51
|
Sreena R, Nathanael AJ. Biodegradable Biopolymeric Nanoparticles for Biomedical Applications-Challenges and Future Outlook. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062364. [PMID: 36984244 PMCID: PMC10058375 DOI: 10.3390/ma16062364] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
Biopolymers are polymers obtained from either renewable or non-renewable sources and are the most suitable candidate for tailor-made nanoparticles owing to their biocompatibility, biodegradability, low toxicity and immunogenicity. Biopolymeric nanoparticles (BPn) can be classified as natural (polysaccharide and protein based) and synthetic on the basis of their origin. They have been gaining wide interest in biomedical applications such as tissue engineering, drug delivery, imaging and cancer therapy. BPn can be synthesized by various fabrication strategies such as emulsification, ionic gelation, nanoprecipitation, electrospray drying and so on. The main aim of the review is to understand the use of nanoparticles obtained from biodegradable biopolymers for various biomedical applications. There are very few reviews highlighting biopolymeric nanoparticles employed for medical applications; this review is an attempt to explore the possibilities of using these materials for various biomedical applications. This review highlights protein based (albumin, gelatin, collagen, silk fibroin); polysaccharide based (chitosan, starch, alginate, dextran) and synthetic (Poly lactic acid, Poly vinyl alcohol, Poly caprolactone) BPn that has recently been used in many applications. The fabrication strategies of different BPn are also being highlighted. The future perspective and the challenges faced in employing biopolymeric nanoparticles are also reviewed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
52
|
Yilmaz MT, İspirli H, Alidrisi H, Taylan O, Dertli E. Characterisation of dextran AP-27 produced by bee pollen isolate Lactobacillus kunkeei AP-27. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
53
|
Lu Y, Jia C, Niu M, Xu Y, Zhao S. The in-situ dextran produced in rice protein yogurt: Effect on viscosity and structural characteristics. Carbohydr Polym 2023; 311:120767. [PMID: 37028860 DOI: 10.1016/j.carbpol.2023.120767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Phase separation is one of the primary quality control issues for plant-based beverages during storage. This study applied the in-situ-produced dextran (DX) from Leuconostoc citreum DSM 5577 to solve this problem. Rice flour milled from broken rice was used as the raw material and Ln. citreum DSM 5577 as the starter to prepare rice-protein yogurt (RPY) under different processing conditions. The microbial growth, acidification, viscosity change, and DX content were first analyzed. Then, the proteolysis of rice protein was evaluated, and the role of the in-situ-synthesized DX in viscosity improvement was explored. Finally, the in-situ-synthesized DXs in RPYs under different processing conditions were purified and characterized. The in-situ-produced DX caused a viscosity increase up to 1.84 Pa s in RPY and played a major role in this improvement by forming a new network with high water-binding capacity. The processing conditions affected the content and the molecular features of DXs, with a DX content up to 9.45 mg/100 mg. A low-branched DX (5.79 %) with a high aggregating ability possessed a stronger thickening ability in RPY. This study may guide the application of the in-situ-synthesized DX in plant protein foods and may promote the utilization of broken rice in the food industry.
Collapse
Affiliation(s)
- Yu Lu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Caihua Jia
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Meng Niu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yan Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Siming Zhao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
54
|
Díaz-Cornejo S, Otero MC, Banerjee A, Gordillo-Fuenzalida F. Biological properties of exopolysaccharides produced by Bacillus spp. Microbiol Res 2023; 268:127276. [PMID: 36525789 DOI: 10.1016/j.micres.2022.127276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
There is currently a constant search for ecofriendly bioproducts, which could contribute to various biomedical applications. Among bioproducts, exopolysaccharides are prominent contemporary extracellular biopolymers that are produced by a great variety of bacterial species. These homo- or heteropolymers are composed of monomeric sugar units linked by glycosidic bonds, which are secreted to the external medium. Bacillus spp. are reported to be present in different ecosystems and produce exopolysaccharides with different biological properties such as antioxidant, antibacterial, antiviral anti-inflammatory, among others. Since a great diversity of bacterial strains are able to produce exopolysaccharides, a great variation in the molecular composition is observed, which is indeed present in some of the chemical structures predicted until date. These molecular characteristics and their relations with different biological functions are discussed in order to visualize future applications in biomedical section.
