51
|
Feng G, Mikkelsen D, Hoedt EC, Williams BA, Flanagan BM, Morrison M, Gidley MJ. In vitro fermentation outcomes of arabinoxylan and galactoxyloglucan depend on fecal inoculum more than substrate chemistry. Food Funct 2021; 11:7892-7904. [PMID: 32813756 DOI: 10.1039/d0fo01103g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Using in vitro fermentation conditions, this study investigated the fermentation characteristics of arabinoxylan (AX) and xyloglucan (XG) with a fecal inoculum that was collected either from humans consuming unrestricted diets or pigs fed a semi-defined diet with cellulose being the sole non-starch polysaccharide for 10 days prior to fecal collection. Metagenomic analysis revealed that microbial communities in the two types of inoculum were distinctively different, which led to distinct fermentation characteristics with the polysaccharides. The microbial communities fermented with the porcine fecal inoculum were clustered according to the fermentation time, while those fermented with the human fecal inoculum were differentiated by the substrates. Using the porcine fecal inoculum, irrespective of the substrates, Prevotella copri and the unclassified lineage rc4-4 were the dominant operational taxonomic units (OTUs) promoted during fermentation. Fermentation of wheat AX (WAX) and galacto-XG (GXG) with the human fecal inoculum, however, promoted different OTUs, except for a shared OTU belonging to Lachnospiraceae. Specifically, WAX promoted the growth of Bacteroides plebeius and a Blautia sp., while GXG promoted an unclassified Bacteroidales, Parabacteroides distasonis, Bacteroides uniformis and Bacteroides sp. 2. These changes in bacterial communities were in accordance with the short chain fatty acid (SCFA) production, where comparable SCFA profiles were obtained from the porcine fecal fermentation while different amounts and proportions of SCFA were acquired from fermentation of WAX and GXG with the human fecal inoculum. Altogether, this study indicated that the starting inoculum composition had a greater effect than polysaccharide chemistry in driving fermentation outcomes.
Collapse
Affiliation(s)
- Guangli Feng
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, 4072, Australia.
| | - Deirdre Mikkelsen
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, 4072, Australia.
| | - Emily C Hoedt
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, 4072, Australia. and APC Microbiome Ireland, University College Cork, Cork, T12, Ireland
| | - Barbara A Williams
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, 4072, Australia.
| | - Bernadine M Flanagan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, 4072, Australia.
| | - Mark Morrison
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, 4072, Australia.
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
52
|
Berezina OV, Rykov SV, Polyakova AK, Bozdaganyan ME, Sidochenko AV, Baudrexl M, Schwarz WH, Zverlov VV, Yarotsky SV. Strategic aromatic residues in the catalytic cleft of the xyloglucanase MtXgh74 modifying thermostability, mode of enzyme action, and viscosity reduction ability. Appl Microbiol Biotechnol 2021; 105:1461-1476. [PMID: 33521846 DOI: 10.1007/s00253-021-11106-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
The thermostable endo-processive xyloglucanase MtXgh74 from Myceliophthora thermophila was used to study the influence of aromatic amino acids in the catalytic cleft on the mode of action and the ability of enzyme to reduce xyloglucan viscosity. The enzyme derivative Mut I with mutations W64A/W67A in the "negative" subsites of the catalytic cleft resulted in a 5.5-fold increase of the Km value. Mut I produced oligosaccharides of various lengths in addition to xyloglucan building blocks. The W320A/W321A substitutions in the "positive" subsites of the mutated enzyme Mut II catalytic cleft increased the Km value 54-fold and resulted in an endo-dissociative mode of action. The ability of Mut II to reduce the viscosity of xyloglucan at 50 °C was much better than that of other MtXgh74 variants. Besides, Mut II efficiently reduced viscosity of a natural substrate, the pulp of xyloglucan-containing tamarind seed flour. The Km, Vmax, and kcat values and viscosity reduction ability of the enzyme derivative Mut III (W320A/W321A/G446Y) returned to levels close to that of MtXgh74. The pattern of xyloglucan hydrolysis by Mut III was typical for endo-processive xyloglucanases. The thermostability of Mut I and Mut II at 60 °C decreased significantly compared to the wild type, whereas the thermostability of Mut III at 60 °C restored almost to the MtXgh74-wt value. All mutants lost the ability to cleave the backbone of xyloglucan building blocks which was a characteristic of MtXgh74. Instead they acquired a low branch removing activity. Molecular dynamics simulations revealed the role of mutated amino acids in the complex action mechanism of GH74 enzymes. KEY POINTS: • Endo-processive mode of action of the xyloglucanase MtXgh74 was altered by rational design. • The endo-dissociative mutant Mut II (W320A/W321A) efficiently reduced XyG viscosity. • The substitutions W320A/W321A/G446Y in Mut III recovered the endo-processive mode. • Mut II can be used to reduce the viscosity of biomass slurries containing tamarind seed flour.
Collapse
Affiliation(s)
- Oksana V Berezina
- National Research Centre "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545. .,National Research Centre "Kurchatov Institute" 1, Kurchatov Sq, Moscow, Russian Federation, 123182.
| | - Sergey V Rykov
- National Research Centre "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545.,National Research Centre "Kurchatov Institute" 1, Kurchatov Sq, Moscow, Russian Federation, 123182
| | - Angelina K Polyakova
- National Research Centre "Kurchatov Institute" - GOSNIIGENETIKA, 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545
| | - Marine E Bozdaganyan
- Biological Department, Moscow State University, Leninskie gory 1, Build. 12, Moscow, Russian Federation, 119234.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Str., Bld. 1, Moscow, Russian Federation, 119991.,Moscow Polytechnic University, B. Semenovskaya Str. 38, 107023, Moscow, Russian Federation, 107023
| | - Anna V Sidochenko
- Moscow Polytechnic University, B. Semenovskaya Str. 38, 107023, Moscow, Russian Federation, 107023
| | - Melanie Baudrexl
- Technical University Munich, Department of Microbiology, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | | | - Vladimir V Zverlov
- Technical University Munich, Department of Microbiology, Emil-Ramann-Str. 4, 85354, Freising, Germany. .,National Research Centre "Kurchatov Institute" - Institute of Molecular Genetics, Kurchatov Sq. 2, Moscow, Russian Federation, 123182.
| | - Sergey V Yarotsky
- National Research Centre "Kurchatov Institute" 1, Kurchatov Sq, Moscow, Russian Federation, 123182
| |
Collapse
|
53
|
Tingley JP, Low KE, Xing X, Abbott DW. Combined whole cell wall analysis and streamlined in silico carbohydrate-active enzyme discovery to improve biocatalytic conversion of agricultural crop residues. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:16. [PMID: 33422151 PMCID: PMC7797155 DOI: 10.1186/s13068-020-01869-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/24/2020] [Indexed: 05/08/2023]
Abstract
The production of biofuels as an efficient source of renewable energy has received considerable attention due to increasing energy demands and regulatory incentives to reduce greenhouse gas emissions. Second-generation biofuel feedstocks, including agricultural crop residues generated on-farm during annual harvests, are abundant, inexpensive, and sustainable. Unlike first-generation feedstocks, which are enriched in easily fermentable carbohydrates, crop residue cell walls are highly resistant to saccharification, fermentation, and valorization. Crop residues contain recalcitrant polysaccharides, including cellulose, hemicelluloses, pectins, and lignin and lignin-carbohydrate complexes. In addition, their cell walls can vary in linkage structure and monosaccharide composition between plant sources. Characterization of total cell wall structure, including high-resolution analyses of saccharide composition, linkage, and complex structures using chromatography-based methods, nuclear magnetic resonance, -omics, and antibody glycome profiling, provides critical insight into the fine chemistry of feedstock cell walls. Furthermore, improving both the catalytic potential of microbial communities that populate biodigester reactors and the efficiency of pre-treatments used in bioethanol production may improve bioconversion rates and yields. Toward this end, knowledge and characterization of carbohydrate-active enzymes (CAZymes) involved in dynamic biomass deconstruction is pivotal. Here we overview the use of common "-omics"-based methods for the study of lignocellulose-metabolizing communities and microorganisms, as well as methods for annotation and discovery of CAZymes, and accurate prediction of CAZyme function. Emerging approaches for analysis of large datasets, including metagenome-assembled genomes, are also discussed. Using complementary glycomic and meta-omic methods to characterize agricultural residues and the microbial communities that digest them provides promising streams of research to maximize value and energy extraction from crop waste streams.
Collapse
Affiliation(s)
- Jeffrey P Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
- Department of Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 6T5, Canada
| | - Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada.
- Department of Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 6T5, Canada.
| |
Collapse
|
54
|
Stratilová B, Kozmon S, Stratilová E, Hrmova M. Plant Xyloglucan Xyloglucosyl Transferases and the Cell Wall Structure: Subtle but Significant. Molecules 2020; 25:E5619. [PMID: 33260399 PMCID: PMC7729885 DOI: 10.3390/molecules25235619] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Plant xyloglucan xyloglucosyl transferases or xyloglucan endo-transglycosylases (XET; EC 2.4.1.207) catalogued in the glycoside hydrolase family 16 constitute cell wall-modifying enzymes that play a fundamental role in the cell wall expansion and re-modelling. Over the past thirty years, it has been established that XET enzymes catalyse homo-transglycosylation reactions with xyloglucan (XG)-derived substrates and hetero-transglycosylation reactions with neutral and charged donor and acceptor substrates other than XG-derived. This broad specificity in XET isoforms is credited to a high degree of structural and catalytic plasticity that has evolved ubiquitously in algal, moss, fern, basic Angiosperm, monocot, and eudicot enzymes. These XET isoforms constitute gene families that are differentially expressed in tissues in time- and space-dependent manners during plant growth and development, and in response to biotic and abiotic stresses. Here, we discuss the current state of knowledge of broad specific plant XET enzymes and how their inherently carbohydrate-based transglycosylation reactions tightly link with structural diversity that underlies the complexity of plant cell walls and their mechanics. Based on this knowledge, we conclude that multi- or poly-specific XET enzymes are widespread in plants to allow for modifications of the cell wall structure in muro, a feature that implements the multifaceted roles in plant cells.
