51
|
Gogoi NG, Rahman A, Saikia J, Dutta P, Baruah A, Handique JG. Enhanced biological activity of Curcumin Cinnamates: an experimental and computational analysis. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
52
|
Gellan Gum in Wound Dressing Scaffolds. Polymers (Basel) 2022; 14:polym14194098. [PMID: 36236046 PMCID: PMC9573731 DOI: 10.3390/polym14194098] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Several factors, such as bacterial infections, underlying conditions, malnutrition, obesity, ageing, and smoking are the most common issues that cause a delayed process of wound healing. Developing wound dressings that promote an accelerated wound healing process and skin regeneration is crucial. The properties of wound dressings that make them suitable for the acceleration of the wound healing process include good antibacterial efficacy, excellent biocompatibility, and non-toxicity, the ability to provide a moist environment, stimulating cell migration and adhesion, and providing gaseous permeation. Biopolymers have demonstrated features appropriate for the development of effective wound dressing scaffolds. Gellan gum is one of the biopolymers that has attracted great attention in biomedical applications. The wound dressing materials fabricated from gellan gum possess outstanding properties when compared to traditional dressings, such as good biocompatibility, biodegradability, non-toxicity, renewability, and stable nature. This biopolymer has been broadly employed for the development of wound dressing scaffolds in different forms. This review discusses the physicochemical and biological properties of gellan gum-based scaffolds in the management of wounds.
Collapse
|
53
|
Murashevych B, Stepanskyi D, Toropin V, Mironenko A, Maslak H, Burmistrov K, Teteriuk N. Virucidal properties of new multifunctional fibrous N-halamine-immobilized styrene-divinylbenzene copolymers. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221121852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Virucidal properties of N-chlorosulfonamides immobilized on fibrous styrene-divinylbenzene copolymers have been studied. Corresponding materials with different functional group structures and chlorine content have been synthesized on FIBAN polymer carriers in the form of staple fibers and non-woven fabrics. The study has been conducted in general accordance with EN 14476 standard on poliovirus type-1 and adenovirus type-5. It has been found that all tested samples exhibit pronounced virucidal activity: regardless of the carrier polymer form, sodium N-chlorosulfonamides inactivated both viruses in less than 30 s, and N,N-dichlorosulfonamides—in 30–60 s. The main mechanism of action of these materials, obviously, consists in the emission of active chlorine from the functional group into the treated medium under the action of the amino groups of virus fragments and cell culture. Considering the previously described antimicrobial and reparative properties of such materials, as well as their satisfactory physical and mechanical properties, the synthesized polymers are promising for the creation of medical devices with increased resistance to microbial contamination, such as protective masks, filter elements, long-acting wound dressings, and others.
Collapse
Affiliation(s)
- Bohdan Murashevych
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Dmytro Stepanskyi
- Department of Microbiology, Virology, Immunology and Epidemiology, Dnipro State Medical University, Dnipro, Ukraine
| | - Volodymyr Toropin
- Department of Pharmacy and Technology of Organic Substances, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Alla Mironenko
- Department of Respiratory and Other Viral Infections, L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases, Kyiv, Ukraine
| | - Hanna Maslak
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Konstantin Burmistrov
- Department of Pharmacy and Technology of Organic Substances, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Nataliia Teteriuk
- Department of Respiratory and Other Viral Infections, L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases, Kyiv, Ukraine
| |
Collapse
|
54
|
Polymer-Based Hydrogels Enriched with Essential Oils: A Promising Approach for the Treatment of Infected Wounds. Polymers (Basel) 2022; 14:polym14183772. [PMID: 36145917 PMCID: PMC9502037 DOI: 10.3390/polym14183772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Among the factors that delay the wound healing process in chronic wounds, bacterial infections are a common cause of acute wounds becoming chronic. Various therapeutic agents, such as antibiotics, metallic nanoparticles, and essential oils have been employed to treat infected wounds and also prevent the wounds from bacterial invasion. Essential oils are promising therapeutic agents with excellent wound healing, anti-inflammatory and antimicrobial activities, and good soothing effects. Some essential oils become chemically unstable when exposed to light, heat, oxygen, and moisture. The stability and biological activity of essential oil can be preserved via loading into hydrogels. The polymer-based hydrogels loaded with bioactive agents are regarded as ideal wound dressings with unique features, such as controlled and sustained drug release mechanisms, good antibacterial activity, non-toxicity, excellent cytocompatibility, good porosity, moderate water vapour transmission rate, etc. This review addresses the pre-clinical outcomes of hydrogels loaded with essential oils in the treatment of infected wounds.
Collapse
|
55
|
Ali MA, Musthafa SA, Munuswamy-Ramanujam G, Jaisankar V. 3-Formylindole-based chitosan Schiff base polymer: Antioxidant and in vitro cytotoxicity studies on THP-1 cells. Carbohydr Polym 2022; 290:119501. [PMID: 35550779 DOI: 10.1016/j.carbpol.2022.119501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 11/27/2022]
Abstract
Two imine derivatives of chitosan (i-CTs), namely 2FCT and 5MCT, were synthesized by reacting chitosan (CT) with 2-(3-formyl-1H-indol-1yl)acetonitrile (2F), and 5-methoxyindole-3-carbaldehyde (5M), respectively. The antimicrobial evaluation of i-CTs exhibited stronger inhibition effect against Staphylococcus aureus, Escherichia coli and Candida albicans. The antioxidant activity of 2FCT and 5MCT showed strong scavenging ability with IC50 2.31 and 6.92 μg/mL, respectively. The results of in vitro cytotoxicity of 2FCT and 5MCT examined using human monocyte leukemia (THP-1) cells indicate no cytotoxic effect on host cells and the value of cell viability was found to be 87.08 and 84.47%, respectively. Measurement of intracellular Reactive Oxygen Species (ROS) production by flow cytometry analysis revealed that the 2FCT and 5MCT reduced the ROS generation by 83 and 43%, respectively. In summary, these findings show that i-CTs synthesized to be promising biomaterial for biomedical applications such as wound healing.
Collapse
Affiliation(s)
- M Ameer Ali
- Department of Chemistry, The New College (Autonomous), Chennai 600014, TN, India; Department of Chemistry, Presidency College (Autonomous), Chennai 600005, TN, India
| | - Shazia Anjum Musthafa
- Division of Molecular Biology and Immuno Biology, IIISM, SRM IST, Kattankulathur 603203, TN, India
| | - Ganesh Munuswamy-Ramanujam
- Division of Molecular Biology and Immuno Biology, IIISM, SRM IST, Kattankulathur 603203, TN, India; Department of Chemistry, Faculty of Science & Humanities, SRM IST, Kattankulathur 603203, TN, India
| | - V Jaisankar
- Department of Chemistry, Presidency College (Autonomous), Chennai 600005, TN, India.