Collapse
Affiliation(s)
- Sofía Díaz-Cornejo
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel, 3605 Talca, Chile
| | - María Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago, Chile
| | - Aparna Banerjee
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca 3466706, Chile
| | - Felipe Gordillo-Fuenzalida
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel, 3605 Talca, Chile.
| |
Collapse
|
55
|
Luanda A, Badalamoole V. Past, present and future of biomedical applications of dextran-based hydrogels: A review. Int J Biol Macromol 2023; 228:794-807. [PMID: 36535351 DOI: 10.1016/j.ijbiomac.2022.12.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
This review extensively surveys the biomedical applications of hydrogels containing dextran. Dextran has gained much attention as a biomaterial due to its distinctive properties such as biocompatibility, non-toxicity, water solubility and biodegradability. It has emerged as a critical constituent of hydrogels for biomedical applications including drug delivery devices, tissue engineering scaffolds and biosensor materials. The benefits, challenges and potential prospects of dextran-based hydrogels as biomaterials are highlighted in this review.
Collapse
Affiliation(s)
- Amos Luanda
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India; Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - Vishalakshi Badalamoole
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India.
| |
Collapse
|
56
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Sustainable Biodegradable Biopolymer-Based Nanoparticles for Healthcare Applications. Int J Mol Sci 2023; 24:3188. [PMID: 36834596 PMCID: PMC9964453 DOI: 10.3390/ijms24043188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Biopolymeric nanoparticles are gaining importance as nanocarriers for various biomedical applications, enabling long-term and controlled release at the target site. Since they are promising delivery systems for various therapeutic agents and offer advantageous properties such as biodegradability, biocompatibility, non-toxicity, and stability compared to various toxic metal nanoparticles, we decided to provide an overview on this topic. Therefore, the review focuses on the use of biopolymeric nanoparticles of animal, plant, algal, fungal, and bacterial origin as a sustainable material for potential use as drug delivery systems. A particular focus is on the encapsulation of many different therapeutic agents categorized as bioactive compounds, drugs, antibiotics, and other antimicrobial agents, extracts, and essential oils into protein- and polysaccharide-based nanocarriers. These show promising benefits for human health, especially for successful antimicrobial and anticancer activity. The review article, divided into protein-based and polysaccharide-based biopolymeric nanoparticles and further according to the origin of the biopolymer, enables the reader to select the appropriate biopolymeric nanoparticles more easily for the incorporation of the desired component. The latest research results from the last five years in the field of the successful production of biopolymeric nanoparticles loaded with various therapeutic agents for healthcare applications are included in this review.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
57
|
Wang B, Sun X, Xu M, Wang F, Liu W, Wu B. Structural characterization and partial properties of dextran produced by Leuconostoc mesenteroides RSG7 from pepino. Front Microbiol 2023; 14:1108120. [PMID: 36819025 PMCID: PMC9933128 DOI: 10.3389/fmicb.2023.1108120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Exopolysaccharides (EPSs) produced by lactic acid bacteria possess various bioactivities and potential attractions for scientific exploration and commercial development. An EPS-producing bacterial strain, RSG7, was previously isolated from the pepino and identified as Leuconostoc mesenteroides. Based on the analyses of high-performance size exclusion chromatography, high-performance ion chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and methylation, the RSG7 EPS was identified as a dextran with a molecular weight of 5.47 × 106 Da and consisted of α-(1→6) glycosidic linkages as backbone and α-(1→2), α-(1→3), α-(1→4), and α-(1→6) glycosidic linkages as side chains. Scanning electron microscopy observed a honeycomb-like porous structure of RSG7 dextran, and this dextran formed aggregations with irregular hill-shaped lumps according to atomic force microscopy analysis. Physical-chemical investigations suggested that RSG7 dextran possessed excellent viscosity at high concentration, low temperature, and high pH; showed a superior emulsifying capacity of tested vegetable oils than that of hydrocarbons; and owned the maximal flocculating activity (10.74 ± 0.23) and flocculating rate (93.46 ± 0.07%) in the suspended solid of activated carbon. In addition, the dextran could coagulate sucrose-supplemented milk and implied potential probiotics in vitro. Together, these results collectively describe a valuable dextran with unique characteristics for exploitation in food applications.