Collapse
Affiliation(s)
- Barbora Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská Dolina, SK-84215 Bratislava, Slovakia
| | - Stanislav Kozmon
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
| | - Eva Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
| | - Maria Hrmova
- School of Life Science, Huaiyin Normal University, Huai’an 223300, China
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
55
|
A Novel Two-Component System, XygS/XygR, Positively Regulates Xyloglucan Degradation, Import, and Catabolism in Ruminiclostridium cellulolyticum. Appl Environ Microbiol 2020; 86:AEM.01357-20. [PMID: 32769189 DOI: 10.1128/aem.01357-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022] Open
Abstract
Cellulolytic microorganisms play a key role in the global carbon cycle by decomposing structurally diverse plant biopolymers from dead plant matter. These microorganisms, in particular anaerobes such as Ruminiclostridium cellulolyticum that are capable of degrading and catabolizing several different polysaccharides, require a fine-tuned regulation of the biosynthesis of their polysaccharide-degrading enzymes. In this study, we present a bacterial regulatory system involved in the regulation of genes enabling the metabolism of the ubiquitous plant polysaccharide xyloglucan. The characterization of R. cellulolyticum knockout mutants suggests that the response regulator XygR and its cognate histidine kinase XygS are essential for growth on xyloglucan. Using in vitro and in vivo analyses, we show that XygR binds to the intergenic region and activates the expression of two polycistronic transcriptional units encoding an ABC transporter dedicated to the uptake of xyloglucan oligosaccharides and the two-component system itself together with three intracellular glycoside hydrolases responsible for the sequential intracellular degradation of the imported oligosaccharides into mono- and disaccharides. Interestingly, XygR also upregulates the expression of a distant gene coding for the most active extracellular cellulosomal xyloglucanase of R. cellulolyticum by binding to the upstream intergenic region.IMPORTANCE Ruminiclostridium cellulolyticum is a Gram-positive, mesophilic, anaerobic, cellulolytic, and hemicellulolytic bacterium. The last property qualifies this species as a model species for the study of hemicellulose degradation, import of degradation products, and overall regulation of these phenomena. In this study, we focus on the regulation of xyloglucan dextrin import and intracellular degradation and show that the two components of the two-component regulation system XygSR are essential for growth on xyloglucan and that the response regulator XygR regulates the transcription of genes involved in the extracellular degradation of the polysaccharide, the import of degradation products, and their intracellular degradation.
Collapse
|
56
|
Zeuner B, Meyer AS. Enzymatic transfucosylation for synthesis of human milk oligosaccharides. Carbohydr Res 2020; 493:108029. [DOI: 10.1016/j.carres.2020.108029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/28/2022]
|
57
|
Sun X, Li H, Thapa S, Reddy Sangireddy S, Pei X, Liu W, Jiang Y, Yang S, Hui D, Bhatti S, Zhou S, Yang Y, Fish T, Thannhauser TW. Al-induced proteomics changes in tomato plants over-expressing a glyoxalase I gene. HORTICULTURE RESEARCH 2020; 7:43. [PMID: 32257229 PMCID: PMC7109090 DOI: 10.1038/s41438-020-0264-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
Glyoxalase I (Gly I) is the first enzyme in the glutathionine-dependent glyoxalase pathway for detoxification of methylglyoxal (MG) under stress conditions. Transgenic tomato 'Money Maker' plants overexpressing tomato SlGlyI gene (tomato unigene accession SGN-U582631/Solyc09g082120.3.1) were generated and homozygous lines were obtained after four generations of self-pollination. In this study, SlGlyI-overepxressing line (GlyI), wild type (WT, negative control) and plants transformed with empty vector (ECtr, positive control), were subjected to Al-treatment by growing in Magnavaca's nutrient solution (pH 4.5) supplemented with 20 µM Al3+ ion activity. After 30 days of treatments, the fresh and dry weight of shoots and roots of plants from Al-treated conditions decreased significantly compared to the non-treated conditions for all the three lines. When compared across the three lines, root fresh and dry weight of GlyI was significant higher than WT and ECtr, whereas there was no difference in shoot tissues. The basal 5 mm root-tips of GlyI plants expressed a significantly higher level of glyoxalase activity under both non-Al-treated and Al-treated conditions compared to the two control lines. Under Al-treated condition, there was a significant increase in MG content in ECtr and WT lines, but not in GlyI line. Quantitative proteomics analysis using tandem mass tags mass spectrometry identified 4080 quantifiable proteins and 201 Al-induced differentially expressed proteins (DEPs) in root-tip tissues from GlyI, and 4273 proteins and 230 DEPs from ECtr. The Al-down-regulated DEPs were classified into molecular pathways of gene transcription, RNA splicing and protein biosynthesis in both GlyI and ECtr lines. The Al-induced DEPs in GlyI associated with tolerance to Al3+ and MG toxicity are involved in callose degradation, cell wall components (xylan acetylation and pectin degradation), oxidative stress (antioxidants) and turnover of Al-damaged epidermal cells, repair of damaged DNA, epigenetics, gene transcription, and protein translation. A protein-protein association network was constructed to aid the selection of proteins in the same pathway but differentially regulated in GlyI or ECtr lines. Proteomics data are available via ProteomeXchange with identifiers PXD009456 under project title '25Dec2017_Suping_XSexp2_ITAG3.2' for SlGlyI-overexpressing tomato plants and PXD009848 under project title '25Dec2017_Suping_XSexp3_ITAG3.2' for positive control ECtr line transformed with empty vector.
Collapse
Affiliation(s)
- Xudong Sun
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
- College of Horticulture, Shandong Agricultural University, Taian, Shandong P.R. China
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Santosh Thapa
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sasikiran Reddy Sangireddy
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Xiaobo Pei
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Wei Liu
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yuping Jiang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Shaolan Yang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Dafeng Hui
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sarabjit Bhatti
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yong Yang
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Tara Fish
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Theodore W. Thannhauser
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
58
|
Gerke P, Szövényi P, Neubauer A, Lenz H, Gutmann B, McDowell R, Small I, Schallenberg-Rüdinger M, Knoop V. Towards a plant model for enigmatic U-to-C RNA editing: the organelle genomes, transcriptomes, editomes and candidate RNA editing factors in the hornwort Anthoceros agrestis. THE NEW PHYTOLOGIST 2020; 225:1974-1992. [PMID: 31667843 DOI: 10.1111/nph.16297] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Hornworts are crucial to understand the phylogeny of early land plants. The emergence of 'reverse' U-to-C RNA editing accompanying the widespread C-to-U RNA editing in plant chloroplasts and mitochondria may be a molecular synapomorphy of a hornwort-tracheophyte clade. C-to-U RNA editing is well understood after identification of many editing factors in models like Arabidopsis thaliana and Physcomitrella patens, but there is no plant model yet to investigate U-to-C RNA editing. The hornwort Anthoceros agrestis is now emerging as such a model system. We report on the assembly and analyses of the A. agrestis chloroplast and mitochondrial genomes, their transcriptomes and editomes, and a large nuclear gene family encoding pentatricopeptide repeat (PPR) proteins likely acting as RNA editing factors. Both organelles in A. agrestis feature high amounts of RNA editing, with altogether > 1100 sites of C-to-U and 1300 sites of U-to-C editing. The nuclear genome reveals > 1400 genes for PPR proteins with variable carboxyterminal DYW domains. We observe significant variants of the 'classic' DYW domain, in the meantime confirmed as the cytidine deaminase for C-to-U editing, and discuss the first attractive candidates for reverse editing factors given their excellent matches to U-to-C editing targets according to the PPR-RNA binding code.
Collapse
Affiliation(s)
- Philipp Gerke
- Institut für Zelluläre und Molekulare Botanik (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008, Zürich, Switzerland
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008, Zürich, Switzerland
| | - Henning Lenz
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Bernard Gutmann
- EditForce Inc., West Zone #429, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Rose McDowell
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia at Crawley, Perth, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia at Crawley, Perth, WA, 6009, Australia
| | | | - Volker Knoop
- Institut für Zelluläre und Molekulare Botanik (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| |
Collapse
|
59
|
Zavyalov AV, Rykov SV, Lunina NA, Sushkova VI, Yarotsky SV, Berezina OV. Plant Polysaccharide Xyloglucan and Enzymes That Hydrolyze It (Review). RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019070148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
60
|
Pauly M, Gawenda N, Wagner C, Fischbach P, Ramírez V, Axmann IM, Voiniciuc C. The Suitability of Orthogonal Hosts to Study Plant Cell Wall Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2019; 8:E516. [PMID: 31744209 PMCID: PMC6918405 DOI: 10.3390/plants8110516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Abstract
Plant cells are surrounded by an extracellular matrix that consists mainly of polysaccharides. Many molecular components involved in plant cell wall polymer synthesis have been identified, but it remains largely unknown how these molecular players function together to define the length and decoration pattern of a polysaccharide. Synthetic biology can be applied to answer questions beyond individual glycosyltransferases by reconstructing entire biosynthetic machineries required to produce a complete wall polysaccharide. Recently, this approach was successful in establishing the production of heteromannan from several plant species in an orthogonal host-a yeast-illuminating the role of an auxiliary protein in the biosynthetic process. In this review we evaluate to what extent a selection of organisms from three kingdoms of life (Bacteria, Fungi and Animalia) might be suitable for the synthesis of plant cell wall polysaccharides. By identifying their key attributes for glycoengineering as well as analyzing the glycosidic linkages of their native polymers, we present a valuable comparison of their key advantages and limitations for the production of different classes of plant polysaccharides.
Collapse
Affiliation(s)
- Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.P.); (N.G.); (V.R.)
| | - Niklas Gawenda
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.P.); (N.G.); (V.R.)
| | - Christine Wagner
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Patrick Fischbach
- Institute of Synthetic Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.P.); (N.G.); (V.R.)
