51
|
Bingöl B, Bakirel T. Comparison of the pharmacokinetic profiles of two different amphotericin B formulations in healthy dogs. J Vet Pharmacol Ther 2017; 41:e16-e21. [PMID: 28815733 DOI: 10.1111/jvp.12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 07/14/2017] [Indexed: 11/30/2022]
Abstract
This study was conducted to compare the pharmacokinetic profiles of conventional (Fungizone® ) and liposomal amphotericin B (AmBisome® ) formulations in order to predict their therapeutic properties, and evaluate their potential differences in veterinary treatment. For this purpose, twelve healthy mixed breed dogs received both drugs at a dose of 0.6 mg/kg by intravenous infusion over a 4-min period in a total volume of 40 ml. Blood samples were collected at 0, 0.5, 1, 1.5, 2, 3, 4, 8, 12, 24, 48, 72 and 96 hr after dosing, and concentrations of drug in plasma were determined by high-performance liquid chromatography (HPLC). Pharmacokinetics was described by a two-compartment model. Although both formulations were administered at the same doses (0.6 mg/kg), the plasma pharmacokinetics of liposomal amphotericin B differed significantly from those of amphotericin B deoxycholate in healthy dogs (p < .05). Liposomal amphotericin B showed markedly higher peak plasma concentrations (approximately ninefold greater) and higher area under the plasma concentration curve values (approximately 14-fold higher) compared to conventional formulation. It is concluded that AmBisome® reached higher plasma concentration and lower distribution volume and had a longer half-life compared to Fungizone® , and therefore, AmBisome® is reported to be an appropriate and effective choice for the treatment of systemic mycotic infections in dogs.
Collapse
Affiliation(s)
- B Bingöl
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | - T Bakirel
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
52
|
Chountoulesi M, Naziris N, Pippa N, Demetzos C. The significance of drug-to-lipid ratio to the development of optimized liposomal formulation. J Liposome Res 2017. [DOI: 10.1080/08982104.2017.1343836] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Maria Chountoulesi
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Naziris
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, Greece
| | - Costas Demetzos
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
53
|
Smink AM, Li S, Swart DH, Hertsig DT, de Haan BJ, Kamps JAAM, Schwab L, van Apeldoorn AA, de Koning E, Faas MM, Lakey JRT, de Vos P. Stimulation of vascularization of a subcutaneous scaffold applicable for pancreatic islet-transplantation enhances immediate post-transplant islet graft function but not long-term normoglycemia. J Biomed Mater Res A 2017; 105:2533-2542. [PMID: 28470672 PMCID: PMC5575460 DOI: 10.1002/jbm.a.36101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/20/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022]
Abstract
The liver as transplantation site for pancreatic islets is associated with significant loss of islets, which can be prevented by grafting in a prevascularized, subcutaneous scaffold. Supporting vascularization of a scaffold to limit the period of ischemia is challenging and was developed here by applying liposomes for controlled release of angiogenic factors. The angiogenic capacity of platelet-derived growth factor, vascular endothelial growth factor, acidic fibroblast growth factor (aFGF), and basic FGF were compared in a tube formation assay. Furthermore, the release kinetics of different liposome compositions were tested. aFGF and L-α-phosphatidylcholine/cholesterol liposomes were selected to support vascularization. Two dosages of aFGF-liposomes (0.5 and 1.0 μg aFGF per injection) were administered weekly for a month after which islets were transplanted. We observed enhanced efficacy in the immediate post-transplant period compared to the untreated scaffolds. However, on the long-term, glucose levels of the aFGF treated animals started to increase to diabetic levels. These results suggest that injections with aFGF liposomes do improve vascularization and the immediate restoration of blood glucose levels but does not facilitate the long-term survival of islets. Our data emphasize the need for long-term studies to evaluate potential beneficial and adverse effects of vascularization protocols of scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2533-2542, 2017.