Collapse
Affiliation(s)
- Binbin Wang
- School of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Xiaoling Sun
- School of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Fengyi Wang
- School of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Weizhong Liu
- School of Life Sciences, Shanxi Normal University, Taiyuan, China,Weizhong Liu,
| | - Baomei Wu
- School of Life Sciences, Shanxi Normal University, Taiyuan, China,*Correspondence: Baomei Wu,
| |
Collapse
|
58
|
Recent progress in polymeric biomaterials and their potential applications in skin regeneration and wound care management. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
59
|
Wei Z, Chen J, Xu L, Liu N, Yang J, Wang S. Improving the thermostability of GH49 dextranase AoDex by site-directed mutagenesis. AMB Express 2023; 13:7. [PMID: 36656394 PMCID: PMC9852402 DOI: 10.1186/s13568-023-01513-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023] Open
Abstract
As an indispensable enzyme for the hydrolysis of dextran, dextranase has been widely used in the fields of food and medicine. It should be noted that the weak thermostability of dextranase has become a restricted factor for industrial applications. This study aims to improve the thermostability of dextranase AoDex in glycoside hydrolase (GH) family 49 that derived from Arthrobacter oxydans KQ11. Some mutants were predicted and constructed based on B-factor analysis, PoPMuSiC and HotMuSiC algorithms, and four mutants exhibited higher heat resistance. Compared with the wild-type, mutant S357P showed the best improved thermostability with a 5.4-fold increase of half-life at 60 °C, and a 2.1-fold increase of half-life at 65 °C. Furthermore, S357V displayed the most obvious increase in enzymatic activity and thermostability simultaneously. Structural modeling analysis indicated that the improved thermostability of mutants might be attributed to the introduction of proline and hydrophobic effects, which generated the rigid optimization of the structural conformation. These results illustrated that it was effective to improve the thermostability of dextranase AoDex by rational design and site-directed mutagenesis. The thermostable mutant of dextranase AoDex has potential application value, and it can also provide references for engineering other thermostable dextranases of the GH49 family.
Collapse
Affiliation(s)
- Zhen Wei
- grid.443480.f0000 0004 1800 0658Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005 China ,grid.443480.f0000 0004 1800 0658Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, 222005 China
| | - Jinling Chen
- grid.443480.f0000 0004 1800 0658School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, 222005 China
| | - Linxiang Xu
- grid.443480.f0000 0004 1800 0658Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005 China ,grid.443480.f0000 0004 1800 0658Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, 222005 China
| | - Nannan Liu
- grid.443480.f0000 0004 1800 0658Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005 China ,grid.443480.f0000 0004 1800 0658Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, 222005 China
| | - Jie Yang
- grid.443480.f0000 0004 1800 0658Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005 China ,grid.443480.f0000 0004 1800 0658School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, 222005 China
| | - Shujun Wang
- grid.443480.f0000 0004 1800 0658Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005 China ,grid.443480.f0000 0004 1800 0658School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, 222005 China
| |
Collapse
|
60
|
Huang MY, Lo CY, Lai CY, Yu JD, Lee PT. Dietary supplementation of synbiotic Leuconostoc mesenteroide B4 and dextran improves immune regulation and disease resistance of Penaeus vannamei against Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108498. [PMID: 36539168 DOI: 10.1016/j.fsi.2022.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
White shrimp (Penaeus vannamei) is an important culture species in Taiwan but often encounters disease infection by Vibrio parahaemolyticus that cause acute hepatopancreatic necrosis disease (AHPND). This study investigates the effects of dietary supplementation of Leuconostoc mesenteroide B4 and its fermentate (dextran) on the immune response, intestinal morphology, disease resistance, and immune-related gene expression in white shrimp. In comparison to the control group, the shrimp fed with a diet containing B4+dextran (107 CFU B4/g feed and 0.05% dextran) for 14, 28, 42 and 56 days had a significantly higher feed efficiency, weight gain and specific growth rate. A significantly higher villus height in the intestine and higher survival rate after challenging with V. parahaemolyticus was recorded for the B4+dextran group. Flow cytometry analysis demonstrated that the group that had ingested B4+dextran had a higher total hemocyte count and a higher proportion of semi-granulocytes, but a lower percentage of granulocytes compared to the