| |
Collapse
|
56
|
Rani Raju N, Silina E, Stupin V, Manturova N, Chidambaram SB, Achar RR. Multifunctional and Smart Wound Dressings—A Review on Recent Research Advancements in Skin Regenerative Medicine. Pharmaceutics 2022; 14:pharmaceutics14081574. [PMID: 36015200 PMCID: PMC9414988 DOI: 10.3390/pharmaceutics14081574] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
The healing of wounds is a dynamic function that necessitates coordination among multiple cell types and an optimal extracellular milieu. Much of the research focused on finding new techniques to improve and manage dermal injuries, chronic injuries, burn injuries, and sepsis, which are frequent medical concerns. A new research strategy involves developing multifunctional dressings to aid innate healing and combat numerous issues that trouble incompletely healed injuries, such as extreme inflammation, ischemic damage, scarring, and wound infection. Natural origin-based compounds offer distinct characteristics, such as excellent biocompatibility, cost-effectiveness, and low toxicity. Researchers have developed biopolymer-based wound dressings with drugs, biomacromolecules, and cells that are cytocompatible, hemostatic, initiate skin rejuvenation and rapid healing, and possess anti-inflammatory and antimicrobial activity. The main goal would be to mimic characteristics of fetal tissue regeneration in the adult healing phase, including complete hair and glandular restoration without delay or scarring. Emerging treatments based on biomaterials, nanoparticles, and biomimetic proteases have the keys to improving wound care and will be a vital addition to the therapeutic toolkit for slow-healing wounds. This study focuses on recent discoveries of several dressings that have undergone extensive pre-clinical development or are now undergoing fundamental research.
Collapse
Affiliation(s)
- Nithya Rani Raju
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Ekaterina Silina
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street 8, 119991 Moscow, Russia;
| | - Victor Stupin
- Department of Hospital Surgery No 1, N.I. Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova Street 1, 117997 Moscow, Russia;
| | - Natalia Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, N.I. Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
- Centre for Experimental Pharmacology and Toxicology (CPT), Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
- Correspondence: ; Tel.: +91-9535413026
| |
Collapse
|
57
|
Alves C, Ribeiro A, Pinto E, Santos J, Soares G. Exploring Z-Tyr-Phe-OH-based hydrogels loaded with curcumin for the development of dressings for wound healing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
58
|
Green synthesis of chitosan-silver nanocomposite reinforced with curcumin nanoparticles: characterization and antibacterial effect. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
59
|
Das RP, Gandhi VV, Verma G, Ajish JK, Singh BG, Kunwar A. Gelatin-lecithin-F127 gel mediated self-assembly of curcumin vesicles for enhanced wound healing. Int J Biol Macromol 2022; 210:403-414. [PMID: 35526768 DOI: 10.1016/j.ijbiomac.2022.04.134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/23/2022]
Abstract
Curcumin, a principal component of Curcuma longa, has a long history of being used topically for wound healing. However, poor aqueous solubility of curcumin leads to poor topical absorption. Recently, gelatin based gel has been reported to overcome this issue. However, the release of curcumin from gelatin gel in the bioavailable or easily absorbable form is still a challenge. The present study reports the development of a composite gel prepared from gelatin, F127 and lecithin using temperature dependant gelation and loading of curcumin within it. Notably, the composite gel facilitated the release of curcumin entrapped within vesicles of ~400 nm size. Further, the composite gel exhibited increase in the storage modulus or gel strength, stability, pore size and hydrophobicity as compared to only gelatin gel. Finally, wound healing assay in murine model indicated that curcumin delivered through composite gel showed a significantly faster healing as compared to that delivered through organic solvent. This was also validated by histopathological and biochemical analysis showing better epithelization and collagen synthesis in the group dressed with curcumin containing composite gel. In conclusion, composite gel facilitated the release of bioavailable or easily absorbable curcumin which in turn enhanced the wound healing.
Collapse
Affiliation(s)
- Ram Pada Das
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Vishwa V Gandhi
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Gunjan Verma
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Juby K Ajish
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Amit Kunwar
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
60
|
Li L, Wang F. Wound healing and anti-inflammatory effects of Anethum graveolens extract loaded in PVA fibers: An in vitro and in vivo study. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anethum graveolens extract (AGE) is known for its anti-inflammatory, antioxidative, and antibacterial activities. As wound infection, hyperactivity of inflammatory responses, and high oxidative stress are the leading causes of delayed wound healing, we were encouraged to design a delivery vehicle for AGE to develop a potential wound dressing material. In the current study, AGE was incorporated into the polyvinyl alcohol (PVA) scaffolds matrix via the electrospinning method. Various characterization methods were applied to assess the physicochemical and biological properties of the dressings. Cell culture studies with fibroblast cell line showed that AGE-loaded dressings could significantly promote cell viability under normal and oxidative stress conditions. The prepared wound dressings’ wound healing and anti-inflammatory properties were investigated on an excisional injury rat model. Wound healing assay showed that AGE-delivering wound dressings could significantly improve the wound healing response, as evidenced by a significantly higher rate of wound closure, epithelial thickness, and collagen deposition. Gene expression analysis revealed that the produced dressings downregulated inflammation-associated genes such as IL-1β and NFK-β. This preliminary research suggests the potential applicability of AGE-loaded PVA dressings in the clinic.
Collapse
Affiliation(s)
- Linli Li
- Department of the Skin, XD Group Hospital, Xi’an, China
| | - Fengjuan Wang
- Department of the Skin, Xi’an Guild Hospital, Xi’an, China
| |
Collapse
|
61
|
Kim H, Bae JE, Shin MJ. Controlled release of curcumin from coaxial electrospun nanofiber mats. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Huiseon Kim
- Department of Cosmetics and Biotechnology Semyung University Jecheon South Korea
| | - Ju Eun Bae
- Department of Cosmetics and Biotechnology Semyung University Jecheon South Korea
| | - Min Jae Shin
- Department of Cosmetics and Biotechnology Semyung University Jecheon South Korea
| |
Collapse
|
62
|
Singh H, Bashir SM, Purohit SD, Bhaskar R, Rather MA, Ali SI, Yadav I, Makhdoomi DM, Din Dar MU, Gani MA, Gupta MK, Mishra NC. Nanoceria laden decellularized extracellular matrix-based curcumin releasing nanoemulgel system for full-thickness wound healing. BIOMATERIALS ADVANCES 2022; 137:212806. [PMID: 35929233 DOI: 10.1016/j.bioadv.2022.212806] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Decellularized extracellular matrix (ECM) has been widely used for wound healing. But, ECM failed to integrate tissue and restore the tissue function properly, when elevated levels of free radicals and biofilm formation occur at the wound site. Here, nanoemulgel systems were fabricated, considering the combinatorial approach of nanotechnology (nanoceria and curcumin nanoemulsion) and ECM gel of goat small intestine submucosa. The curcumin was encapsulated in the nanoemulgel system to enhance bioavailability in terms of antibacterial, antioxidant, sustained release and permeation at the wound site. Nanoceria was also incorporated to enhance the antibacterial, antioxidant and wound healing properties of the fabricated nanoemulgel formulation. All the formulations were porous, hydrophilic, biodegradable, antioxidant, antibacterial, hemocompatible, biocompatible, and showed enhanced wound healing rate. The formulation (DG-SIS/Ce/NC) showed the highest free radicals scavenging capacity and antibacterial property with prolonged curcumin release (62.9% in 96 h), skin permeability (79.7% in 96 h); showed better cell growth under normal and oxidative-stressed conditions: it also showed full-thickness wound contraction (97.33% in 14 days) with highest collagen synthesis at the wound site (1.61 μg/mg in 14 days). The outcomes of this study suggested that the formulation (DG-SIS/Ce/NC) can be a potential nanoemulgel system for full-thickness wound healing application.