Collapse
Affiliation(s)
- Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Shiri Li
- Department of Surgery, University of California Irvine, Orange
| | - Daniël H Swart
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Bart J de Haan
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan A A M Kamps
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Aart A van Apeldoorn
- Department of Developmental BioEngineering, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Eelco de Koning
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange.,Department of Biomedical Engineering, University of California Irvine, Irvine
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
54
|
Shalgunov V, Zaytseva-Zotova D, Zintchenko A, Levada T, Shilov Y, Andreyev D, Dzhumashev D, Metelkin E, Urusova A, Demin O, McDonnell K, Troiano G, Zale S, Safarovа E. Comprehensive study of the drug delivery properties of poly(l-lactide)-poly(ethylene glycol) nanoparticles in rats and tumor-bearing mice. J Control Release 2017; 261:31-42. [PMID: 28611009 DOI: 10.1016/j.jconrel.2017.06.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/03/2017] [Accepted: 06/09/2017] [Indexed: 11/26/2022]
Abstract
Nanoparticles made of polylactide-poly(ethylene glycol) block-copolymer (PLA-PEG) are promising vehicles for drug delivery due to their biodegradability and controllable payload release. However, published data on the drug delivery properties of PLA-PEG nanoparticles are heterogeneous in terms of nanoparticle characteristics and mostly refer to low injected doses (a few mg nanoparticles per kg body weight). We have performed a comprehensive study of the biodistribution of nanoparticle formulations based on PLA-PEG nanoparticles of ~100nm size at injected doses of 30 to 140mg/kg body weight in healthy rats and nude tumor-bearing mice. Nanoparticle formulations differed by surface PEG coverage and by release kinetics of the encapsulated model active pharmaceutical ingredient (API). Increase in PEG coverage prolonged nanoparticle circulation half-life up to ~20h in rats and ~10h in mice and decreased retention in liver, spleen and lungs. Circulation half-life of the encapsulated API grew monotonously as the release rate slowed down. Plasma and tissue pharmacokinetics was dose-linear for inactive nanoparticles, but markedly dose-dependent for the model therapeutic formulation, presumably because of the toxic effects of released API. A mathematical model of API distribution calibrated on the data for inactive nanoparticles and conventional API form correctly predicted the distribution of the model therapeutic formulation at the lowest investigated dose, but for higher doses the toxic action of the released API had to be explicitly modelled. Our results provide a coherent illustration of the ability of controllable-release PLA-PEG nanoparticles to serve as an effective drug delivery platform to alter API biodistribution. They also underscore the importance of physiological effects of released drug in determining the biodistribution of therapeutic drug formulations at doses approaching tolerability limits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Oleg Demin
- Institute for Systems Biology, Moscow, Russia
| | | | | | | | | |
Collapse
|
55
|
Lakkireddy HR, Bazile D. Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly(lactide(glycolide))-poly(ethylene glycol) nanotechnology as a model: An industrial viewpoint. Adv Drug Deliv Rev 2016; 107:289-332. [PMID: 27593265 DOI: 10.1016/j.addr.2016.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/19/2016] [Accepted: 08/27/2016] [Indexed: 12/16/2022]
Abstract
The design of the first polymeric nanoparticles could be traced back to the 1970s, and has thereafter received considerable attention, as evidenced by the significant increase of the number of articles and patents in this area. This review article is an attempt to take advantage of the existing literature on the clinically tested and commercialized biodegradable PLA(G)A-PEG nanotechnology as a model to propose quality building and outline translation and development principles for polymeric nano-medicines. We built such an approach from various building blocks including material design, nano-assembly - i.e. physicochemistry of drug/nano-object association in the pharmaceutical process, and release in relevant biological environment - characterization and identification of the quality attributes related to the biopharmaceutical properties. More specifically, as envisaged in a translational approach, the reported data on PLA(G)A-PEG nanotechnology have been structured into packages to evidence the links between the structure, physicochemical properties, and the in vitro and in vivo performances of the nanoparticles. The integration of these bodies of knowledge to build the CMC (Chemistry Manufacturing and Controls) quality management strategy and finally support the translation to proof of concept in human, and anticipation of the industrialization takes into account the specific requirements and biopharmaceutical features attached to the administration route. From this approach, some gaps are identified for the industrial development of such nanotechnology-based products, and the expected improvements are discussed. The viewpoint provided in this article is expected to shed light on design, translation and pharmaceutical development to realize their full potential for future clinical applications.