control group. The shotgun metagenomic results in the midgut revealed that Leuco. mesenteroides was barely found in the midgut of the shrimp, suggesting that this microbe and its transient presence in the midgut is not the direct mechanism underlying the improved shrimp growth in the treated sample. Instead, dextran, a key ingredient in the B4 fermentate, on the dynamic of the microbial populations in shrimp, possibly promoting the diversity of gut microbes, especially the beneficial microbes, and thereby rendering protection against AHPND. In terms of comparing the gene expression between the control and synbiotic groups, pre- and post-bacterial challenge, a higher expression level of immune genes was mostly found in the B4+dextran group after challenging it with V. parahaemolyticus (group B4+dextran-VP) in the hepatopancreas and hemocyte. In contrast, the transcript level of immune-related genes was found to be higher in the B4+dextran group than other combinations in the midgut. Taken together, this study found that dietary addition of synbiotic Leuco. mesenteroides B4 and dextran can improve the growth performance, intestinal morphology and microbiome, regulation of immune genes and disease resistance against V. parahaemolyticus infection in white shrimp.
Collapse
Affiliation(s)
- Mei-Ying Huang
- Aquaculture Division, Fisheries Research Institute, Council of Agriculture, Taiwan
| | - Chia-Yi Lo
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
61
|
Tudu M, Samanta A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
62
|
Dextrans and dextran derivatives as polyelectrolytes in layer-by-layer processing materials – A review. Carbohydr Polym 2022; 293:119700. [DOI: 10.1016/j.carbpol.2022.119700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
|
63
|
Le HV, Dulong V, Picton L, Le Cerf D. Thermoresponsive nanogels based on polyelectrolyte complexes between polycations and functionalized hyaluronic acid. Carbohydr Polym 2022; 292:119711. [PMID: 35725187 DOI: 10.1016/j.carbpol.2022.119711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
Abstract
A novel kind of thermoresponsive polyelectrolyte complex-based nanogels (PEC-NGs) was elaborated by mixing hyaluronic acid (HA) functionalized with Jeffamine® M-2005 (M2005, a thermoresponsive amine-terminated polyether) and diethylaminoethyl dextran (DEAE-D) or poly-l-lysine (PLL) in water. The presence of M2005 grafts led to PEC-NGs with larger particle size, lower net surface charge and thermoresponsiveness, namely shrinkage with increasing hydrophobicity at higher temperature. Both M2005 grafts and replacing DEAE-D with PLL as polycation allowed PEC-NGs to have higher stability against salinity and better encapsulation of curcumin, most probably through intraparticle hydrophobic interactions, whereas interparticle hydrophobic interactions may facilitate particle aggregation over time. Curcumin encapsulation can be optimized by applying higher temperature during the complexation. Enzymatic degradability of PEC-NGs was also verified through particle size evolution in the presence of hyaluronidase. These results provide new insights into the physicochemical aspect of such systems as promising nanocarriers for drug delivery.
Collapse
Affiliation(s)
- Huu Van Le
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 76000 Rouen, France
| | - Virginie Dulong
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 76000 Rouen, France
| | - Luc Picton
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 76000 Rouen, France
| | - Didier Le Cerf
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 76000 Rouen, France.
| |
Collapse
|
64
|
Polysaccharide Based Implantable Drug Delivery: Development Strategies, Regulatory Requirements, and Future Perspectives. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Implantable drug delivery systems advocate a wide array of potential benefits, including effective administration of drugs at lower concentrations and fewer side-effects whilst increasing patient compliance. Amongst several polymers used for fabricating implants, biopolymers such as polysaccharides are known for modulating drug delivery attributes as desired. The review describes the strategies employed for the development of polysaccharide-based implants. A comprehensive understanding of several polysaccharide polymers such as starch, cellulose, alginate, chitosan, pullulan, carrageenan, dextran, hyaluronic acid, agar, pectin, gellan gum is presented. Moreover, biomedical applications of these polysaccharide-based implantable devices along with the recent advancements carried out in the development of these systems have been mentioned. Implants for the oral cavity, nasal cavity, bone, ocular use, and antiviral therapy have been discussed in detail. The regulatory considerations with respect to implantable drug delivery has also been emphasized in the present work. This article aims to provide insights into the developmental strategies for polysaccharide-based implants.