Collapse
Affiliation(s)
- Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Showkeen Muzamil Bashir
- Biochemistry and Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Shiv Dutt Purohit
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India; School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Muzafar Ahmad Rather
- Biochemistry and Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Sofi Imtiyaz Ali
- Biochemistry and Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Indu Yadav
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Dil Muhammad Makhdoomi
- Large Animal Surgical Section, Department of Veterinary Surgery and Radiology, Faculty of Veterinary Sciences and Animal Husbandry, Srinagar, Jammu and Kashmir, India
| | - Mehraj U Din Dar
- Large Animal Surgical Section, Department of Veterinary Surgery and Radiology, Faculty of Veterinary Sciences and Animal Husbandry, Srinagar, Jammu and Kashmir, India
| | - Muhamad Asharaf Gani
- Department of Endocrinology, Sher-e-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
63
|
Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res B Appl Biomater 2022; 110:2542-2573. [PMID: 35579269 PMCID: PMC9544096 DOI: 10.1002/jbm.b.35086] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process that is critical in restoring the skin's barrier function. This process can be interrupted by numerous diseases resulting in chronic wounds that represent a major medical burden. Such wounds fail to follow the stages of healing and are often complicated by a pro‐inflammatory milieu attributed to increased proteinases, hypoxia, and bacterial accumulation. The comprehensive treatment of chronic wounds is still regarded as a significant unmet medical need due to the complex symptoms caused by the metabolic disorder of the wound microenvironment. As a result, several advanced medical devices, such as wound dressings, wearable wound monitors, negative pressure wound therapy devices, and surgical sutures, have been developed to correct the chronic wound environment and achieve skin tissue regeneration. Most medical devices encompass a wide range of products containing natural (e.g., chitosan, keratin, casein, collagen, hyaluronic acid, alginate, and silk fibroin) and synthetic (e.g., polyvinyl alcohol, polyethylene glycol, poly[lactic‐co‐glycolic acid], polycaprolactone, polylactic acid) polymers, as well as bioactive molecules (e.g., chemical drugs, silver, growth factors, stem cells, and plant compounds). This review addresses these medical devices with a focus on biomaterials and applications, aiming to deliver a critical theoretical reference for further research on chronic wound healing.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
64
|
Anjali S, Resmi R, Saravana RP, Joseph R, Saraswathy M. Ferulic acid incorporated anti-microbial self cross-linking hydrogel: A promising system for moderately exudating wounds. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
65
|
Yang M, Yu S, Zhao P, Xie L, Lyu G, Yu J. Fabrication of homogeneously-aligned nano-fillers encapsulated silk fibroin electrospun nanofibers for improved fibroblast attachment, epithelialization, and collagen depositions: in vitro and in vivo wound healing evaluation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:878-899. [PMID: 34965203 DOI: 10.1080/09205063.2021.2024360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Curcumin (CUR), a natural compound found in turmeric that has multiple biological functions such as antibacterial, anti-oxidant, anti-cancer, and wound healing properties due to its hydrophobicity CUR solubilization is a great challenge. In this study, the electrospinning process is used to fabricate a novel active wound dressing based on CUR loaded silk fibroin (SF)/hydroxyapatite (HAp) (SF/HAp-CUR) nanofibers in diabetic rats. The incorporation of CUR into the SF/HAp-CUR nanofibers had an obvious effect on the morphology and dimension of SF/HAp-CUR nanofibers characterized by SEM analysis. Morphological analysis revealed that the average fiber diameter of the SF/HAp, SF/HAp-CUR(1.0%), SF/HAp-CUR(3.0%), and SF/HAp-CUR(5.0%) nanofibers were calculated to be 461 ± 65 nm, 323 ± 90 nm, 412 ± 110, and 497 ± 118 nm. In addition of CUR in the SF/HAp nanofibers significantly improved the mechanical properties in terms of enhanced elongation at break and tensile strengths. The percentages of water uptake and porosity of SF/HAp-CUR nanofibers were 143.7 ± 4.05% and 92.5 ± 3.40%, respectively. The results showed that CUR presented a sustained release behavior from SF/HAp-CUR nanofibers and maintained its free radical scavenging ability. The prepared nanofibers surface interaction was confirmed by FT-IR and XRD analysis. Antibacterial tests revealed SF/HAp-CUR on day 14 improved the bacterial embarrassment of both E. coli and S. aureus by 4 to 5-fold, respectively. The cell cytotoxicity with L929 mouse fibroblasts on the SF/HAp-CUR nanofibers was very low at 7.7 ± 1.75% on day 14. In vivo wound healing showed that the treatment using SF/HAp-CUR nanofibers significantly increased the rate of wound closure (99.6 ± 0.86%) on day 21 compared with that using SF/HAp nanofibers (67.7 ± 4.25%). These results showed that the delivery of SF/HAp-CUR nanofibers can facilitate antibacterial, anti-oxidant, cytotoxicity of wound healing properties.
Collapse
Affiliation(s)
- Minlie Yang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, PR China
| | - Shun Yu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, PR China
| | - Peng Zhao
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, PR China
| | - Longwei Xie
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, PR China
| | - Guozhong Lyu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, PR China
| | - Junjie Yu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, PR China
| |
Collapse
|
66
|
Schäfer S, Smeets R, Köpf M, Drinic A, Kopp A, Kröger N, Hartjen P, Assaf AT, Aavani F, Beikler T, Peters U, Fiedler I, Busse B, Stürmer EK, Vollkommer T, Gosau M, Fuest S. Antibacterial properties of functionalized silk fibroin and sericin membranes for wound healing applications in oral and maxillofacial surgery. BIOMATERIALS ADVANCES 2022; 135:212740. [PMID: 35929202 DOI: 10.1016/j.bioadv.2022.212740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
Oral wounds are among the most troublesome injuries which easily affect the patients' quality of life. To date, the development of functional antibacterial dressings for oral wound healing remains a challenge. In this regard, we investigated antibacterial silk protein-based membranes for the application as wound dressings in oral and maxillofacial surgery. The present study includes five variants of casted membranes, i.e., i) membranes-silver nanoparticles (CM-Ag), ii) membranes-gentamicin (CM-G), iii) membranes-control (without functionalization) (CM-C), iv) membranes-silk sericin control (CM-SSC), and v) membranes-silk fibroin/silk sericin (CM-SF/SS), and three variants of nonwovens, i.e., i) silver nanoparticles (NW-Ag), ii) gentamicin (NW-G), iii) control (without functionalization) (NW-C). The surface structure of the samples was visualized with scanning electron microscopy. In addition, antibacterial testing was accomplished using agar diffusion assay, colony forming unit (CFU) analysis, and qrt-PCR. Following antibacterial assays, biocompatibility was evaluated by cell proliferation assay (XTT), cytotoxicity assay (LDH), and live-dead assay on L929 mouse fibroblasts. Findings indicated significantly lower bacterial colony growth and DNA counts for CM-Ag with a reduction of bacterial counts by 3log levels (99.9% reduction) in CFU and qrt-PCR assay compared to untreated control membranes (CM-C and CM-SSC) and membranes functionalized with gentamicin (CM-G and NW-G) (p < 0.001). Similarly, NW-G yielded significantly lower DNA and colony growth counts compared to NW-Ag and NW-C (p < 0.001). In conclusion, CM-Ag represented 1log level better antibacterial activity compared to NW-G, whereas NW-G showed better cytocompatibility for L929 cells. As data suggest, these two membranes have the potential of application in the field of bacteria-free oral wound healing. However, provided that loading strategy and cytocompatibility are adjusted according to the antibacterial agents' characteristic and fabrication technique of the membranes.