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Cătălin Voiniciuc
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| |
Collapse
|
61
|
Jiang Y, Li Y, Lu C, Tang Y, Jiang X, Gai Y. Isolation and characterization of Populus xyloglucan endotransglycosylase/hydrolase (XTH) involved in osmotic stress responses. Int J Biol Macromol 2019; 155:1277-1287. [PMID: 31730960 DOI: 10.1016/j.ijbiomac.2019.11.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/22/2023]
Abstract
Xyloglucan endotransglycosylase/hydrolase (XTH) belongs to the GH16 subfamily of the glycoside hydrolases of carbohydrate active enzymes and plays an important role in the structure and function of plant cell walls. In this study, 11 members of the XTH gene family were cloned from Populus tomentosa. A bioinformatics analysis revealed that 11 PtoXTHs could be classified into three groups, where PtoXTH27 and PtoXTH34 were most likely to exhibit XTH activity. Biochemical analyses of purified PtoXTHs demonstrated that PtoXTH27 and PtoXTH34 had detectable xyloglucan endotransglucosylase (XET) activity, while the others did not exhibit XET or XEH activity. Moreover, enzymatic assays revealed that the optimum reaction temperature of both PtoXTH27 and PtoXTH34 was 37 °C, while their optimum pH values differed, such that PtoXTH27 was 6.0 and PtoXTH34 was 5.0. Enzyme kinetic parameters indicated that PtoXTH34 had higher affinity for the receptor substrate, XXXG, implying that PtoXTH34 and PtoXTH27 in plants have different substrate structure specificity. Finally, heterologous expression of XTH significantly increased intracellular total sugar content and osmotolerance of yeast cells, indicating that PtoXTH27 and PtoXTH34 are potentially involved in osmotic stress responses. These results clearly demonstrate the enzymatic characteristics and putative role of XTH in osmotic stress responses.
Collapse
Affiliation(s)
- Yan Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yuhua Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Chen Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yanni Tang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Xiangning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P.R. China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Beijing 100083, P.R. China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P.R. China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Beijing 100083, P.R. China.
| |
Collapse
|
62
|
Zhao C, Zayed O, Zeng F, Liu C, Zhang L, Zhu P, Hsu CC, Tuncil YE, Tao WA, Carpita NC, Zhu JK. Arabinose biosynthesis is critical for salt stress tolerance in Arabidopsis. THE NEW PHYTOLOGIST 2019; 224:274-290. [PMID: 31009077 DOI: 10.1111/nph.15867] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/16/2019] [Indexed: 05/21/2023]
Abstract
The capability to maintain cell wall integrity is critical for plants to adapt to unfavourable conditions. l-Arabinose (Ara) is a constituent of several cell wall polysaccharides and many cell wall-localised glycoproteins, but so far the contribution of Ara metabolism to abiotic stress tolerance is still poorly understood. Here, we report that mutations in the MUR4 (also known as HSR8) gene, which is required for the biosynthesis of UDP-Arap in Arabidopsis, led to reduced root elongation under high concentrations of NaCl, KCl, NaNO3 , or KNO3 . The short root phenotype of the mur4/hsr8 mutants under high salinity is rescued by exogenous Ara or gum arabic, a commercial product of arabinogalactan proteins (AGPs) from Acacia senegal. Mutation of the MUR4 gene led to abnormal cell-cell adhesion under salt stress. MUR4 forms either a homodimer or heterodimers with its isoforms. Analysis of the higher order mutants of MUR4 with its three paralogues, MURL, DUR, MEE25, reveals that the paralogues of MUR4 also contribute to the biosynthesis of UDP-Ara and are critical for root elongation. Taken together, our work revealed the importance of the Ara metabolism in salt stress tolerance and also provides new insights into the enzymes involved in the UDP-Ara biosynthesis in plants.
Collapse
Affiliation(s)
- Chunzhao Zhao
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Omar Zayed
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Fansuo Zeng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chaoxian Liu
- Maize Research Institute, Southwest University, Chongqing, 400715, China
| | - Ling Zhang
- Jilin Provincial Key laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, 130033, China
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yunus E Tuncil
- Food Engineering Department, Ordu University, Ordu, 52200, Turkey
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Nicholas C Carpita
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jian-Kang Zhu
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
63
|
Arnal G, Stogios PJ, Asohan J, Attia MA, Skarina T, Viborg AH, Henrissat B, Savchenko A, Brumer H. Substrate specificity, regiospecificity, and processivity in glycoside hydrolase family 74. J Biol Chem 2019; 294:13233-13247. [PMID: 31324716 DOI: 10.1074/jbc.ra119.009861] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Glycoside hydrolase family 74 (GH74) is a historically important family of endo-β-glucanases. On the basis of early reports of detectable activity on cellulose and soluble cellulose derivatives, GH74 was originally considered to be a "cellulase" family, although more recent studies have generally indicated a high specificity toward the ubiquitous plant cell wall matrix glycan xyloglucan. Previous studies have indicated that GH74 xyloglucanases differ in backbone cleavage regiospecificities and can adopt three distinct hydrolytic modes of action: exo, endo-dissociative, and endo-processive. To improve functional predictions within GH74, here we coupled in-depth biochemical characterization of 17 recombinant proteins with structural biology-based investigations in the context of a comprehensive molecular phylogeny, including all previously characterized family members. Elucidation of four new GH74 tertiary structures, as well as one distantly related dual seven-bladed β-propeller protein from a marine bacterium, highlighted key structure-function relationships along protein evolutionary trajectories. We could define five phylogenetic groups, which delineated the mode of action and the regiospecificity of GH74 members. At the extremes, a major group of enzymes diverged to hydrolyze the backbone of xyloglucan nonspecifically with a dissociative mode of action and relaxed backbone regiospecificity. In contrast, a sister group of GH74 enzymes has evolved a large hydrophobic platform comprising 10 subsites, which facilitates processivity. Overall, the findings of our study refine our understanding of catalysis in GH74, providing a framework for future experimentation as well as for bioinformatics predictions of sequences emerging from (meta)genomic studies.
Collapse
Affiliation(s)
- Gregory Arnal
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Jathavan Asohan
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mohamed A Attia
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Alexander Holm Viborg
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, 13007 Marseille, France; INRA, USC1408 Architecture et Fonction des Macromolécules Biologiques (AFMB), 13007 Marseille, France
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
64
|
Rubianes D, Valdivia ER, Revilla G, Zarra I, Sampedro J. Xyloglucan exoglycosidases in the monocot model Brachypodium distachyon and the conservation of xyloglucan disassembly in angiosperms. PLANT MOLECULAR BIOLOGY 2019; 100:495-509. [PMID: 31028613 DOI: 10.1007/s11103-019-00875-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Brachypodium distachyon has a full set of exoglycosidases active on xyloglucan, including α-xylosidase, β-galactosidase, soluble and membrane-bound β-glucosidases and two α-fucosidases. However, unlike in Arabidopsis, both fucosidases are likely cytosolic. Xyloglucan is present in primary walls of all angiosperms. While in most groups it regulates cell wall extension, in Poaceae its role is still unclear. Five exoglycosidases participate in xyloglucan hydrolysis in Arabidopsis: α-xylosidase, β-galactosidase, α-fucosidase, soluble β-glucosidase and GPI-anchored β-glucosidase. Mutants in the corresponding genes show alterations in xyloglucan composition. In this work putative orthologs in the model grass Brachypodium distachyon were tested for their ability to complement Arabidopsis mutants. Xylosidase and galactosidase mutants were complemented, respectively, by BdXYL1 (Bd2g02070) and BdBGAL1 (Bd2g56607). BdBGAL1, unlike other xyloglucan β-galactosidases, is able to remove both galactoses from XLLG oligosaccharides. In addition, soluble β-glucosidase BdBGLC1 (Bd1g08550) complemented a glucosidase mutant. Closely related BdBGLC2 (Bd2g51280), which has a putative GPI-anchor sequence, was found associated with the plasma membrane and only a truncated version without GPI-anchor complemented the mutant, proving that Brachypodium also has soluble and membrane-bound xyloglucan glucosidases. Both BdXFUC1 (Bd3g25226) and BdXFUC2 (Bd1g28366) can hydrolyze fucose from xyloglucan oligosaccharides but were unable to complement a fucosidase mutant. Fluorescent protein fusions of BdXFUC1 localized to the cytosol and both proteins lack a signal peptide. Signal peptides appear to have evolved only in some eudicot lineages of this family, like the one leading to Arabidopsis. These results could be explained if cytosolic xyloglucan α-fucosidases are the ancestral state in angiosperms, with fucosylated oligosaccharides transported across the plasma membrane.
Collapse
Affiliation(s)
- Diego Rubianes
- Dpto. Biología Funcional, Facultad de Biología, Universidade de Santiago, 15782, Santiago de Compostela, Spain
| | - Elene R Valdivia
- Dpto. Biología Funcional, Facultad de Biología, Universidade de Santiago, 15782, Santiago de Compostela, Spain
| | - Gloria Revilla
- Dpto. Biología Funcional, Facultad de Biología, Universidade de Santiago, 15782, Santiago de Compostela, Spain
| | - Ignacio Zarra
- Dpto. Biología Funcional, Facultad de Biología, Universidade de Santiago, 15782, Santiago de Compostela, Spain
| | - Javier Sampedro
- Dpto. Biología Funcional, Facultad de Biología, Universidade de Santiago, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
65
|
Brennan M, Fakharuzi D, Harris PJ. Occurrence of fucosylated and non-fucosylated xyloglucans in the cell walls of monocotyledons: An immunofluorescence study. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:428-434. [PMID: 30991260 DOI: 10.1016/j.plaphy.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
The xyloglucans of monocotyledons are known to vary in the abundance of fucosylated side chains, with most commelinid monocotyledons having xyloglucans with lower proportions than non-commelinid monocotyledons. In many commelinid species, and some non-commelinid species that have lower proportions of fucosylated side chains, these side chains have been shown to be cell-type specific. To determine whether it is just the fucosylated side chains that are cell-type specific, or whether xyloglucan is cell-type specific in these species, we used the monoclonal antibody LM15 in conjunction with immmunofluorescence microscopy. We examined the distribution of cell-wall labelling among cell types in these species. The primary walls of all cell types were shown to contain xyloglucans in all species that had cell-type specific distributions of fucosylated side chains. This indicates that it is the fucosylated side chains of xyloglucans that is cell-type specific. Although the functional significance of xyloglucan fucosylation remains unknown, such cell-type specificity supports hypotheses that the fucosylated side chains may indeed have a functional role within the cell wall.