Collapse
|
65
|
Sprotte S, Rasmussen TS, Cho GS, Brinks E, Lametsch R, Neve H, Vogensen FK, Nielsen DS, Franz CMAP. Morphological and Genetic Characterization of Eggerthella lenta Bacteriophage PMBT5. Viruses 2022; 14:1598. [PMID: 35893664 PMCID: PMC9394477 DOI: 10.3390/v14081598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Eggerthella lenta is a common member of the human gut microbiome. We here describe the isolation and characterization of a putative virulent bacteriophage having E. lenta as host. The double-layer agar method for isolating phages was adapted to anaerobic conditions for isolating bacteriophage PMBT5 from sewage on a strictly anaerobic E. lenta strain of intestinal origin. For this, anaerobically grown E. lenta cells were concentrated by centrifugation and used for a 24 h phage enrichment step. Subsequently, this suspension was added to anaerobically prepared top (soft) agar in Hungate tubes and further used in the double-layer agar method. Based on morphological characteristics observed by transmission electron microscopy, phage PMBT5 could be assigned to the Siphoviridae phage family. It showed an isometric head with a flexible, noncontractile tail and a distinct single 45 nm tail fiber under the baseplate. Genome sequencing and assembly resulted in one contig of 30,930 bp and a mol% GC content of 51.3, consisting of 44 predicted protein-encoding genes. Phage-related proteins could be largely identified based on their amino acid sequence, and a comparison with metagenomes in the human virome database showed that the phage genome exhibits similarity to two distantly related phages.
Collapse
Affiliation(s)
- Sabrina Sprotte
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - Torben S. Rasmussen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - Erik Brinks
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - Finn K. Vogensen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Charles M. A. P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| |
Collapse
|
66
|
Priya S, Batra U, R N S, Sharma S, Chaurasiya A, Singhvi G. Polysaccharide-based nanofibers for pharmaceutical and biomedical applications: A review. Int J Biol Macromol 2022; 218:209-224. [PMID: 35872310 DOI: 10.1016/j.ijbiomac.2022.07.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 01/22/2023]
Abstract
Nanofibers are fibrous nanocarriers that can be synthesized from natural polymers, synthetic polymers, semiconducting materials, composite materials, and carbon-based materials. Recently, natural polysaccharides-based nanofibers are gaining attention in the field of pharmaceuticals and biomedical as these are biocompatible, biodegradable, non-toxic, and economic. Nanofibers can deliver a significant amount of drug to the targeted site and provide effective interaction of therapeutic agent at the site of action due to a larger surface area. Other important advantages of nanofibers are low density, high porosity, small pore size, high mechanical strength, and low cost. In this review, natural polysaccharides such as alginate, pullulan, hyaluronic acid, dextran, cellulose, chondroitin sulfate, chitosan, xanthan gum, and gellan gum are discussed for their characteristics, pharmaceutical utility, and biomedical applications. The authors have given particular emphasis to the several fabrication processes that utilize these polysaccharides to form nanofibers, and their recent updates in pharmaceutical applications such as drug delivery, tissue engineering, skin disorders, wound-healing dressings, cancer therapy, bioactive molecules delivery, anti-infectives, and solubility enhancement. Despite these many advantages, nanofibers have been explored less for their scale-up and applications in advanced therapeutic delivery.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Unnati Batra
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Samshritha R N
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sudhanshu Sharma
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Akash Chaurasiya
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Hyderabad Campus, Telangana 500078, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
67
|
Stable Dried Catalase Particles Prepared by Electrospraying. NANOMATERIALS 2022; 12:nano12142484. [PMID: 35889708 PMCID: PMC9322511 DOI: 10.3390/nano12142484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