Collapse
Affiliation(s)
- Sogand Schäfer
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany; Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | | | | | | | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Alexandre Thomas Assaf
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Ulrike Peters
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Imke Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Ewa K Stürmer
- Department of Vascular Medicine, University Heart Center, Translational Wound Research, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Tobias Vollkommer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
67
|
Employing Cellulose Nanofiber-Based Hydrogels for Burn Dressing. Polymers (Basel) 2022; 14:polym14061207. [PMID: 35335540 PMCID: PMC8951233 DOI: 10.3390/polym14061207] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 01/29/2023] Open
Abstract
The aim of this research was to fabricate a burn dressing in the form of hydrogel films constructed with cellulose nanofibers (CNF) that has pain-relieving properties, in addition to wound healing. In this study, the hydrogels were prepared in the form of film. For this, CNF at weight ratios of 1, 2, and 3 wt.%, 1 wt.% of hydroxyethyl cellulose (HEC), and citric acid (CA) crosslinker with 10 and 20 wt.% were used. FE-SEM analysis showed that the structure of the CNF was preserved after hydrogel preparation. Cationization of CNF by C6H14NOCl was confirmed by FTIR spectroscopy. The drug release analysis results showed a linear relationship between the amount of absorption and the concentration of the drug. The MTT test (assay protocol for cell viability and proliferation) showed the high effectiveness of cationization of CNF and confirmed the non-toxicity of the resulting hydrogels.
Collapse
|
68
|
Taheri M, Amiri-Farahani L, Haghani S, Shokrpour M, Shojaii A. The effect of olive cream on pain and healing of caesarean section wounds: a randomised controlled clinical trial. J Wound Care 2022; 31:244-253. [PMID: 35199592 DOI: 10.12968/jowc.2022.31.3.244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study was performed to determine the effect of olive cream on the severity of pain and healing of caesarean section wounds. METHOD This study is a parallel randomised clinical trial that was conducted on women who had caesarean sections at Ayatollah Taleghani Hospital in Arak, Iran. Women were assigned to intervention, placebo and control groups by a block randomisation method. Women in the intervention and placebo groups were asked to use olive cream and placebo cream, respectively, twice a day from the second day after surgery to the tenth day. The wound healing score and pain intensity score were assessed using the REEDA and VAS scales, respectively, before and at the end of the intervention. RESULTS The intervention group consisted of 34 women, the placebo group of 34 women and the control group of 35 women. We found a statistically significant difference between the intervention and placebo groups, intervention and control groups, and placebo and control groups in terms of the pain intensity (p<0.05 in all three cases). Also, we found a statistically significant difference between the intervention and placebo groups, and intervention and control groups in terms of the scores of wound healing on the tenth day after surgery (p<0.05 in both cases). CONCLUSION Olive cream can be effective in relieving pain and enhancing caesarean section wound healing, and since no specific side effects were reported, the use of olive cream is recommended.
Collapse
Affiliation(s)
- Mahdiyeh Taheri
- Department of Reproductive Health and Midwifery, Nursing Care Research Center, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Amiri-Farahani
- Department of Reproductive Health and Midwifery, Nursing Care Research Center, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Haghani
- Department of Biostatistics, Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shokrpour
- Department of Gynecology, Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Asie Shojaii
- Research institute for Islamic and Complementary Medicine, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
69
|
Polymer-Based Wound Dressing Materials Loaded with Bioactive Agents: Potential Materials for the Treatment of Diabetic Wounds. Polymers (Basel) 2022; 14:polym14040724. [PMID: 35215637 PMCID: PMC8874614 DOI: 10.3390/polym14040724] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic wounds are severe injuries that are common in patients that suffer from diabetes. Most of the presently employed wound dressing scaffolds are inappropriate for treating diabetic wounds. Improper treatment of diabetic wounds usually results in amputations. The shortcomings that are related to the currently used wound dressings include poor antimicrobial properties, inability to provide moisture, weak mechanical features, poor biodegradability, and biocompatibility, etc. To overcome the poor mechanical properties, polymer-based wound dressings have been designed from the combination of biopolymers (natural polymers) (e.g., chitosan, alginate, cellulose, chitin, gelatin, etc.) and synthetic polymers (e.g., poly (vinyl alcohol), poly (lactic-co-glycolic acid), polylactide, poly-glycolic acid, polyurethanes, etc.) to produce effective hybrid scaffolds for wound management. The loading of bioactive agents or drugs into polymer-based wound dressings can result in improved therapeutic outcomes such as good antibacterial or antioxidant activity when used in the treatment of diabetic wounds. Based on the outstanding performance of polymer-based wound dressings on diabetic wounds in the pre-clinical experiments, the in vivo and in vitro therapeutic results of the wound dressing materials on the diabetic wound are hereby reviewed.
Collapse
|
70
|
Zielińska A, Eder P, Rannier L, Cardoso JC, Severino P, Silva AM, Souto EB. Hydrogels for modified-release drug delivery systems. Curr Pharm Des 2021; 28:609-618. [PMID: 34967292 DOI: 10.2174/1381612828666211230114755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Hydrogels for the modified-release drug delivery systems is a continuously growing area of interest for the pharmaceutical industry. According to the global market, the use of polymers in this area is projected to reach $31.4 million by 2027. This review discusses the recent advances and perspectives of hydrogel in drug delivery systems for oral, parenteral, nasal, topical, and ophthalmic. The search strategy did in January 2021, and it conducted an extensive database to identify studies published from January 2010 to December 2020.We described the main characteristic of the polymers to obtain an ideal hydrogel for a specific route of administration and the formulations that was a highlight in the literature. It concluded that the hydrogels are a set useful to decrease the number of doses, side effects, promote adhesion of patient and enhances the bioavailability of the drugs improving the safety and efficacy of the treatment.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Lucas Rannier
- Institute of Technology and Research and University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Juliana C Cardoso
- Institute of Technology and Research and University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Patrícia Severino
- Institute of Technology and Research and University of Tiradentes, Aracaju, Sergipe, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Amélia M Silva
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD); 5001-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-801 Vila Real, Portugal
| | - Eliana B Souto
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
71
|
Raduly FM, Rădiţoiu V, Rădiţoiu A, Frone AN, Nicolae CA, Purcar V, Ispas G, Constantin M, Răut I. Modeling the Properties of Curcumin Derivatives in Relation to the Architecture of the Siloxane Host Matrices. MATERIALS (BASEL, SWITZERLAND) 2021; 15:267. [PMID: 35009413 PMCID: PMC8745949 DOI: 10.3390/ma15010267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
Research in the field of natural dyes has constantly focused on methods of conditioning curcumin and diversifying their fields of use. In this study, hybrid materials were obtained from modified silica structures, as host matrices, in which curcumin dyes were embedded. The influence of the silica network structure on the optical properties and the antimicrobial activity of the hybrid materials was monitored. By modifying the ratio between phenyltriethoxysilane:diphenyldimethoxysilane (PTES:DPDMES), it was possible to evaluate the influence the organosilane network modifiers had on the morphostructural characteristics of nanocomposites. The nanosols were obtained by the sol-gel method, in acid catalysis. The nanocomposites obtained were deposited as films on a glass support and showed a transmittance value (T measured at 550 nm) of around 90% and reflectance of about 11%, comparable to the properties of the uncovered support. For the coatings deposited on PET (polyethylene terephthalate) films, these properties remained at average values of T550 = 85% and R550 = 11% without significantly modifying the optical properties of the support. The sequestration of the dye in silica networks reduced the antimicrobial activity of the nanocomposites obtained, by comparison to native dyes. Tests performed on Candida albicans fungi showed good results for the two curcumin derivatives embedded in silica networks (11-18 mm) by using the spot inoculation method; in comparison, the alcoholic dye solution has a spot diameter of 20-23 mm. In addition, hybrids with the CA derivative were the most effective (halo diameter of 17-18 mm) in inhibiting the growth of Gram-positive bacteria, compared to the curcumin derivative in alcoholic solution (halo diameter of 21 mm). The results of the study showed that the presence of 20-40% by weight DPDMES in the composition of nanosols is the optimal range for obtaining hybrid films that host curcumin derivatives, with potential uses in the field of optical films or bioactive coatings.