Collapse
|
56
|
Akhtar N, Khan RA. Liposomal systems as viable drug delivery technology for skin cancer sites with an outlook on lipid-based delivery vehicles and diagnostic imaging inputs for skin conditions'. Prog Lipid Res 2016; 64:192-230. [DOI: 10.1016/j.plipres.2016.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
|
57
|
Yhee JY, Im J, Nho RS. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery. J Clin Med 2016; 5:jcm5090082. [PMID: 27657144 PMCID: PMC5039485 DOI: 10.3390/jcm5090082] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 12/12/2022] Open
Abstract
Chronic lung diseases include a variety of obstinate and fatal diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF), and lung cancers. Pharmacotherapy is important for the treatment of chronic lung diseases, and current progress in nanoparticles offers great potential as an advanced strategy for drug delivery. Based on their biophysical properties, nanoparticles have shown improved pharmacokinetics of therapeutics and controlled drug delivery, gaining great attention. Herein, we will review the nanoparticle-based drug delivery system for the treatment of chronic lung diseases. Various types of nanoparticles will be introduced, and recent innovative efforts to utilize the nanoparticles as novel drug carriers for the effective treatment of chronic lung diseases will also be discussed.
Collapse
Affiliation(s)
- Ji Young Yhee
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jintaek Im
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
58
|
Troiano G, Nolan J, Parsons D, Van Geen Hoven C, Zale S. A Quality by Design Approach to Developing and Manufacturing Polymeric Nanoparticle Drug Products. AAPS JOURNAL 2016; 18:1354-1365. [DOI: 10.1208/s12248-016-9969-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/02/2016] [Indexed: 12/31/2022]
|
59
|
Pharmacokinetic considerations of nanodelivery to the brain: Using modeling and simulations to predict the outcome of liposomal formulations. Eur J Pharm Sci 2016; 92:173-82. [DOI: 10.1016/j.ejps.2016.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 11/18/2022]
|
60
|
Havel H, Finch G, Strode P, Wolfgang M, Zale S, Bobe I, Youssoufian H, Peterson M, Liu M. Nanomedicines: From Bench to Bedside and Beyond. AAPS JOURNAL 2016; 18:1373-1378. [DOI: 10.1208/s12248-016-9961-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/15/2016] [Indexed: 11/30/2022]
|
61
|
Bandara HMHN, Herpin MJ, Kolacny D, Harb A, Romanovicz D, Smyth HDC. Incorporation of Farnesol Significantly Increases the Efficacy of Liposomal Ciprofloxacin against Pseudomonas aeruginosa Biofilms in Vitro. Mol Pharm 2016; 13:2760-70. [PMID: 27383205 DOI: 10.1021/acs.molpharmaceut.6b00360] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The challenge of eliminating Pseudomonas aeruginosa infections, such as in cystic fibrosis lungs, remains unchanged due to the rapid development of antibiotic resistance. Poor drug penetration into dense P. aeruginosa biofilms plays a vital role in ineffective clearance of the infection. Thus, the current antibiotic therapy against P. aeruginosa biofilms need to be revisited and alternative antibiofilm strategies need to be invented. Fungal quorum sensing molecule (QSM), farnesol, appears to have detrimental effects on P. aeruginosa. Thus, this study aimed to codeliver naturally occurring QSM farnesol, with the antibiotic ciprofloxacin as a liposomal formulation to eradicate P. aeruginosa biofilms. Four different liposomes (with ciprofloxacin and farnesol, Lcip+far; with ciprofloxacin, Lcip; with farnesol, Lfar; control, Lcon) were prepared using dehydration-rehydration method and characterized. Drug entrapment and release were evaluated by spectrometry and high performance liquid chromatography (HPLC). The efficacy of liposomes was assessed using standard biofilm assay. Liposome-treated 24 h P. aeruginosa biofilms were quantitatively assessed by XTT reduction assay and crystal violet assay, and qualitatively by confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Ciprofloxacin release from liposomes was higher when encapsulated with farnesol (Lcip+far) compared to Lcip (3.06% vs 1.48%), whereas farnesol release was lower when encapsulated with ciprofloxacin (Lcip+far) compared to Lfar (1.81% vs 4.75%). The biofilm metabolism was significantly lower when treated with Lcip+far or Lcip compared to free ciprofloxacin (XTT, P < 0.05). When administered as Lcip+far, the ciprofloxacin concentration required to achieve similar biofilm inhibition was 125-fold or 10-fold lower compared to free ciprofloxacin or Lcip, respectively (P < 0.05). CLSM and TEM confirmed predominant biofilm disruption, greater dead cell ratio, and increased depth of biofilm killing when treated with Lcip+far compared to other liposomal preparations. Thus, codelivery of farnesol and ciprofloxacin is likely to be a promising approach to battle antibiotic resistant P. aeruginosa biofilms by enhancing biofilm killing at significantly lower antibiotic doses.