Collapse
Affiliation(s)
- Maree Brennan
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| | - Diyana Fakharuzi
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Philip J Harris
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
66
|
Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC. Evolution of Cell Wall Polymers in Tip-Growing Land Plant Gametophytes: Composition, Distribution, Functional Aspects and Their Remodeling. FRONTIERS IN PLANT SCIENCE 2019; 10:441. [PMID: 31057570 PMCID: PMC6482432 DOI: 10.3389/fpls.2019.00441] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 05/22/2023]
Abstract
During evolution of land plants, the first colonizing species presented leafy-dominant gametophytes, found in non-vascular plants (bryophytes). Today, bryophytes include liverworts, mosses, and hornworts. In the first seedless vascular plants (lycophytes), the sporophytic stage of life started to be predominant. In the seed producing plants, gymnosperms and angiosperms , the gametophytic stage is restricted to reproduction. In mosses and ferns, the haploid spores germinate and form a protonema, which develops into a leafy gametophyte producing rhizoids for anchorage, water and nutrient uptakes. The basal gymnosperms (cycads and Ginkgo) reproduce by zooidogamy. Their pollen grains develop a multi-branched pollen tube that penetrates the nucellus and releases flagellated sperm cells that swim to the egg cell. The pollen grain of other gymnosperms (conifers and gnetophytes) as well as angiosperms germinates and produces a pollen tube that directly delivers the sperm cells to the ovule (siphonogamy). These different gametophytes, which are short or long-lived structures, share a common tip-growing mode of cell expansion. Tip-growth requires a massive cell wall deposition to promote cell elongation, but also a tight spatial and temporal control of the cell wall remodeling in order to modulate the mechanical properties of the cell wall. The growth rate of these cells is very variable depending on the structure and the species, ranging from very slow (protonemata, rhizoids, and some gymnosperm pollen tubes), to a slow to fast-growth in other gymnosperms and angiosperms. In addition, the structural diversity of the female counterparts in angiosperms (dry, semi-dry vs wet stigmas, short vs long, solid vs hollow styles) will impact the speed and efficiency of sperm delivery. As the evolution and diversity of the cell wall polysaccharides accompanied the diversification of cell wall structural proteins and remodeling enzymes, this review focuses on our current knowledge on the biochemistry, the distribution and remodeling of the main cell wall polymers (including cellulose, hemicelluloses, pectins, callose, arabinogalactan-proteins and extensins), during the tip-expansion of gametophytes from bryophytes, pteridophytes (lycophytes and monilophytes), gymnosperms and the monocot and eudicot angiosperms.
Collapse
|
67
|
Plancot B, Gügi B, Mollet JC, Loutelier-Bourhis C, Ramasandra Govind S, Lerouge P, Follet-Gueye ML, Vicré M, Alfonso C, Nguema-Ona E, Bardor M, Driouich A. Desiccation tolerance in plants: Structural characterization of the cell wall hemicellulosic polysaccharides in three Selaginella species. Carbohydr Polym 2018; 208:180-190. [PMID: 30658789 DOI: 10.1016/j.carbpol.2018.12.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/16/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022]
Abstract
Drought-induced dehydration of vegetative tissues in lycopods affects growth and survival. Different species of Selaginella have evolved a series of specialized mechanisms to tolerate desiccation in vegetative tissues in response to water stress. In the present study, we report on the structural characterization of the leaf cell wall of the desiccation-tolerant species S. involvens and two desiccation-sensitive species, namely S. kraussiana and S. moellendorffii. Isolated cell walls from hydrated and desiccated leaves of each species were fractionated and the resulting oligosaccharide fragments were analyzed to determine their structural features. Our results demonstrate that desiccation induces substantial modifications in the cell wall composition and structure. Altogether, these data highlight the fact that structural remodeling of cell wall hemicellulosic polysaccharides including XXXG-rich xyloglucan, arabinoxylan and acetylated galactomannan is an important process in order to mitigate desiccation stress in Selaginella.
Collapse
Affiliation(s)
- Barbara Plancot
- Normandie Univ, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), 76000, Rouen, France; Fédération de Recherche "Normandie-Végétal"-FED 4277, 76000, Rouen, France.
| | - Bruno Gügi
- Normandie Univ, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), 76000, Rouen, France; Fédération de Recherche "Normandie-Végétal"-FED 4277, 76000, Rouen, France
| | - Jean-Claude Mollet
- Normandie Univ, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), 76000, Rouen, France; Fédération de Recherche "Normandie-Végétal"-FED 4277, 76000, Rouen, France
| | | | | | - Patrice Lerouge
- Normandie Univ, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), 76000, Rouen, France; Fédération de Recherche "Normandie-Végétal"-FED 4277, 76000, Rouen, France
| | - Marie-Laure Follet-Gueye
- Normandie Univ, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), 76000, Rouen, France; Fédération de Recherche "Normandie-Végétal"-FED 4277, 76000, Rouen, France
| | - Maïté Vicré
- Normandie Univ, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), 76000, Rouen, France; Fédération de Recherche "Normandie-Végétal"-FED 4277, 76000, Rouen, France
| | - Carlos Alfonso
- Normandie Univ, UniRouen, CNRS UMR 6014, COBRA, 76000, Rouen, France
| | - Eric Nguema-Ona
- Normandie Univ, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), 76000, Rouen, France; Fédération de Recherche "Normandie-Végétal"-FED 4277, 76000, Rouen, France
| | - Muriel Bardor
- Normandie Univ, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), 76000, Rouen, France; Fédération de Recherche "Normandie-Végétal"-FED 4277, 76000, Rouen, France; Institut Universitaire de France, Paris, France
| | - Azeddine Driouich
- Normandie Univ, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), 76000, Rouen, France; Fédération de Recherche "Normandie-Végétal"-FED 4277, 76000, Rouen, France
| |
Collapse
|
68
|
Structural enzymology reveals the molecular basis of substrate regiospecificity and processivity of an exemplar bacterial glycoside hydrolase family 74 endo-xyloglucanase. Biochem J 2018; 475:3963-3978. [PMID: 30463871 DOI: 10.1042/bcj20180763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 12/21/2022]
Abstract
Paenibacillus odorifer produces a single multimodular enzyme containing a glycoside hydrolase (GH) family 74 module (AIQ73809). Recombinant production and characterization of the GH74 module (PoGH74cat) revealed a highly specific, processive endo-xyloglucanase that can hydrolyze the polysaccharide backbone at both branched and unbranched positions. X-ray crystal structures obtained for the free enzyme and oligosaccharide complexes evidenced an extensive hydrophobic binding platform - the first in GH74 extending from subsites -4 to +6 - and unique mobile active-site loops. Site-directed mutagenesis revealed that glycine-476 was uniquely responsible for the promiscuous backbone-cleaving activity of PoGH74cat; replacement with tyrosine, which is conserved in many GH74 members, resulted in exclusive hydrolysis at unbranched glucose units. Likewise, systematic replacement of the hydrophobic platform residues constituting the positive subsites indicated their relative contributions to the processive mode of action. Specifically, W347 (+3 subsite) and W348 (+5 subsite) are essential for processivity, while W406 (+2 subsite) and Y372 (+6 subsite) are not strictly essential, but aid processivity.
Collapse
|
69
|
Feng G, Flanagan BM, Williams BA, Mikkelsen D, Yu W, Gidley MJ. Extracellular depolymerisation triggers fermentation of tamarind xyloglucan and wheat arabinoxylan by a porcine faecal inoculum. Carbohydr Polym 2018; 201:575-582. [DOI: 10.1016/j.carbpol.2018.08.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023]
|
70
|
Affiliation(s)
- Csaba Fehér
- Department of Applied Biotechnology and Food Science, Biorefinery Research Group, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
71
|
Busch A, Kunert G, Wielsch N, Pauchet Y. Cellulose degradation in Gastrophysa viridula (Coleoptera: Chrysomelidae): functional characterization of two CAZymes belonging to glycoside hydrolase family 45 reveals a novel enzymatic activity. INSECT MOLECULAR BIOLOGY 2018; 27:633-650. [PMID: 29774620 DOI: 10.1111/imb.12500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cellulose is a major component of the primary and secondary cell walls in plants. Cellulose is considered to be the most abundant biopolymer on Earth and represents a large potential source of metabolic energy. Yet, cellulose degradation is rare and mostly restricted to cellulolytic microorganisms. Recently, various metazoans, including leaf beetles, have been found to encode their own cellulases, giving them the ability to degrade cellulose independently of cellulolytic symbionts. Here, we analyzed the cellulosic capacity of the leaf beetle Gastrophysa viridula, which typically feeds on Rumex plants. We identified three putative cellulases member of two glycoside hydrolase (GH) families, namely GH45 and GH9. Using heterologous expression and functional assays, we demonstrated that both GH45 proteins are active enzymes, in contrast to the GH9 protein. One GH45 protein acted on amorphous cellulose as an endo-β-1,4-glucanase, whereas the other evolved to become an endo-β-1,4-xyloglucanase. We successfully knocked down the expression of both GH45 genes using RNAi, but no changes in weight gain or mortality were observed compared to control insects. Our data indicated that the breakdown of these polysaccharides in G. viridula may facilitate access to plant cell content, which is rich in nitrogen and simple sugars.
Collapse
Affiliation(s)
- A Busch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - G Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - N Wielsch
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Y Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
72
|
Sechet J, Marion-Poll A, North HM. Emerging Functions for Cell Wall Polysaccharides Accumulated during Eudicot Seed Development. PLANTS (BASEL, SWITZERLAND) 2018; 7:E81. [PMID: 30274256 PMCID: PMC6313846 DOI: 10.3390/plants7040081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 01/17/2023]
Abstract
The formation of seeds is a reproductive strategy in higher plants that enables the dispersal of offspring through time and space. Eudicot seeds comprise three main components, the embryo, the endosperm and the seed coat, where the coordinated development of each is important for the correct formation of the mature seed. In addition, the seed coat protects the quiescent progeny and can provide transport mechanisms. A key underlying process in the production of seed tissues is the formation of an extracellular matrix termed the cell wall, which is well known for its essential function in cytokinesis, directional growth and morphogenesis. The cell wall is composed of a macromolecular network of polymers where the major component is polysaccharides. The attributes of polysaccharides differ with their composition and charge, which enables dynamic remodeling of the mechanical and physical properties of the matrix by adjusting their production, modification or turnover. Accordingly, the importance of specific polysaccharides or modifications is increasingly being associated with specialized functions within seed tissues, often through the spatio-temporal accumulation or remodeling of particular polymers. Here, we review the evolution and accumulation of polysaccharides during eudicot seed development, what is known of their impact on wall architecture and the diverse roles associated with these in different seed tissues.