Collapse
Affiliation(s)
- Florentina Monica Raduly
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| | - Valentin Rădiţoiu
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| | - Alina Rădiţoiu
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| | - Adriana Nicoleta Frone
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| | - Cristian Andi Nicolae
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| | - Violeta Purcar
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| | - Georgiana Ispas
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| | - Mariana Constantin
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
- Faculty of Pharmacy, Titu Maiorescu University, Bd. Gh. Sincai, No.16, 040441 Bucharest, Romania
| | - Iuliana Răut
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| |
Collapse
|
72
|
Mbese Z, Alven S, Aderibigbe BA. Collagen-Based Nanofibers for Skin Regeneration and Wound Dressing Applications. Polymers (Basel) 2021; 13:4368. [PMID: 34960918 PMCID: PMC8703599 DOI: 10.3390/polym13244368] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Skin regeneration after an injury is very vital, but this process can be impeded by several factors. Regenerative medicine is a developing biomedical field with the potential to decrease the need for an organ transplant. Wound management is challenging, particularly for chronic injuries, despite the availability of various types of wound dressing scaffolds in the market. Some of the wound dressings that are in clinical practice have various drawbacks such as poor antibacterial and antioxidant efficacy, poor mechanical properties, inability to absorb excess wound exudates, require frequent change of dressing and fails to offer a suitable moist environment to accelerate the wound healing process. Collagen is a biopolymer and a major constituent of the extracellular matrix (ECM), making it an interesting polymer for the development of wound dressings. Collagen-based nanofibers have demonstrated interesting properties that are advantageous both in the arena of skin regeneration and wound dressings, such as low antigenicity, good biocompatibility, hemostatic properties, capability to promote cellular proliferation and adhesion, and non-toxicity. Hence, this review will discuss the outcomes of collagen-based nanofibers reported from the series of preclinical trials of skin regeneration and wound healing.
Collapse
|
73
|
Bharatiya D, Patra S, Parhi B, Swain SK. A materials science approach towards bioinspired polymeric nanocomposites: a comprehensive review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1990057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Debasrita Bharatiya
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
| | - Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
| | - Biswajit Parhi
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
| |
Collapse
|
74
|
Current Trends in Advanced Alginate-Based Wound Dressings for Chronic Wounds. J Pers Med 2021; 11:jpm11090890. [PMID: 34575668 PMCID: PMC8471591 DOI: 10.3390/jpm11090890] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic wounds represent a major public health issue, with an extremely high cost worldwide. In healthy individuals, the wound healing process takes place in different stages: inflammation, cell proliferation (fibroblasts and keratinocytes of the dermis), and finally remodeling of the extracellular matrix (equilibrium between metalloproteinases and their inhibitors). In chronic wounds, the chronic inflammation favors exudate persistence and bacterial film has a special importance in the dynamics of chronic inflammation in wounds that do not heal. Recent advances in biopolymer-based materials for wound healing highlight the performance of specific alginate forms. An ideal wound dressing should be adherent to the wound surface and not to the wound bed, it should also be non-antigenic, biocompatible, semi-permeable, biodegradable, elastic but resistant, and cost-effective. It has to give protection against bacterial, infectious, mechanical, and thermal agents, to modulate the level of wound moisture, and to entrap and deliver drugs or other molecules This paper explores the roles of alginates in advanced wound-dressing forms with a particular emphasis on hydrogels, nanofibers networks, 3D-scaffolds or sponges entrapping fibroblasts, keratinocytes, or drugs to be released on the wound-bed. The latest research reports are presented and supported with in vitro and in vivo studies from the current literature.
Collapse
|
75
|
Kalirajan C, Dukle A, Nathanael AJ, Oh TH, Manivasagam G. A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers (Basel) 2021; 13:3015. [PMID: 34503054 PMCID: PMC8433665 DOI: 10.3390/polym13173015] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
Natural and synthetic polymers have been explored for many years in the field of tissue engineering and regeneration. Researchers have developed many new strategies to design successful advanced polymeric biomaterials. In this review, we summarized the recent notable advancements in the preparation of smart polymeric biomaterials with self-healing and shape memory properties. We also discussed novel approaches used to develop different forms of polymeric biomaterials such as films, hydrogels and 3D printable biomaterials. In each part, the applications of the biomaterials in soft and hard tissue engineering with their in vitro and in vivo effects are underlined. The future direction of the polymeric biomaterials that could pave a path towards successful clinical implications is also underlined in this review.
Collapse
Affiliation(s)
- Cheirmadurai Kalirajan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| | - Amey Dukle
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| |
Collapse
|
76
|
Ndlovu SP, Ngece K, Alven S, Aderibigbe BA. Gelatin-Based Hybrid Scaffolds: Promising Wound Dressings. Polymers (Basel) 2021; 13:2959. [PMID: 34502997 PMCID: PMC8434607 DOI: 10.3390/polym13172959] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Wound care is a major biomedical field that is challenging due to the delayed wound healing process. Some factors are responsible for delayed wound healing such as malnutrition, poor oxygen flow, smoking, diseases (such as diabetes and cancer), microbial infections, etc. The currently used wound dressings suffer from various limitations, including poor antimicrobial activity, etc. Wound dressings that are formulated from biopolymers (e.g., cellulose, chitin, gelatin, chitosan, etc.) demonstrate interesting properties, such as good biocompatibility, non-toxicity, biodegradability, and attractive antimicrobial activity. Although biopolymer-based wound dressings display the aforementioned excellent features, they possess poor mechanical properties. Gelatin, a biopolymer has excellent biocompatibility, hemostatic property, reduced cytotoxicity, low antigenicity, and promotes cellular attachment and growth. However, it suffers from poor mechanical properties and antimicrobial activity. It is crosslinked with other polymers to enhance its mechanical properties. Furthermore, the incorporation of antimicrobial agents into gelatin-based wound dressings enhance their antimicrobial activity in vitro and in vivo. This review is focused on the development of hybrid wound dressings from a combination of gelatin and other polymers with good biological, mechanical, and physicochemical features which are appropriate for ideal wound dressings. Gelatin-based wound dressings are promising scaffolds for the treatment of infected, exuding, and bleeding wounds. This review article reports gelatin-based wound dressings which were developed between 2016 and 2021.
