively. Orthotopic 4 T1 xenografts in syngeneic mice were used for dissecting the effect of aptamer/mAb combination on tumor growth, metastasis and lymphocytes infiltration. Ex vivo analyses through immunohistochemistry, RT-qPCR and immunoblotting were performed. RESULTS We show that the PDGFRβ aptamer potentiates the anti-proliferative activity of anti-PD-L1 mAbs on both human and murine TNBC cells, according to its human/mouse cross-reactivity. Further, by binding to activated human and mouse lymphocytes, the aptamer enhances the anti-PD-L1 mAb-induced cytotoxicity of lymphocytes against tumor cells. Importantly, the aptamer heightens the antibody efficacy in inhibiting tumor growth and lung metastases in mice. It acts on both tumor cells, inhibiting Akt and ERK1/2 signaling pathways, and immune populations, increasing intratumoral CD8 + T cells and reducing FOXP3 + Treg cells. CONCLUSION Co-treatment of PDGFRβ aptamer with anti-PD-L1 mAbs is a viable strategy, thus providing for the first time an evidence of the efficacy of PDGFRβ/PD-L1 co-targeting combination therapy in TNBC.
Collapse
Affiliation(s)
- Simona Camorani
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Margherita Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
- Ceinge-Biotecnologie Avanzate s.c.a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Silvia Esposito
- Ceinge-Biotecnologie Avanzate s.c.a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Francesca Collina
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Ilya V Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145, Naples, Italy
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
- Ceinge-Biotecnologie Avanzate s.c.a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy.
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
57
|
Dhar P, Samarasinghe RM, Shigdar S. Antibodies, Nanobodies, or Aptamers-Which Is Best for Deciphering the Proteomes of Non-Model Species? Int J Mol Sci 2020; 21:E2485. [PMID: 32260091 PMCID: PMC7177290 DOI: 10.3390/ijms21072485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
This planet is home to countless species, some more well-known than the others. While we have developed many techniques to be able to interrogate some of the "omics", proteomics is becoming recognized as a very important part of the puzzle, given how important the protein is as a functional part of the cell. Within human health, the proteome is fairly well-established, with numerous reagents being available to decipher cellular pathways. Recent research advancements have assisted in characterizing the proteomes of some model (non-human) species, however, in many other species, we are only just touching the surface. This review considers three main reagent classes-antibodies, aptamers, and nanobodies-as a means of continuing to investigate the proteomes of non-model species without the complications of understanding the full protein signature of a species. Considerations of ease of production, potential applications, and the necessity for producing a new reagent depending on homology are presented.
Collapse
Affiliation(s)
- Poshmaal Dhar
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
58
|
Grechkin YA, Grechkina SL, Zaripov EA, Fedorenko SV, Mustafina AR, Berezovski MV. Aptamer-Conjugated Tb(III)-Doped Silica Nanoparticles for Luminescent Detection of Leukemia Cells. Biomedicines 2020; 8:biomedicines8010014. [PMID: 31941078 PMCID: PMC7168109 DOI: 10.3390/biomedicines8010014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
DNA aptamers have many benefits for cell imaging, such as high affinity and specificity, easiness of chemical functionalization, and low cost of production. Among known aptamers, Sgc8-aptamer was selected against acute lymphoblastic leukemia cells with a dissociation constant in a nanomolar range. The aptamer was previously used for the covalent coupling with fluorescent and magnetic nanoparticles, as well as for the fabrication of aptamer-based biosensors. Among commonly used fluorescent tags, lanthanide nanoparticles offer stable luminescence with narrow, well-resolved emission peaks and the absence of photoblinking. In other words, lanthanide nanoparticles could serve as luminescence reporters and be used in biosensing. In our study, we conjugated amino- and carboxyl-modified silica-coated terbium (III) thiacalix[4]arenesulfonate luminescent nanoparticles with Sgc8-aptamer and showed the ability of the aptamer-conjugated nanoparticles to detect leukemia cells using fluorescence microscopy. In addition, we conducted a cell viability assay and confirmed that the nanoparticles do not induce spontaneous cell apoptosis or necrosis and could be potentially used for bioimaging applications.
Collapse
Affiliation(s)
- Yaroslav A. Grechkin
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.A.G.); (E.A.Z.)
| | - Svetlana L. Grechkina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (S.L.G.); (S.V.F.); (A.R.M.)
| | - Emil A. Zaripov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.A.G.); (E.A.Z.)
| | - Svetlana V. Fedorenko
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (S.L.G.); (S.V.F.); (A.R.M.)
| | - Asiya R. Mustafina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (S.L.G.); (S.V.F.); (A.R.M.)
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.A.G.); (E.A.Z.)
- Correspondence:
| |
Collapse
|