Collapse
Affiliation(s)
- Julien Sechet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Annie Marion-Poll
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
73
|
Voiniciuc C, Pauly M, Usadel B. Monitoring Polysaccharide Dynamics in the Plant Cell Wall. PLANT PHYSIOLOGY 2018; 176:2590-2600. [PMID: 29487120 PMCID: PMC5884611 DOI: 10.1104/pp.17.01776] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/07/2018] [Indexed: 05/18/2023]
Abstract
New technologies reveal the deposition and remodeling of plant cell wall polysaccharides and their impact on plant development.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Björn Usadel
- Institute for Biology I, BioSC, RWTH Aachen University, 52074 Aachen, Germany
- Forschungszentum Jülich, IBG-2 Plant Sciences, 52428 Juelich, Germany
| |
Collapse
|
74
|
Dallabernardina P, Ruprecht C, Smith PJ, Hahn MG, Urbanowicz BR, Pfrengle F. Automated glycan assembly of galactosylated xyloglucan oligosaccharides and their recognition by plant cell wall glycan-directed antibodies. Org Biomol Chem 2018; 15:9996-10000. [PMID: 29177276 DOI: 10.1039/c7ob02605f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report the automated glycan assembly of oligosaccharides related to the plant cell wall hemicellulosic polysaccharide xyloglucan. The synthesis of galactosylated xyloglucan oligosaccharides was enabled by introducing p-methoxybenzyl (PMB) as a temporary protecting group for automated glycan assembly. The generated oligosaccharides were printed as microarrays, and the binding of a collection of xyloglucan-directed monoclonal antibodies (mAbs) to the oligosaccharides was assessed. We also demonstrated that the printed glycans can be further enzymatically modified while appended to the microarray surface by Arabidopsis thaliana xyloglucan xylosyltransferase 2 (AtXXT2).
Collapse
Affiliation(s)
- Pietro Dallabernardina
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | | | | | | | | | | |
Collapse
|
75
|
Zhu L, Dama M, Pauly M. Identification of an arabinopyranosyltransferase from Physcomitrella patens involved in the synthesis of the hemicellulose xyloglucan. PLANT DIRECT 2018; 2:e00046. [PMID: 31245712 PMCID: PMC6508525 DOI: 10.1002/pld3.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 05/18/2023]
Abstract
The hemicellulose xyloglucan consists of a backbone of a β-1,4 glucan substituted with xylosyl moieties and many other, diverse side chains that are important for its proper function. Many, but not all glycosyltransferases involved in the biosynthesis of xyloglucan have been identified. Here, we report the identification of an hitherto elusive xyloglucan:arabinopyranosyltransferase. This glycosyltransferase was isolated from the moss Physcomitrella patens, where it acts as a xyloglucan "D"-side chain transferase (XDT). Heterologous expression of PpXDT in the Arabidopsis thaliana double mutant mur3.1 xlt2, where xyloglucan consists of a xylosylated glucan without further glycosyl substituents, results in the production of the arabinopyranose-containing "D" side chain as characterized by oligosaccharide mass profiling, glycosidic linkage analysis, and NMR analysis. In addition, expression of a related Physcomitrella glycosyltransferase ortholog of PpXLT2 leads to the production of the galactose-containing "L" side chain. The presence of the "D" and "L" xyloglucan side chains in the Arabidopsis double mutant Atmur3.1 xlt2 expressing PpXDT and PpXLT2, respectively, rescues the dwarfed phenotype of untransformed Atmur3.1 xlt2 mutants to nearly wild-type height. Expression of PpXDT and PpXLT2 in the Atmur3.1 xlt2 mutant also enhanced root growth.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Murali Dama
- Institute of Plant Cell and BiotechnologyUniversity of DusseldorfDusseldorfGermany
| | - Markus Pauly
- Institute of Plant Cell and BiotechnologyUniversity of DusseldorfDusseldorfGermany
| |
Collapse
|
76
|
Substrate specificity and transfucosylation activity of GH29 α-l-fucosidases for enzymatic production of human milk oligosaccharides. N Biotechnol 2018; 41:34-45. [DOI: 10.1016/j.nbt.2017.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
|
77
|
Lampugnani ER, Khan GA, Somssich M, Persson S. Building a plant cell wall at a glance. J Cell Sci 2018; 131:131/2/jcs207373. [PMID: 29378834 DOI: 10.1242/jcs.207373] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plant cells are surrounded by a strong polysaccharide-rich cell wall that aids in determining the overall form, growth and development of the plant body. Indeed, the unique shapes of the 40-odd cell types in plants are determined by their walls, as removal of the cell wall results in spherical protoplasts that are amorphic. Hence, assembly and remodeling of the wall is essential in plant development. Most plant cell walls are composed of a framework of cellulose microfibrils that are cross-linked to each other by heteropolysaccharides. The cell walls are highly dynamic and adapt to the changing requirements of the plant during growth. However, despite the importance of plant cell walls for plant growth and for applications that we use in our daily life such as food, feed and fuel, comparatively little is known about how they are synthesized and modified. In this Cell Science at a Glance article and accompanying poster, we aim to illustrate the underpinning cell biology of the synthesis of wall carbohydrates, and their incorporation into the wall, in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Edwin R Lampugnani
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Ghazanfar Abbas Khan
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Marc Somssich
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| |
Collapse
|
78
|
Wan JX, Zhu XF, Wang YQ, Liu LY, Zhang BC, Li GX, Zhou YH, Zheng SJ. Xyloglucan Fucosylation Modulates Arabidopsis Cell Wall Hemicellulose Aluminium binding Capacity. Sci Rep 2018; 8:428. [PMID: 29323145 PMCID: PMC5765015 DOI: 10.1038/s41598-017-18711-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/16/2017] [Indexed: 01/08/2023] Open
Abstract
Although xyloglucan (XyG) is reported to bind Aluminium (Al), the influence of XyG fucosylation on the cell wall Al binding capacity and plant Al stress responses is unclear. We show that Arabidopsis T-DNA insertion mutants with reduced AXY3 (XYLOSIDASE1) function and consequent reduced levels of fucosylated XyG are more sensitive to Al than wild-type Col-0 (WT). In contrast, T-DNA insertion mutants with reduced AXY8 (FUC95A) function and consequent increased levels of fucosylated XyG are more Al resistant. AXY3 transcript levels are strongly down regulated in response to 30 min Al treatment, whilst AXY8 transcript levels also repressed until 6 h following treatment onset. Mutants lacking AXY3 or AXY8 function exhibit opposing effects on Al contents of root cell wall and cell wall hemicellulose components. However, there was no difference in the amount of Al retained in the pectin components between mutants and WT. Finally, whilst the total sugar content of the hemicellulose fraction did not change, the altered hemicellulose Al content of the mutants is shown to be a likely consequence of their different XyG fucosylation levels. We conclude that variation in XyG fucosylation levels influences the Al sensitivity of Arabidopsis by affecting the Al-binding capacity of hemicellulose.
Collapse
Affiliation(s)
- Jiang-Xue Wan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yu-Qi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin-Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bao-Cai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gui-Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Hua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shao-Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
79
|
Claverie J, Balacey S, Lemaître-Guillier C, Brulé D, Chiltz A, Granet L, Noirot E, Daire X, Darblade B, Héloir MC, Poinssot B. The Cell Wall-Derived Xyloglucan Is a New DAMP Triggering Plant Immunity in Vitis vinifera and Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1725. [PMID: 30546374 PMCID: PMC6280107 DOI: 10.3389/fpls.2018.01725] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 05/20/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules that can activate the plant innate immunity. DAMPs can derive from the plant cell wall, which is composed of a complex mixture of cellulose, hemicellulose, and pectin polysaccharides. Fragments of pectin, called oligogalacturonides (OG), can be released after wounding or by pathogen-encoded cell wall degrading enzymes (CWDEs) such as polygalacturonases (PGs). OG are known to induce innate immune responses, including the activation of mitogen-activated protein kinases (MAPKs), production of H2O2, defense gene activation, and callose deposition. Thus, we hypothesized that xyloglucans (Xh), derived from the plant cell wall hemicellulose, could also act as an endogenous elicitor and trigger a signaling cascade similar to OG. Our results indicate that purified Xh elicit MAPK activation and immune gene expression in grapevine (Vitis vinifera) and Arabidopsis (Arabidopsis thaliana) to trigger induced resistance against necrotrophic (Botrytis cinerea) or biotrophic (Hyaloperonospora arabidopsidis) pathogens. Xh also induce resveratrol production in grapevine cell suspension and callose deposition in Arabidopsis which depends on the callose synthase PMR4. In addition, we characterized some signaling components of Xh-induced immunity using Arabidopsis mutants. Our data suggest that Xh-induced resistance against B. cinerea is dependent on the phytoalexin, salicylate, jasmonate, and ethylene pathways.
Collapse
Affiliation(s)
- Justine Claverie
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Suzanne Balacey
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | | | - Daphnée Brulé
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Annick Chiltz
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Lucie Granet
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Elodie Noirot
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Xavier Daire
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | | | - Marie-Claire Héloir
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Benoit Poinssot
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
- *Correspondence: Benoit Poinssot,
| |
Collapse
|
80
|
Abstract
Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) has become an important tool for the analysis of biomolecules, such as DNA, peptides, and oligosaccharides. This technique has been developed as a rapid, sensitive, and accurate means for analyzing cell wall polysaccharide structures. Here, we describe a method using mass spectrometry to provide xyloglucan composition and structure information of Brachypodium plants which will be useful for functional characterization of xyloglucan biosynthesis pathway in Brachypodium distachyon.
Collapse
|
81
|
Nelson CE, Attia MA, Rogowski A, Morland C, Brumer H, Gardner JG. Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification. Environ Microbiol 2017; 19:5025-5039. [PMID: 29052930 DOI: 10.1111/1462-2920.13959] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/27/2017] [Accepted: 10/08/2017] [Indexed: 12/16/2022]
Abstract
Lignocellulose degradation is central to the carbon cycle and renewable biotechnologies. The xyloglucan (XyG), β(1→3)/β(1→4) mixed-linkage glucan (MLG) and β(1→3) glucan components of lignocellulose represent significant carbohydrate energy sources for saprophytic microorganisms. The bacterium Cellvibrio japonicus has a robust capacity for plant polysaccharide degradation, due to a genome encoding a large contingent of Carbohydrate-Active enZymes (CAZymes), many of whose specific functions remain unknown. Using a comprehensive genetic and biochemical approach, we have delineated the physiological roles of the four C. japonicus glycoside hydrolase family 3 (GH3) members on diverse β-glucans. Despite high protein sequence similarity and partially overlapping activity profiles on disaccharides, these β-glucosidases are not functionally equivalent. Bgl3A has a major role in MLG and sophorose utilization, and supports β(1→3) glucan utilization, while Bgl3B underpins cellulose utilization and supports MLG utilization. Bgl3C drives β(1→3) glucan utilization. Finally, Bgl3D is the crucial β-glucosidase for XyG utilization. This study not only sheds the light on the metabolic machinery of C. japonicus, but also expands the repertoire of characterized CAZymes for future deployment in biotechnological applications. In particular, the precise functional analysis provided here serves as a reference for informed bioinformatics on the genomes of other Cellvibrio and related species.