Collapse
Affiliation(s)
| | | | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa; (S.P.N.); (K.N.); (S.A.)
| |
Collapse
|
77
|
Comino-Sanz IM, López-Franco MD, Castro B, Pancorbo-Hidalgo PL. The Role of Antioxidants on Wound Healing: A Review of the Current Evidence. J Clin Med 2021; 10:jcm10163558. [PMID: 34441854 PMCID: PMC8397081 DOI: 10.3390/jcm10163558] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
(1) Background: Reactive oxygen species (ROS) play a crucial role in the preparation of the normal wound healing response. Therefore, a correct balance between low or high levels of ROS is essential. Antioxidant dressings that regulate this balance are a target for new therapies. The purpose of this review is to identify the compounds with antioxidant properties that have been tested for wound healing and to summarize the available evidence on their effects. (2) Methods: A literature search was conducted and included any study that evaluated the effects or mechanisms of antioxidants in the healing process (in vitro, animal models or human studies). (3) Results: Seven compounds with antioxidant activity were identified (Curcumin, N-acetyl cysteine, Chitosan, Gallic Acid, Edaravone, Crocin, Safranal and Quercetin) and 46 studies reporting the effects on the healing process of these antioxidants compounds were included. (4) Conclusions: this review offers a map of the research on some of the antioxidant compounds with potential for use as wound therapies and basic research on redox balance and oxidative stress in the healing process. Curcumin, NAC, quercetin and chitosan are the antioxidant compounds that shown some initial evidence of efficacy, but more research in human is needed.
Collapse
Affiliation(s)
- Inés María Comino-Sanz
- Department of Nursing, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (M.D.L.-F.); (P.L.P.-H.)
- Correspondence: ; Tel.: +34-953213627
| | - María Dolores López-Franco
- Department of Nursing, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (M.D.L.-F.); (P.L.P.-H.)
| | - Begoña Castro
- Histocell S.L., Bizkaia Science and Technology Park, 48160 Derio, Spain;
| | - Pedro Luis Pancorbo-Hidalgo
- Department of Nursing, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (M.D.L.-F.); (P.L.P.-H.)
| |
Collapse
|
78
|
Di Salle A, Viscusi G, Di Cristo F, Valentino A, Gorrasi G, Lamberti E, Vittoria V, Calarco A, Peluso G. Antimicrobial and Antibiofilm Activity of Curcumin-Loaded Electrospun Nanofibers for the Prevention of the Biofilm-Associated Infections. Molecules 2021; 26:molecules26164866. [PMID: 34443457 PMCID: PMC8400440 DOI: 10.3390/molecules26164866] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
Curcumin extracted from the rhizome of Curcuma Longa has been used in therapeutic preparations for centuries in different parts of the world. However, its bioactivity is limited by chemical instability, water insolubility, low bioavailability, and extensive metabolism. In this study, the coaxial electrospinning technique was used to produce both poly (ε-caprolactone) (PCL)-curcumin and core-shell nanofibers composed of PCL and curcumin in the core and poly (lactic acid) (PLA) in the shell. Morphology and physical properties, as well as the release of curcumin were studied and compared with neat PCL, showing the formation of randomly oriented, defect-free cylindrical fibers with a narrow distribution of the dimensions. The antibacterial and antibiofilm potential, including the capacity to interfere with the quorum-sensing mechanism, was evaluated on Pseudomonas aeruginosa PAO1, and Streptococcus mutans, two opportunistic pathogenic bacteria frequently associated with infections. The reported results demonstrated the ability of the Curcumin-loading membranes to inhibit both PAO1 and S. mutans biofilm growth and activity, thus representing a promising solution for the prevention of biofilm-associated infections. Moreover, the high biocompatibility and the ability to control the oxidative stress of damaged tissue, make the synthesized membranes useful as scaffolds in tissue engineering regeneration, helping to accelerate the healing process.
Collapse
Affiliation(s)
- Anna Di Salle
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | | | - Anna Valentino
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani, 2, 28100 Novara, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- Correspondence: (G.G.); (A.C.)
| | - Elena Lamberti
- Nice Filler s.r.l., Via Loggia dei Pisani, 25, 80133 Naples, Italy; (E.L.); (V.V.)
| | - Vittoria Vittoria
- Nice Filler s.r.l., Via Loggia dei Pisani, 25, 80133 Naples, Italy; (E.L.); (V.V.)
| | - Anna Calarco
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
- Correspondence: (G.G.); (A.C.)
| | - Gianfranco Peluso
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
| |
Collapse
|
79
|
Singh A, Maqsood Z, Iqubal MK, Ali J, Baboota S. Compendium of Conventional and Targeted Drug Delivery Formulation Used for the Treatment and Management of the Wound Healing. Curr Drug Deliv 2021; 19:192-211. [PMID: 34315364 DOI: 10.2174/1567201818666210727165916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
Wound healing is a complex and dynamic phenomenon that involves the restoration of normal physiology and functioning of injured tissue. The process of wound healing is primarily regulated by various cytokines, inflammatory mediators, and growth factors at the molecular level. Any intervention in the normal wound healing process leads to further tissue damage, which in turn leads to delayed wound healing. Several natural, synthetic drugs and their combinations were used to restored and accelerate the wound healing process. However, the conventional delivery carriers were not much effective, and thus, nowadays, nanocarriers are gaining much popularity since they are playing a pivotal role in drug delivery. Since nanocarriers have their own applicability and benefits (enhance the bioavailability, site-specific targeting) so, they can accelerate wound healing more efficiently. This review briefly discussed about the various events that take place during the wound healing process with emphasis on various natural, synthetic, and combination drug therapy used for accelerating wound healing and the role of nanotechnology-based approaches in chronic wound healing.