Collapse
Affiliation(s)
- H M H N Bandara
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - M J Herpin
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - D Kolacny
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - A Harb
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - D Romanovicz
- Institute of Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | - H D C Smyth
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
62
|
Ganesh S, Koser ML, Cyr WA, Chopda GR, Tao J, Shui X, Ying B, Chen D, Pandya P, Chipumuro E, Siddiquee Z, Craig K, Lai C, Dudek H, Monga SP, Wang W, Brown BD, Abrams MT. Direct Pharmacological Inhibition of β-Catenin by RNA Interference in Tumors of Diverse Origin. Mol Cancer Ther 2016; 15:2143-54. [PMID: 27390343 DOI: 10.1158/1535-7163.mct-16-0309] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/29/2016] [Indexed: 01/30/2023]
Abstract
The Wnt/β-catenin pathway is among the most frequently altered signaling networks in human cancers. Despite decades of preclinical and clinical research, efficient therapeutic targeting of Wnt/β-catenin has been elusive. RNA interference (RNAi) technology silences genes at the mRNA level and therefore can be applied to previously undruggable targets. Lipid nanoparticles (LNP) represent an elegant solution for the delivery of RNAi-triggering oligonucleotides to disease-relevant tissues, but have been mostly restricted to applications in the liver. In this study, we systematically tuned the composition of a prototype LNP to enable tumor-selective delivery of a Dicer-substrate siRNA (DsiRNA) targeting CTNNB1, the gene encoding β-catenin. This formulation, termed EnCore-R, demonstrated pharmacodynamic activity in subcutaneous human tumor xenografts, orthotopic patient-derived xenograft (PDX) tumors, disseminated hematopoietic tumors, genetically induced primary liver tumors, metastatic colorectal tumors, and murine metastatic melanoma. DsiRNA delivery was homogeneous in tumor sections, selective over normal liver and independent of apolipoprotein-E binding. Significant tumor growth inhibition was achieved in Wnt-dependent colorectal and hepatocellular carcinoma models, but not in Wnt-independent tumors. Finally, no evidence of accelerated blood clearance or sustained liver transaminase elevation was observed after repeated dosing in nonhuman primates. These data support further investigation to gain mechanistic insight, optimize dose regimens, and identify efficacious combinations with standard-of-care therapeutics. Mol Cancer Ther; 15(9); 2143-54. ©2016 AACR.
Collapse
Affiliation(s)
- Shanthi Ganesh
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts.
| | | | - Wendy A Cyr
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Junyan Tao
- University of Pittsburgh Medical Center, Pittsburgh, Pittsburgh
| | - Xue Shui
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Bo Ying
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Dongyu Chen
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Purva Pandya
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | | | - Kevin Craig
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Chengjung Lai
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Henryk Dudek
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Weimin Wang
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Bob D Brown
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Marc T Abrams
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| |
Collapse
|
63
|
Douer D. Efficacy and Safety of Vincristine Sulfate Liposome Injection in the Treatment of Adult Acute Lymphocytic Leukemia. Oncologist 2016; 21:840-7. [PMID: 27328933 DOI: 10.1634/theoncologist.2015-0391] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/01/2016] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED : Acute lymphoblastic leukemia (ALL) is a heterogeneous group of hematologic malignancies that arise from clonal proliferation of immature lymphoid cells in the bone marrow, peripheral blood, and other organs. The vinca alkaloid vincristine is a standard component of chemotherapy regimens used to treat ALL, because of its well-defined mechanism of action, demonstrated anticancer activity, and ability to be combined with other agents. However, the dosage of vincristine is frequently capped because of neurotoxicity concerns, and patients with large body surface areas are, therefore, almost always underdosed. Liposomal formulations have the ability to "passively" accumulate at sites of increased vasculature permeability and reduce the adverse effects of encapsulated relative to free drug. Vincristine sulfate liposome injection (VSLI) is a sphingomyelin/cholesterol-based liposome-encapsulated formulation that is delivered weekly in a 1-hour infusion. Based on the pharmacokinetics of the liposomal delivery system, vincristine is slowly released from the liposome and delivered into the tissues more efficiently than with the standard preparation, allowing a higher dose. This increase in therapeutic index from reduced toxicity is a valuable difference between the two formulations. VSLI is indicated for the treatment of adults with second or greater relapse and clinically advanced Philadelphia chromosome-negative ALL. For the first time, studies will be able to exploit the delivery of higher and uncapped doses of vincristine in randomized studies comparing first-line chemotherapy with standard vincristine versus VSLI in both ALL and lymphoma to determine whether VSLI is superior to conventional vincristine. IMPLICATIONS FOR PRACTICE This review summarizes the development of vincristine sulfate liposome injection, a new formulation of vincristine. The pharmacokinetics of liposomal drug delivery are examined, the limitations and advantages of conventional and liposomal vincristine are compared, and the use of vincristine sulfate liposome injection in clinical trials and case studies is included. Clinicians will be informed of a new chemotherapy agent that is indicated for the treatment of adults with Philadelphia chromosome-negative acute lymphoblastic leukemia, whose disease has relapsed two or more times or whose leukemia has progressed after two or more regimens of antileukemia therapy.