Collapse
Affiliation(s)
- Cassandra E Nelson
- Department of Biological Sciences, University of Maryland, Baltimore County, MD, USA
| | - Mohamed A Attia
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.,Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Artur Rogowski
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Carl Morland
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.,Department of Chemistry, University of British Columbia, Vancouver, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.,Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland, Baltimore County, MD, USA
| |
Collapse
|
82
|
Tang W, Shen M, Xie J, Liu D, Du M, Lin L, Gao H, Hamaker BR, Xie M. Physicochemical characterization, antioxidant activity of polysaccharides from Mesona chinensis Benth and their protective effect on injured NCTC-1469 cells induced by H2O2. Carbohydr Polym 2017; 175:538-546. [DOI: 10.1016/j.carbpol.2017.08.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/25/2017] [Accepted: 08/03/2017] [Indexed: 01/17/2023]
|
83
|
Satjarak A, Graham LE. Genome-wide analysis of carbohydrate-active enzymes in Pyramimonas parkeae (Prasinophyceae). JOURNAL OF PHYCOLOGY 2017; 53:1072-1086. [PMID: 28708263 DOI: 10.1111/jpy.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
The wall-less green flagellate Pyramimonas parkeae is classified in clade I of the prasinophytes, a paraphyletic assemblage representing the last common ancestor of Viridiplantae, a monophyletic group composed of the green algae and land plants. Consequently, P. parkeae and other prasinophytes illuminate early-evolved Viridiplantae traits likely fundamental in the systems biology of green algae and land plants. Cellular structure and organellar genomes of P. parkeae are now well understood, and transcriptomic sequence data are also publically available for one strain of this species, but corresponding nuclear genomic sequence data are lacking. For this reason, we obtained shotgun genomic sequence and assembled a draft nuclear genome for P. parkeaeNIES254 to use along with existing transcriptomic sequence to focus on carbohydrate-active enzymes. We found that the P. parkeae nuclear genome encodes carbohydrate-active protein families similar to those previously observed for other prasinophytes, green algae, and early-diverging embryophytes for which full nuclear genomic sequence is publically available. Sequences homologous to genes related to biosynthesis of starch and cell wall carbohydrates were identified in the P. parkeae genome, indicating molecular traits common to Viridiplantae. For example, the P. parkeae genome includes sequences clustering with bacterial genes that encode cellulose synthases (Bcs), including regions coding for domains common to bacterial and plant cellulose synthases; these new sequences were incorporated into phylogenies aimed at illuminating the evolutionary history of cellulose production by Viridiplantae. Genomic sequences related to biosynthesis of xyloglucans, pectin, and starch likewise shed light on the origin of key Viridiplantae traits.
Collapse
Affiliation(s)
- Anchittha Satjarak
- Department of Botany, Chulalongkorn University, Bangkok, Thailand
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, USA
| | - Linda E Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, USA
| |
Collapse
|
84
|
Chen D, Harris PJ, Sims IM, Zujovic Z, Melton LD. Polysaccharide compositions of collenchyma cell walls from celery (Apium graveolens L.) petioles. BMC PLANT BIOLOGY 2017; 17:104. [PMID: 28619057 PMCID: PMC5472923 DOI: 10.1186/s12870-017-1046-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/24/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Collenchyma serves as a mechanical support tissue for many herbaceous plants. Previous work based on solid-state NMR and immunomicroscopy suggested collenchyma cell walls (CWs) may have similar polysaccharide compositions to those commonly found in eudicotyledon parenchyma walls, but no detailed chemical analysis was available. In this study, compositions and structures of cell wall polysaccharides of peripheral collenchyma from celery petioles were investigated. RESULTS This is the first detailed investigation of the cell wall composition of collenchyma from any plant. Celery petioles were found to elongate throughout their length during early growth, but as they matured elongation was increasingly confined to the upper region, until elongation ceased. Mature, fully elongated, petioles were divided into three equal segments, upper, middle and lower, and peripheral collenchyma strands isolated from each. Cell walls (CWs) were prepared from the strands, which also yielded a HEPES buffer soluble fraction. The CWs were sequentially extracted with CDTA, Na2CO3, 1 M KOH and 4 M KOH. Monosaccharide compositions of the CWs showed that pectin was the most abundant polysaccharide [with homogalacturonan (HG) more abundant than rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II)], followed by cellulose, and other polysaccharides, mainly xyloglucans, with smaller amounts of heteroxylans and heteromannans. CWs from different segments had similar compositions, but those from the upper segments had slightly more pectin than those from the lower two segments. Further, the pectin in the CWs of the upper segment had a higher degree of methyl esterification than the other segments. In addition to the anticipated water-soluble pectins, the HEPES-soluble fractions surprisingly contained large amounts of heteroxylans. The CDTA and Na2CO3 fractions were rich in HG and RG-I, the 1 M KOH fraction had abundant heteroxylans, the 4 M KOH fraction was rich in xyloglucan and heteromannans, and cellulose was predominant in the final residue. The structures of the xyloglucans, heteroxylans and heteromannans were deduced from the linkage analysis and were similar to those present in most eudicotyledon parenchyma CWs. Cross polarization with magic angle spinning (CP/MAS) NMR spectroscopy showed no apparent difference in the rigid and semi-rigid polysaccharides in the CWs of the three segments. Single-pulse excitation with magic-angle spinning (SPE/MAS) NMR spectroscopy, which detects highly mobile polysaccharides, showed the presence of arabinan, the detailed structure of which varied among the cell walls from the three segments. CONCLUSIONS Celery collenchyma CWs have similar polysaccharide compositions to most eudicotyledon parenchyma CWs. However, celery collenchyma CWs have much higher XG content than celery parenchyma CWs. The degree of methyl esterification of pectin and the structures of the arabinan side chains of RG-I show some variation in the collenchyma CWs from the different segments. Unexpectedly, the HEPES-soluble fraction contained a large amount of heteroxylans.
Collapse
Affiliation(s)
- Da Chen
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Philip J. Harris
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Ian M. Sims
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Zoran Zujovic
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
- NMR Centre, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Laurence D. Melton
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
85
|
Kondaveeti S, Damato TC, Carmona-Ribeiro AM, Sierakowski MR, Petri DFS. Sustainable hydroxypropyl methylcellulose/xyloglucan/gentamicin films with antimicrobial properties. Carbohydr Polym 2017; 165:285-293. [PMID: 28363551 DOI: 10.1016/j.carbpol.2017.02.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 11/19/2022]
Abstract
Hydroxypropyl methylcellulose (HPMC) and xyloglucan (XG) crosslinked with citric acid over a range of HPMC/XG weight ratios formed sustainable blend films characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, tensile tests, circular dichroism and determination of inhibitory activity against Staphylococcus aureus and Escherichia coli. Both in solution and in the crosslinked films, HPMC chains lost the original ordered conformation upon interacting with XG, giving rise to an entropic gain. The highest values of tensile strength (25MPa) and Young's modulus (689MPa) occurred for the 50:50 HPMC/XG blend films. In vitro loading of gentamicin sulfate (GS) in the films amounted to 0.18±0.05 -0.37±0.05g of GS per g polymer. At pH 7.4 and 37°C, the GS release kinetics from the films fitted with the Korsmeyer-Peppas model revealed a non-Fickian release mechanism with diffusional coefficient n∼0.7. The cross-linked films of HPMC, XG and their blends loaded with GS showed outstanding antibacterial activity against Staphylococcus aureus and Escherichia coli, disclosing their potential for novel biomedical applications.
Collapse
Affiliation(s)
- Stalin Kondaveeti
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil
| | - Tatiana C Damato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil
| | - Ana M Carmona-Ribeiro
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Denise Freitas Siqueira Petri
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| |
Collapse
|
86
|
Sampedro J, Valdivia ER, Fraga P, Iglesias N, Revilla G, Zarra I. Soluble and Membrane-Bound β-Glucosidases Are Involved in Trimming the Xyloglucan Backbone. PLANT PHYSIOLOGY 2017; 173:1017-1030. [PMID: 27956490 PMCID: PMC5291047 DOI: 10.1104/pp.16.01713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/09/2016] [Indexed: 05/23/2023]
Abstract
In many flowering plants, xyloglucan is a major component of primary cell walls, where it plays an important role in growth regulation. Xyloglucan can be degraded by a suite of exoglycosidases that remove specific sugars. In this work, we show that the xyloglucan backbone, formed by (1→4)-linked β-d-glucopyranosyl residues, can be attacked by two different Arabidopsis (Arabidopsis thaliana) β-glucosidases from glycoside hydrolase family 3. While BGLC1 (At5g20950; for β-glucosidase active against xyloglucan 1) is responsible for all or most of the soluble activity, BGLC3 (At5g04885) is usually a membrane-anchored protein. Mutations in these two genes, whether on their own or combined with mutations in other exoglycosidase genes, resulted in the accumulation of partially digested xyloglucan subunits, such as GXXG, GXLG, or GXFG. While a mutation in BGLC1 had significant effects on its own, lack of BGLC3 had only minor effects. On the other hand, double bglc1 bglc3 mutants revealed a synergistic interaction that supports a role for membrane-bound BGLC3 in xyloglucan metabolism. In addition, bglc1 bglc3 was complemented by overexpression of either BGLC1 or BGLC3 In overexpression lines, BGLC3 activity was concentrated in a microsome-enriched fraction but also was present in soluble form. Finally, both genes were generally expressed in the same cell types, although, in some cases, BGLC3 was expressed at earlier stages than BGLC1 We propose that functional specialization could explain the separate localization of both enzymes, as a membrane-bound β-glucosidase could specifically digest soluble xyloglucan without affecting the wall-bound polymer.