Collapse
Affiliation(s)
- Ajay Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Zeba Maqsood
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
80
|
Saberian M, Seyedjafari E, Zargar SJ, Mahdavi FS, Sanaei‐rad P. Fabrication and characterization of
alginate/chitosan
hydrogel combined with
honey
and
aloe vera
for wound dressing applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.51398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science University of Tehran Tehran Iran
| | - Seyed Jalal Zargar
- Department of Cell and Molecular Biology, School of Biology, College of Science University of Tehran Tehran Iran
| | | | - Parisa Sanaei‐rad
- Department of Endodontics, School of Dentistry Arak University of Medical Sciences Arak Iran
| |
Collapse
|
81
|
Singh H, Purohit SD, Bhaskar R, Yadav I, Bhushan S, Gupta MK, Mishra NC. Curcumin in decellularized goat small intestine submucosa for wound healing and skin tissue engineering. J Biomed Mater Res B Appl Biomater 2021; 110:210-219. [PMID: 34254427 DOI: 10.1002/jbm.b.34903] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/26/2021] [Accepted: 06/27/2021] [Indexed: 12/25/2022]
Abstract
Biomaterials derived from extracellular matrices (ECMs) were extensively used for skin tissue engineering and wound healing. ECM is a complex network of biomolecules (e.g., proteins), which provide organizational support to cells for growth. Thus, ECM could be an ideal biomaterial for fabricating the scaffold. However, oxidative stress and biofilm formation at the wound site remains a major challenge that could be neutralized using herbal ingredients (e.g., curcumin). In this study, ECM was extracted from the biowaste of the goat abattoir by using decellularization. The goat small intestine submucosa (G-SIS) is decellularized to obtain the decellularized G-SIS (DG-SIS) and curcumin (in different concentrations) was incorporated in the DG-SIS to fabricate curcumin-embedded DG-SIS scaffolds. Changes brought by increasing the concentrations of the curcumin in DG-SIS were observed in various properties, including free radical scavenging and antibacterial properties. Results depicted that the scaffolds are porous, biodegradable, biocompatible, antibacterial, and hydrophilic and showed sustained release of curcumin. Besides, it showed free radicals scavenging property. The porosity and hydrophilicity of the scaffolds were decreased with an increase in the curcumin content. However, biodegradability, free radical scavenging, biocompatibility, and antibacterial properties of the scaffolds increased with an increase in the curcumin content. The DG-SIS scaffold containing 1 wt % of curcumin may be a potential biomaterial for wound-healing and skin tissue engineering.
Collapse
Affiliation(s)
- Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shiv Dutt Purohit
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Indu Yadav
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sakchi Bhushan
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
82
|
Zhang Z, Zhang X. Curcumin Loading on Alginate Nano-Micelle for Anti-Infection and Colonic Wound Healing. J Biomed Nanotechnol 2021; 17:1160-1169. [PMID: 34167629 DOI: 10.1166/jbn.2021.3089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite the antibacterial, and anti-inflammatory properties of curcumin (C), its effect on wound healing, especially in the colorectal, is ambiguous. Moreover, due to the hydrophobic properties of C, its use is limited. Therefore, to reduce the bioavailability challenge and improve the transfer to colon area, we designed a C-alginate-based nano-micelle (C-A-NM). After fabrication of C-A-NM (55.5 nm) and physicochemical studies with the TEM, DLS and XRD, the C release rate based on gastrointestinal state was evaluated. Furthermore, the effects of C-A-NM on the survival of HCT-8 cells at 24 and 48 hours by MTT method and its antibacterial effects were also evaluated. To explain the effects of wound healing in rats, in addition to colonoscopy on the 14th-day, the repaired tissue on the 7th and 14th days were examined by Hematoxylin and Eosin method. Also, for evaluating wound healing in the colon, the protein/collagen concentration, and TGFβ1/NFκB gene expression were determined. The results of C cumulative release showed that the NM allows the drug to be loaded in the colon in a favourable manner. Also, the toxicity outputs revealed that C-A-NM at a concentration of 7.5 mg had no negative effects on cell viability. While the activity of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, bacteria decreased based on the minimum inhibitory concentration value with 153, 245 and 319 (μg/mL). The use of C-A-NM not only increases protein and collagen in damaged sites, but also increases TGFβ1 expression in contrast to NFκB. Based on these results, and the results of histopathology and colonoscopy, it was found that C-A-NM accelerates the healing of damaged areas. Overall, the results show that the use of C-A-NM can significantly accelerate the healing of wounds in the gastrointestinal tract based on collagen induction and reduced bacterial activity.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xin Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
83
|
Fabrication of Hybrid Nanofibers from Biopolymers and Poly (Vinyl Alcohol)/Poly (ε-Caprolactone) for Wound Dressing Applications. Polymers (Basel) 2021; 13:polym13132104. [PMID: 34206747 PMCID: PMC8271691 DOI: 10.3390/polym13132104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.
Collapse
|
84
|
Alven S, Khwaza V, Oyedeji OO, Aderibigbe BA. Polymer-Based Scaffolds Loaded with Aloe vera Extract for the Treatment of Wounds. Pharmaceutics 2021; 13:961. [PMID: 34206744 PMCID: PMC8309095 DOI: 10.3390/pharmaceutics13070961] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
The treatment of wounds is one challenging biomedical field due to delayed wound healing common in chronic wounds. Several factors delay wound healing, including microbial infections, malnutrition, underlying physiological conditions, etc. Most of the currently used wound dressing materials suffer from poor antimicrobial properties, poor biodegradability and biocompatibility, and weak mechanical performance. Plant extracts, such as Aloe vera, have attracted significant attention in wound management because of their interesting biological properties. Aloe vera is composed of essential constituents beneficial for the wound healing process, such as amino acids, vitamins C and E, and zinc. Aloe vera influences numerous factors that are involved in wound healing and stimulates accelerated healing. This review reports the therapeutic outcomes of aloe vera extract-loaded polymer-based scaffolds in wound management.
Collapse
Affiliation(s)
| | | | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape, South Africa; (S.A.); (V.K.); (O.O.O.)
| |
Collapse
|
85
|
6-deoxy-aminocellulose derivatives embedded soft gelatin methacryloyl (GelMA) hydrogels for improved wound healing applications: In vitro and in vivo studies. Int J Biol Macromol 2021; 185:419-433. [PMID: 34166695 DOI: 10.1016/j.ijbiomac.2021.06.112] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
Hydrogels were prepared by mixing protein and carbohydrate-based biopolymers to increase the mechanical properties and efficient cell adhesion and proliferation for wound healing applications. Microcrystalline cellulose (MCC) and its 6-deoxy-aminocellulose derivatives (6-deoxy-6-hydrazide Cellulose (Cell-Hyd), 6-deoxy-6-diethylamide Cellulose (Cell-DEA), and 6-deoxy-6-diethyltriamide Cellulose (Cell-DETA)) were embedded in methacrylated gelatin (GelMA). GelMA and 6-deoxy-aminocellulose derivatives were synthesized and characterized by spectroscopic techniques. MCC and cellulose derivatives embedded GelMA gels were characterized by FTIR, SEM and Tensile mechanical testing. SEM images revealed that, porosity of the amine MCC incorporated GelMA was decreased compared to GelMA and MCC incorporated GelMA. Tensile strain of GelMA 61.30% at break was increased to 64.3% in case of GelMA/Cell-HYD. In vitro cytocompatibility and cell proliferation using NIH-3T3 cell lines showed cell density trend on scaffold as GelMA/Cell-DETA>GelMA/Cell-Hyd > GelMA. Scratch assay for wound healing revealed that GelMA/Cell-DETA showed complete wound closure, while GelMA/Cell-Hyd and GelMA exhibited 85.7%, and 66.1% wound healing, respectively in 8 h. In vivo tests on rats revealed that GelMA/Cell-DETA exhibited 98% wound closure on day 9, whereas GelMA/Cell-Hyd exhibited 97.7% and GelMA 66.1% wound healing on day 14. Our findings revealed that GelMA embedded amine MCC derivatives hydrogels can be applied for achieving accelerated wound healing.