Collapse
Affiliation(s)
- Dan Douer
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
64
|
Chude-Okonkwo UAK, Malekian R, Maharaj BTS. Molecular Communication Model for Targeted Drug Delivery in Multiple Disease Sites_newline With Diversely Expressed Enzymes. IEEE Trans Nanobioscience 2016; 15:230-45. [DOI: 10.1109/tnb.2016.2526783] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
65
|
Johnstone TC, Suntharalingam K, Lippard SJ. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem Rev 2016; 116:3436-86. [PMID: 26865551 PMCID: PMC4792284 DOI: 10.1021/acs.chemrev.5b00597] [Citation(s) in RCA: 1759] [Impact Index Per Article: 195.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive.
Collapse
Affiliation(s)
- Timothy C Johnstone
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
66
|
Gao J, Wang Z, Liu H, Wang L, Huang G. Liposome encapsulated of temozolomide for the treatment of glioma tumor: preparation, characterization and evaluation. Drug Discov Ther 2015; 9:205-12. [PMID: 26193943 DOI: 10.5582/ddt.2015.01016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Temozolomide plays a critical role in curing glioma at present. The purpose of this work was to develop a suitable drug delivery system which could prolong the half-life, improve the brain targeting, and reduce the systemic effect of the drug. Temozolomide-liposomes were formulated by the method of proliposomes. They were found to be relatively uniform in size of 156.70 ± 11.40 nm with a narrow polydispersity index (PI) of 0.29 ± 0.04. The average drug entrapment efficiency and loading capacity were 35.45 ± 1.48% and 2.81 ± 0.20%, respectively. The pH of temozolomide-liposomes was 6.46. In vitro release studies were conducted by a dynamic dialysis. The results showed that temozolomide released slowly from liposomes compared with the solution group. The release behavior of temozolomide-liposomes was in line with First-order kinetics and Weibull equation. The pharmacokinetics study was evaluated by pharmacokinetics parameters. The t(1/2β) and MRT of temozolomide-liposomes were 3.57 times and 1.27 times greater than that of temozolomide solution. The Cmax and AUC values of temozolomide-liposomes were 1.10 times and 1.55 times greater than that of temozolomide solution. The results of pharmacokinetics study showed temozolomide-liposomes prolonged the in vivo circulation time and increased AUC. Furthermore, the biodistribution in mice showed that temozolomide-liposomes preferentially decreased the accumulation of temozolomide in heart and lung and increased the drug concentration in brain after i.v. injection, which implied that temozolomide-liposomes improved the therapeutic effect in the brain and reduced the toxicity in lung and heart.