Collapse
Affiliation(s)
- Javier Sampedro
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| | - Elene R Valdivia
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| | - Patricia Fraga
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| | - Natalia Iglesias
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| | - Gloria Revilla
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| | - Ignacio Zarra
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| |
Collapse
|
87
|
Tabuchi A, Baba Y, Inoue Y, Yamatoya K. Establishment and Single Laboratory Validation for Quantitative Determination of Tamarind Seed Polysaccharide by Iodine Staining. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
88
|
Gao Y, He C, Zhang D, Liu X, Xu Z, Tian Y, Liu XH, Zang S, Pauly M, Zhou Y, Zhang B. Two Trichome Birefringence-Like Proteins Mediate Xylan Acetylation, Which Is Essential for Leaf Blight Resistance in Rice. PLANT PHYSIOLOGY 2017; 173:470-481. [PMID: 27864442 PMCID: PMC5210760 DOI: 10.1104/pp.16.01618] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/16/2016] [Indexed: 05/17/2023]
Abstract
Acetylation is a ubiquitous modification on cell wall polymers, which play a structural role in plant growth and stress defenses. However, the mechanisms for how crop plants accomplish cell wall polymer O-acetylation are largely unknown. Here, we report on the isolation and characterization of two trichome birefringence-like (tbl) mutants in rice (Oryza sativa), which are affected in xylan O-acetylation. ostbl1 and ostbl2 single mutant and the tbl1 tbl2 double mutant displayed a stunted growth phenotype with varied degree of dwarfism. As shown by chemical assays, the wall acetylation level is affected in the mutants and the knock-down and overexpression transgenic plants. Furthermore, NMR spectroscopy analyses showed that all those mutants have varied decreases in xylan monoacetylation. The divergent expression levels of OsTBL1 and OsTBL2 explained the chemotype difference and indicated that OsTBL1 is a functionally dominant gene. OsTBL1 was found to be Golgi-localized. The recombinant OsTBL1 protein incorporates acetyl groups onto xylan. By using xylopentaose, a preferred acceptor substrate, OsTBL1 can transfer up to four acetyl residues onto xylopentaose, and this activity showed saturable kinetics. 2D-NMR spectroscopy showed that OsTBL1 transfers acetate to both 2-O and 3-O sites of xylosyl residues. In addition, ostbl1 and tbl1 tbl2 displayed susceptibility to rice blight disease, indicating that this xylan modification is required for pathogen resistance. This study identifies the major genes responsible for xylan acetylation in rice plants.
Collapse
Affiliation(s)
- Yaping Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Congwu He
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Dongmei Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Yanbao Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Xue-Hui Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Shanshan Zang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Markus Pauly
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.);
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.);
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| |
Collapse
|
89
|
Recent structural insights into the enzymology of the ubiquitous plant cell wall glycan xyloglucan. Curr Opin Struct Biol 2016; 40:43-53. [PMID: 27475238 DOI: 10.1016/j.sbi.2016.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/03/2023]
Abstract
The xyloglucans (XyGs) constitute a family of highly decorated β(1→4)-glucans whose members are widespread and abundant across the plant kingdom. As such, XyGs constitute a significant reserve of metabolically accessible monosaccharides for diverse phytopathogenic, saprophytic, and gut symbiotic micro-organisms. To overcome the intrinsic stability of the diverse glycosidic bonds in XyGs, bacteria and fungi have evolved extensive repertoires of xyloglucan-active enzymes from manifold families, whose exquisitely adapted tertiary structures are recently coming to light.
Collapse
|
90
|
Calzado F, Prates ET, Gonçalves TA, Rubio MV, Zubieta MP, Squina FM, Skaf MS, Damásio AR. Molecular basis of substrate recognition and specificity revealed in family 12 glycoside hydrolases. Biotechnol Bioeng 2016; 113:2577-2586. [DOI: 10.1002/bit.26036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/29/2016] [Accepted: 06/05/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Felipe Calzado
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas-SP Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology; University of Campinas (UNICAMP); Campinas-SP 13083862 Brazil
| | - Erica T. Prates
- Institute of Chemistry; University of Campinas (UNICAMP); Campinas-SP Brazil
| | - Thiago A. Gonçalves
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas-SP Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology; University of Campinas (UNICAMP); Campinas-SP 13083862 Brazil
| | - Marcelo V. Rubio
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas-SP Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology; University of Campinas (UNICAMP); Campinas-SP 13083862 Brazil
| | - Mariane P. Zubieta
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas-SP Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology; University of Campinas (UNICAMP); Campinas-SP 13083862 Brazil
| | - Fabio M. Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas-SP Brazil
| | - Munir S. Skaf
- Institute of Chemistry; University of Campinas (UNICAMP); Campinas-SP Brazil
| | - André R.L. Damásio
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas-SP Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology; University of Campinas (UNICAMP); Campinas-SP 13083862 Brazil
| |
Collapse
|
91
|
Pauly M, Keegstra K. Biosynthesis of the Plant Cell Wall Matrix Polysaccharide Xyloglucan. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:235-59. [PMID: 26927904 DOI: 10.1146/annurev-arplant-043015-112222] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Xyloglucan (XyG) is a matrix polysaccharide that is present in the cell walls of all land plants. It consists of a β-1,4-linked glucan backbone that is further substituted with xylosyl residues. These xylosyl residues can be further substituted with other glycosyl and nonglycosyl substituents that vary depending on the plant family and specific tissue. Advances in plant mutant isolation and characterization, functional genomics, and DNA sequencing have led to the identification of nearly all transferases and synthases necessary to synthesize XyG. Thus, in terms of the molecular mechanisms of plant cell wall polysaccharide biosynthesis, XyG is the most well understood. However, much remains to be learned about the molecular mechanisms of polysaccharide assembly and the regulation of these processes. Knowledge of the XyG biosynthetic machinery allows the XyG structure to be tailored in planta to ascertain the functions of this polysaccharide and its substituents in plant growth and interactions with the environment.
Collapse
Affiliation(s)
- Markus Pauly
- Department of Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Kenneth Keegstra
- DOE Great Lakes Bioenergy Research Center, DOE Plant Research Laboratory, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
92
|
Abstract
Polysaccharide utilization loci (PUL) within the genomes of resident human gut Bacteroidetes are central to the metabolism of the otherwise indigestible complex carbohydrates known as “dietary fiber.” However, functional characterization of PUL lags significantly behind sequencing efforts, which limits physiological understanding of the human-bacterial symbiosis. In particular, the molecular basis of complex polysaccharide recognition, an essential prerequisite to hydrolysis by cell surface glycosidases and subsequent metabolism, is generally poorly understood. Here, we present the biochemical, structural, and reverse genetic characterization of two unique cell surface glycan-binding proteins (SGBPs) encoded by a xyloglucan utilization locus (XyGUL) from Bacteroides ovatus, which are integral to growth on this key dietary vegetable polysaccharide. Biochemical analysis reveals that these outer membrane-anchored proteins are in fact exquisitely specific for the highly branched xyloglucan (XyG) polysaccharide. The crystal structure of SGBP-A, a SusD homolog, with a bound XyG tetradecasaccharide reveals an extended carbohydrate-binding platform that primarily relies on recognition of the β-glucan backbone. The unique, tetra-modular structure of SGBP-B is comprised of tandem Ig-like folds, with XyG binding mediated at the distal C-terminal domain. Despite displaying similar affinities for XyG, reverse-genetic analysis reveals that SGBP-B is only required for the efficient capture of smaller oligosaccharides, whereas the presence of SGBP-A is more critical than its carbohydrate-binding ability for growth on XyG. Together, these data demonstrate that SGBP-A and SGBP-B play complementary, specialized roles in carbohydrate capture by B. ovatus and elaborate a model of how vegetable xyloglucans are accessed by the Bacteroidetes. The Bacteroidetes are dominant bacteria in the human gut that are responsible for the digestion of the complex polysaccharides that constitute “dietary fiber.” Although this symbiotic relationship has been appreciated for decades, little is currently known about how Bacteroidetes seek out and bind plant cell wall polysaccharides as a necessary first step in their metabolism. Here, we provide the first biochemical, crystallographic, and genetic insight into how two surface glycan-binding proteins from the complex Bacteroides ovatus xyloglucan utilization locus (XyGUL) enable recognition and uptake of this ubiquitous vegetable polysaccharide. Our combined analysis illuminates new fundamental aspects of complex polysaccharide recognition, cleavage, and import at the Bacteroidetes cell surface that may facilitate the development of prebiotics to target this phylum of gut bacteria.
Collapse
|
93
|
Liu L, Hsia MM, Dama M, Vogel J, Pauly M. A Xyloglucan Backbone 6-O-Acetyltransferase from Brachypodium distachyon Modulates Xyloglucan Xylosylation. MOLECULAR PLANT 2016; 9:615-7. [PMID: 26589447 DOI: 10.1016/j.molp.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 05/26/2023]
Affiliation(s)
- Lifeng Liu
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Mon Mandy Hsia
- U.S. Department of Agriculture Western Regional Research Center, Albany, CA 94710, USA
| | - Murali Dama
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - John Vogel
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA; U.S. Department of Agriculture Western Regional Research Center, Albany, CA 94710, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Markus Pauly
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
94
|
Attia M, Stepper J, Davies GJ, Brumer H. Functional and structural characterization of a potent GH74 endo-xyloglucanase from the soil saprophyte Cellvibrio japonicus unravels the first step of xyloglucan degradation. FEBS J 2016; 283:1701-19. [PMID: 26929175 DOI: 10.1111/febs.13696] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 11/27/2022]
Abstract
UNLABELLED The heteropolysaccharide xyloglucan (XyG) comprises up to one-quarter of the total carbohydrate content of terrestrial plant cell walls and, as such, represents a significant reservoir in the global carbon cycle. The complex composition of XyG requires a consortium of backbone-cleaving endo-xyloglucanases and side-chain cleaving exo-glycosidases for complete saccharification. The biochemical basis for XyG utilization by the model Gram-negative soil saprophytic bacterium Cellvibrio japonicus is incompletely understood, despite the recent characterization of associated side-chain cleaving exo-glycosidases. We present a detailed functional and structural characterization of a multimodular enzyme encoded by gene locus CJA_2477. The CJA_2477 gene product comprises an N-terminal glycoside hydrolase family 74 (GH74) endo-xyloglucanase module in train with two carbohydrate-binding modules (CBMs) from families 10 and 2 (CBM10 and CBM2). The GH74 catalytic domain generates Glc4 -based xylogluco-oligosaccharide (XyGO) substrates for downstream enzymes through an endo-dissociative mode of action. X-ray crystallography of the GH74 module, alone and in complex with XyGO products spanning the entire active site, revealed a broad substrate-binding cleft specifically adapted to XyG recognition, which is composed of two seven-bladed propeller domains characteristic of the GH74 family. The appended CBM10 and CBM2 members notably did not bind XyG, nor other soluble polysaccharides, and instead were specific cellulose-binding modules. Taken together, these data shed light on the first step of xyloglucan utilization by C. japonicus and expand the repertoire of GHs and CBMs for selective biomass analysis and utilization. DATABASE Structural data have been deposited in the RCSB protein database under the Protein Data Bank codes: 5FKR, 5FKS, 5FKT and 5FKQ.