Collapse
|
86
|
Wang YL, Zheng CM, Lee YH, Cheng YY, Lin YF, Chiu HW. Micro- and Nanosized Substances Cause Different Autophagy-Related Responses. Int J Mol Sci 2021; 22:4787. [PMID: 33946416 PMCID: PMC8124422 DOI: 10.3390/ijms22094787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
With rapid industrialization, humans produce an increasing number of products. The composition of these products is usually decomposed. However, some substances are not easily broken down and gradually become environmental pollutants. In addition, these substances may cause bioaccumulation, since the substances can be fragmented into micro- and nanoparticles. These particles or their interactions with other toxic matter circulate in humans via the food chain or air. Whether these micro- and nanoparticles interfere with extracellular vesicles (EVs) due to their similar sizes is unclear. Micro- and nanoparticles (MSs and NSs) induce several cell responses and are engulfed by cells depending on their size, for example, particulate matter with a diameter ≤2.5 μm (PM2.5). Autophagy is a mechanism by which pathogens are destroyed in cells. Some artificial materials are not easily decomposed in organisms. How do these cells or tissues respond? In addition, autophagy operates through two pathways (increasing cell death or cell survival) in tumorigenesis. Many MSs and NSs have been found that induce autophagy in various cells and tissues. As a result, this review focuses on how these particles interfere with cells and tissues. Here, we review MSs, NSs, and PM2.5, which result in different autophagy-related responses in various tissues or cells.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung 406040, Taiwan;
| | - Ya-Yun Cheng
- Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
87
|
Modifications of Wound Dressings with Bioactive Agents to Achieve Improved Pro-Healing Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094114] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The great variety of wounds and the lack of an effective universal treatment method has resulted in high demand for modern treatment strategies. Traditional approaches are often ineffective on a variety of chronic wounds, such as venous ulcers or the diabetic foot ulcer. There is strong evidence that naturally derived bioactive compounds have pro-healing properties, raising a great interest in their potential use for wound healing. Plant-derived compounds, such as curcumin and essential oils, are widely used to modify materials applied as wound dressings. Moreover, dressing materials are more often enriched with vitamins (e.g., L-ascorbic acid, tocopherol) and drugs (e.g., antibiotics, inhibitors of proteases) to improve the skin healing rate. Biomaterials loaded with the above-mentioned molecules show better biocompatibility and are basically characterized by better biological properties, ensuring faster tissue repair process. The main emphasis of the presented review is put on the novel findings concerning modern pro-healing wound dressings that have contributed to the development of regenerative medicine. The article briefly describes the synthesis and modifications of biomaterials with bioactive compounds (including curcumin, essential oils, vitamins) to improve their pro-healing properties. The paper also summarizes biological effects of the novel wound dressings on the enhancement of skin regeneration. The current review was prepared based on the scientific contributions in the PubMed database (supported with Google Scholar searching) over the past 5 years using relevant keywords. Scientific reports on the modification of biomaterials using curcumin, vitamins, and essential oils were mainly considered.
Collapse
|
88
|
Agarwal Y, Rajinikanth PS, Ranjan S, Tiwari U, Balasubramnaiam J, Pandey P, Arya DK, Anand S, Deepak P. Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: An in-vitro and in-vivo studies. Int J Biol Macromol 2021; 176:376-386. [PMID: 33561460 DOI: 10.1016/j.ijbiomac.2021.02.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 10/25/2022]
Abstract
Electrospinning is emerging as a versatile technique nanofibers fabrication because due to their unique properties such as large surface area to volume ratio, porosity and maintaining moist wound environment, the nanofibers are able to deliver sustained drug release and oxygen to the wound for rapid healing of diabetic wound. The present work was aimed to prepare and evaluate silk fibroin-curcumin based nanofiber in combination with polycaprolactone (PCL) and polyvinyl alcohol (PVA) which helped to strengthen the wound healing properties of nanofiber. Silk fibroin is a naturally occurring polymer was selected one polymer for making nanofibrous mat due to its unique properties such as biodegradability, permeability, oxygen supply and maintain moisture content in the wound. SEM results showed diameters of fibers varied in the range between 200 and 350 nm and their tensile strength ranged from 12.41 to 16.80 MP. The nanofibers were causing sustained release of curcumin for many hours. The in-vivo wound healing studies in streptozotocin-induced diabetic mice showed rapid wound healing efficacy as compared to conventional formulations. Furthermore, the histopathological studies evidenced its ability to restore the normal skin structure and histological conditions of tissues. The silk fibroin-based nanofiber wound dressing, therefore appears to be an ideal preparation, in combination with curcumin, because it blends the anti-oxidant, anti-inflammatory properties of curcumin. Therefore, it was concluded that the silk fibroin-based nanofiber loaded with curcumin has great healing potential in diabetic wound.
Collapse
Affiliation(s)
- Yashi Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| | - Shivendu Ranjan
- Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa.
| | | | - J Balasubramnaiam
- Research and Development Centre, Epion Labs Pvt Ltd., Hyderabad, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sneha Anand
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Payal Deepak
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
89
|
Sharma A, Puri V, Kumar P, Singh I. Rifampicin-Loaded Alginate-Gelatin Fibers Incorporated within Transdermal Films as a Fiber-in-Film System for Wound Healing Applications. MEMBRANES 2020; 11:membranes11010007. [PMID: 33374601 PMCID: PMC7822433 DOI: 10.3390/membranes11010007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/09/2023]
Abstract
The various biological and molecular cascades including different stages or phases such as inflammation, tissue proliferation, and remodeling phases, which significantly define the wound healing process. The natural matrix system is suggested to increase and sustain these cascades. Biocompatible biopolymers, sodium alginate and gelatin, and a drug (Rifampicin) were used for the preparation of fibers into a physical crosslinking solution using extrusion-gelation. The formed fibers were then loaded in transdermal films for wound healing applications. Rifampicin, an antibiotic, antibacterial agent was incorporated into fibers and afterwards the fibers were loaded into transdermal films. Initially, rifampicin fibers were developed using biopolymers including alginate and gelatin, and were further loaded into polymeric matrix which led to the formation of transdermal films. The transdermal films were coded as TF1, TF2, TF3 and TF4.The characterization technique, FTIR, was used to describe molecular transitions within fibers, transdermal films, and was further corroborated using SEM and XRD. In mechanical properties, the parameters, such as tensile strength and elongation-at-break (extensibility), were found to be ranged between 2.32 ± 0.45 N/mm2 to 14.32 ± 0.98 N/mm2 and 15.2% ± 0.98% to 30.54% ± 1.08%. The morphological analysis firmed the development of fibers and fiber-loaded transdermal films. Additionally, physical evaluation such as water uptake study, water transmission rate, swelling index, moisture content, and moisture uptake study were executed to describe comparative interpretation of the formulations developed. In vivo studies were executed using a full thickness cutaneous wound healing model, the transdermal films developed showed higher degree of contraction, i.e., 98.85% ± 4.04% as compared to marketed formulation (Povidone). The fiber-in-film is a promising delivery system for loading therapeutic agents for effective wound care management.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (A.S.); (V.P.)
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Vivek Puri
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (A.S.); (V.P.)
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic, Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa;
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (A.S.); (V.P.)
- Correspondence:
| |
Collapse
|