Collapse
Affiliation(s)
- Jinhua Gao
- School of Pharmaceutical Science, Shandong University
| | | | | | | | | |
Collapse
|
67
|
Shen YA, Li WH, Chen PH, He CL, Chang YH, Chuang CM. Intraperitoneal delivery of a novel liposome-encapsulated paclitaxel redirects metabolic reprogramming and effectively inhibits cancer stem cells in Taxol(®)-resistant ovarian cancer. Am J Transl Res 2015; 7:841-55. [PMID: 26175846 PMCID: PMC4494136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
Taxol(®) remained as the mainstay therapeutic agent in the treatment of ovarian cancer, however recurrence rate is still high. Cancer stem cells (CSCs) represent a subset of cells in the bulk of tumors and play a central role in inducing drug resistance and recurrence. Furthermore, cancer metabolism has been an area under intensive investigation, since accumulating evidence has shown that CSCs and cancer metabolism are closely linked, an effect named as metabolic reprogramming. In this work, we aimed to investigate the impacts of a novel liposome-encapsulated paclitaxel (Nano-Taxol) on the stemness phenotype and metabolic reprogramming. A paclitaxel-resistant cell line (TR) was established at first. Tumor growth was induced in the mice peritoneal cavity by inoculation of TR cells. A 2x2 factorial experiment was designed to test the therapeutic efficacy in which factor 1 represented the comparison of drugs (Taxol(®) versus Nano-Taxol), while factor 2 represented the delivery route (intravenous versus intraperitoneal delivery). In this work, we found that intraperitoneal delivery of Nano-Taxol redirects metabolic reprogramming, from glycolysis to oxidative phosphorylation, and effectively suppresses cancer stem cells. Also, intraperitoneal delivery of Nano-Taxol led to a significantly better control of tumor growth compared with intravenous delivery of Taxol(®) (current standard treatment). This translational research may serve as a novel pathway for the drug development of nanomedicine. In the future, this treatment modality may be extended to treat several relevant cancers that have been proved to be suitable for the loco-regional delivery of therapeutic agents, including colon cancer, gastric cancer, and pancreatic cancer.
Collapse
Affiliation(s)
- Yao-An Shen
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Taipei Veterans General HospitalTaipei, Taiwan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming UniversityTaipei, Taiwan
| | - Wai-Hou Li
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Taipei Veterans General HospitalTaipei, Taiwan
| | - Po-Hung Chen
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Taipei Veterans General HospitalTaipei, Taiwan
| | - Chun-Lin He
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Taipei Veterans General HospitalTaipei, Taiwan
| | - Yen-Hou Chang
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Taipei Veterans General HospitalTaipei, Taiwan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming UniversityTaipei, Taiwan
| | - Chi-Mu Chuang
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Taipei Veterans General HospitalTaipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan
| |
Collapse
|
68
|
Mérian J, De Souza R, Dou Y, Ekdawi SN, Ravenelle F, Allen C. Development of a liposome formulation for improved biodistribution and tumor accumulation of pentamidine for oncology applications. Int J Pharm 2015; 488:154-64. [PMID: 25910415 DOI: 10.1016/j.ijpharm.2015.04.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/11/2015] [Accepted: 04/19/2015] [Indexed: 11/24/2022]
Abstract
Pentamidine isethionate, widely used for the treatment of parasitic infections, has shown strong anticancer activity in cancer cells and models of melanoma and lung cancer. Systemic administration of pentamidine is associated with serious toxicities, particularly renal, affecting as many as 95% of patients (O'Brien et al., 1997). This work presents the development of a liposome pentamidine formulation for greater tumor accumulation and lower drug exposure to vulnerable tissues. Liposomes formulated with saturated/unsaturated phospholipids of different chain lengths, varying cholesterol content, and surface PEG were explored to understand the effects of such variations on drug release, encapsulation efficiency, stability and in vivo performance. Saturated phospholipids with longer chain lengths, higher cholesterol content and PEG resulted in greater stability. The optimal formulation obtained showed significantly lower clearance rate (3.6 ± 1.2 mL/h/Kg) and higher AUC0-inf (348 ± 31 μmol/L × h) in vivo when compared to free drug (414 ± 138 mL/h/Kg and 2.58 ± 0.74 μmol/L × h, respectively). In tumor-bearing mice, liposomal delivery decreased kidney drug levels by up to 5-fold at 6 and 24h post-administration. Tumor drug exposure was up to 12.7-fold greater with liposomal administration compared to free drug. Overall, the liposomal pentamidine formulation developed has significant potential for the treatment of solid tumors.
Collapse
Affiliation(s)
- Juliette Mérian
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Oncozyme Pharma Inc., Montreal, QC H2Z 1B1, Canada
| | - Raquel De Souza
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Yannan Dou
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Sandra N Ekdawi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | | | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|