Collapse
Affiliation(s)
- Mohamed Attia
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, Canada
| | | | | | - Harry Brumer
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
95
|
Hsieh YSY, Zhang Q, Yap K, Shirley NJ, Lahnstein J, Nelson CJ, Burton RA, Millar AH, Bulone V, Fincher GB. Genetics, Transcriptional Profiles, and Catalytic Properties of the UDP-Arabinose Mutase Family from Barley. Biochemistry 2016; 55:322-34. [PMID: 26645466 DOI: 10.1021/acs.biochem.5b01055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Four members of the UDP-Ara mutase (UAM) gene family from barley have been isolated and characterized, and their map positions on chromosomes 2H, 3H, and 4H have been defined. When the genes are expressed in Escherichia coli, the corresponding HvUAM1, HvUAM2, and HvUAM3 proteins exhibit UAM activity, and the kinetic properties of the enzymes have been determined, including Km, Kcat, and catalytic efficiencies. However, the expressed HvUAM4 protein shows no mutase activity against UDP-Ara or against a broad range of other nucleotide sugars and related molecules. The enzymic data indicate therefore that the HvUAM4 protein may not be a mutase. However, the HvUAM4 gene is transcribed at high levels in all the barley tissues examined, and its transcript abundance is correlated with transcript levels for other genes involved in cell wall biosynthesis. The UDP-l-Arap → UDP-l-Araf reaction, which is essential for the generation of the UDP-Araf substrate for arabinoxylan, arabinogalactan protein, and pectic polysaccharide biosynthesis, is thermodynamically unfavorable and has an equilibrium constant of 0.02. Nevertheless, the incorporation of Araf residues into nascent polysaccharides clearly occurs at biologically appropriate rates. The characterization of the HvUAM genes opens the way for the manipulation of both the amounts and fine structures of heteroxylans in cereals, grasses, and other crop plants, with a view toward enhancing their value in human health and nutrition, and in renewable biofuel production.
Collapse
Affiliation(s)
- Yves S Y Hsieh
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide , Waite Campus, Glen Osmond, SA 5064, Australia.,Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH) , AlbaNova University Centre, SE-10691 Stockholm, Sweden
| | - Qisen Zhang
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide , Waite Campus, Glen Osmond, SA 5064, Australia
| | - Kuok Yap
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide , Waite Campus, Glen Osmond, SA 5064, Australia
| | - Neil J Shirley
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide , Waite Campus, Glen Osmond, SA 5064, Australia
| | - Jelle Lahnstein
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide , Waite Campus, Glen Osmond, SA 5064, Australia
| | - Clark J Nelson
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia , 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide , Waite Campus, Glen Osmond, SA 5064, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia , 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Vincent Bulone
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide , Waite Campus, Glen Osmond, SA 5064, Australia.,Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH) , AlbaNova University Centre, SE-10691 Stockholm, Sweden
| | - Geoffrey B Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide , Waite Campus, Glen Osmond, SA 5064, Australia
| |
Collapse
|
96
|
Augimeri RV, Varley AJ, Strap JL. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria. Front Microbiol 2015; 6:1282. [PMID: 26635751 PMCID: PMC4646962 DOI: 10.3389/fmicb.2015.01282] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/31/2015] [Indexed: 01/21/2023] Open
Abstract
Bacterial cellulose (BC) serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation, and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC-containing biofilms is to establish close contact with a preferred host to facilitate efficient host-bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology, and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3'→5')-cyclic diguanylate (c-di-GMP) levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal, or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host-bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, its regulation and its ecophysiological roles.
Collapse
Affiliation(s)
| | | | - Janice L. Strap
- Molecular Microbial Biochemistry Laboratory, Faculty of Science, University of Ontario Institute of TechnologyOshawa, ON, Canada
| |
Collapse
|
97
|
Liu L, Paulitz J, Pauly M. The presence of fucogalactoxyloglucan and its synthesis in rice indicates conserved functional importance in plants. PLANT PHYSIOLOGY 2015; 168:549-60. [PMID: 25869654 PMCID: PMC4453794 DOI: 10.1104/pp.15.00441] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/07/2015] [Indexed: 05/17/2023]
Abstract
The predominant structure of the hemicellulose xyloglucan (XyG) found in the cell walls of dicots is a fucogalactoXyG with an XXXG core motif, whereas in the Poaceae (grasses and cereals), the structure of XyG is less xylosylated (XXGGn core motif) and lacks fucosyl residues. However, specialized tissues of rice (Oryza sativa) also contain fucogalactoXyG. Orthologous genes of the fucogalactoXyG biosynthetic machinery of Arabidopsis (Arabidopsis thaliana) are present in the rice genome. Expression of these rice genes, including fucosyl-, galactosyl-, and acetyltransferases, in the corresponding Arabidopsis mutants confirmed their activity and substrate specificity, indicating that plants in the Poaceae family have the ability to synthesize fucogalactoXyG in vivo. The data presented here provide support for a functional conservation of XyG structure in higher plants.
Collapse
Affiliation(s)
- Lifeng Liu
- Energy Biosciences Institute (L.L., J.P., M.P.) andDepartment of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720
| | - Jonathan Paulitz
- Energy Biosciences Institute (L.L., J.P., M.P.) andDepartment of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720
| | - Markus Pauly
- Energy Biosciences Institute (L.L., J.P., M.P.) andDepartment of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720
| |
Collapse
|
98
|
Mansoori N, Schultink A, Schubert J, Pauly M. Expression of heterologous xyloglucan xylosyltransferases in Arabidopsis to investigate their role in determining xyloglucan xylosylation substitution patterns. PLANTA 2015; 241:1145-1158. [PMID: 25604050 DOI: 10.1007/s00425-015-2243-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
Putative XyG xylosyltransferases from Tropaeolum majus (nasturtium) and Solanum lycopersicum (tomato) homologous to characterized Arabidopsis genes were identified and shown to functionally complement Arabidopsis mutants lacking xyloglucan demonstrating they represent xyloglucan xylosyltransferases. Xyloglucan is a major hemicellulose in the plant cell wall and is important for the structural organization of the wall. The fine structure of xyloglucan can vary dependent on plant species and tissue type. Most vascular seed-bearing plants including Arabidopsis thaliana and nasturtium (Tropaeolum majus) have a xyloglucan structure, in which three out of four backbone glucosyl-residues are substituted with xylosyl-residues. In contrast, the xyloglucan found in plants of the Solanaceae family, which includes tomato (Solanum lycopersicum), is typically less xylosylated with only two of the four backbone glucosyl-residues substituted with xylosyl-residues. To investigate the genetics of xyloglucan xylosylation, candidate xyloglucan xylosyltransferase genes (XXTs) homologous to known A. thaliana XXTs were cloned from nasturtium and tomato. These candidate XXTs were expressed in the A. thaliana xxt1/2 double and xxt1/2/5 triple mutant, whose walls lack detectable xyloglucan. Expression of the orthologs of XXT5 resulted in no detectable xyloglucan in the transgenic A. thaliana plants, consistent with a lack of xyloglucan in the A. thaliana xxt1/2 double mutant. However, transformation of both the tomato and nasturtium orthologs of AtXXT1 and AtXXT2 resulted in the production of xyloglucan with a xylosylation pattern similar to wild type A. thaliana indicating that both SlXXT2 and TmXXT2 likely have xylosyltransferase activity. As the expression of the SlXXT2 did not result in xyloglucan with a decreased xylosylation frequency found in tomato, this gene is not responsible for the unique xylosylation pattern found in the solanaceous plants.
Collapse
Affiliation(s)
- Nasim Mansoori
- Energy Biosciences Institute, University of California-Berkeley, Berkeley, CA, 94704, USA
| | | | | | | |
Collapse
|
99
|
Schultink A, Naylor D, Dama M, Pauly M. The role of the plant-specific ALTERED XYLOGLUCAN9 protein in Arabidopsis cell wall polysaccharide O-acetylation. PLANT PHYSIOLOGY 2015; 167:1271-83. [PMID: 25681330 PMCID: PMC4378174 DOI: 10.1104/pp.114.256479] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 02/05/2015] [Indexed: 05/17/2023]
Abstract
A mutation in the ALTERED XYLOGLUCAN9 (AXY9) gene was found to be causative for the decreased xyloglucan acetylation phenotype of the axy9.1 mutant, which was identified in a forward genetic screen for Arabidopsis (Arabidopsis thaliana) mutants. The axy9.1 mutant also exhibits decreased O-acetylation of xylan, implying that the AXY9 protein has a broad role in polysaccharide acetylation. An axy9 insertional mutant exhibits severe growth defects and collapsed xylem, demonstrating the importance of wall polysaccharide O-acetylation for normal plant growth and development. Localization and topological experiments indicate that the active site of the AXY9 protein resides within the Golgi lumen. The AXY9 protein appears to be a component of the plant cell wall polysaccharide acetylation pathway, which also includes the REDUCED WALL ACETYLATION and TRICHOME BIREFRINGENCE-LIKE proteins. The AXY9 protein is distinct from the TRICHOME BIREFRINGENCE-LIKE proteins, reported to be polysaccharide acetyltransferases, but does share homology with them and other acetyltransferases, suggesting that the AXY9 protein may act to produce an acetylated intermediate that is part of the O-acetylation pathway.
Collapse
Affiliation(s)
- Alex Schultink
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| | - Dan Naylor
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| | - Murali Dama
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| | - Markus Pauly
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| |
Collapse
|
100
|
Park YB, Cosgrove DJ. Xyloglucan and its Interactions with Other Components of the Growing Cell Wall. ACTA ACUST UNITED AC 2015; 56:180-94. [DOI: 10.1093/pcp/pcu204] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|