Therapeutic proteins and peptides are clinically important, offering potency while reducing the potential for off-target effects. Research interest in developing therapeutic polypeptides has grown significantly during the last four decades. However, despite the growing research effort, maintaining the stability of polypeptides throughout their life cycle remains a challenge. Electrohydrodynamic (EHD) techniques have been widely explored for encapsulation and delivery of many biopharmaceuticals. In this work, we explored monoaxial electrospraying for encapsulation of bovine liver catalase, investigating the effects of the different components of the electrospraying solution on the integrity and bioactivity of the enzyme. The catalase was successfully encapsulated within polymeric particles made of polyvinylpyrrolidone (PVP), dextran, and polysucrose. The polysorbate 20 content within the electrospraying solution (50 mM citrate buffer, pH 5.4) affected the catalase loading—increasing the polysorbate 20 concentration to 500 μg/mL resulted in full protein encapsulation but did not prevent loss in activity. The addition of ethanol (20% v/v) to a fully aqueous solution improves the electrospraying process by reducing surface tension, without loss of catalase activity. The polymer type was shown to have the greatest impact on preserving catalase activity within the electrosprayed particles. When PVP was the carrier there was no loss in activity compared with fresh aqueous solutions of catalase. The optimum particles were obtained from a 20% w/v PVP or 30% w/v PVP-trehalose (1:1 w/w) solution. The addition of trehalose confers stability advantages to the catalase particles. When trehalose-PVP particles were stored at 5 °C, enzymatic activity was maintained over 3 months, whereas for the PVP-only analogue a 50% reduction in activity was seen. This demonstrates that processing catalase by monoaxial electrospraying can, under optimised conditions, result in stable polymeric particles with no loss of activity.
Collapse
|
68
|
|
69
|
Polysaccharides: Sources, Characteristics, Properties, and Their Application in Biodegradable Films. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biodegradable films emerge as alternative biomaterials to conventional packaging from fossil sources, which, in addition to offering protection and increasing the shelf life of food products, are ecologically sustainable. The materials mostly used in their formulation are based on natural polysaccharides, plasticizing agents, and bioactive components (e.g., antimicrobial agents or antioxidants). The formulation of biodegradable films from polysaccharides and various plasticizers represents an alternative for primary packaging that can be assigned to specific food products, which opens the possibility of having multiple options of biodegradable films for the same product. This review describes the main characteristics of the most abundant polysaccharides in nature and highlights their role in the formulation of biodegradable films. The compilation and discussion emphasize studies that report on the mechanical and barrier properties of biodegradable films when made from pure polysaccharides and when mixed with other polysaccharides and plasticizing agents.
Collapse
|
70
|
Teixeira MC, Lameirinhas NS, Carvalho JPF, Silvestre AJD, Vilela C, Freire CSR. A Guide to Polysaccharide-Based Hydrogel Bioinks for 3D Bioprinting Applications. Int J Mol Sci 2022; 23:6564. [PMID: 35743006 PMCID: PMC9223682 DOI: 10.3390/ijms23126564] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional (3D) bioprinting is an innovative technology in the biomedical field, allowing the fabrication of living constructs through an approach of layer-by-layer deposition of cell-laden inks, the so-called bioinks. An ideal bioink should possess proper mechanical, rheological, chemical, and biological characteristics to ensure high cell viability and the production of tissue constructs with dimensional stability and shape fidelity. Among the several types of bioinks, hydrogels are extremely appealing as they have many similarities with the extracellular matrix, providing a highly hydrated environment for cell proliferation and tunability in terms of mechanical and rheological properties. Hydrogels derived from natural polymers, and polysaccharides, in particular, are an excellent platform to mimic the extracellular matrix, given their low cytotoxicity, high hydrophilicity, and diversity of structures. In fact, polysaccharide-based hydrogels are trendy materials for 3D bioprinting since they are abundant and combine adequate physicochemical and biomimetic features for the development of novel bioinks. Thus, this review portrays the most relevant advances in polysaccharide-based hydrogel bioinks for 3D bioprinting, focusing on the last five years, with emphasis on their properties, advantages, and limitations, considering polysaccharide families classified according to their source, namely from seaweed, higher plants, microbial, and animal (particularly crustaceans) origin.
Collapse
Affiliation(s)
| | | | | | | | | | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.T.); (N.S.L.); (J.P.F.C.); (A.J.D.S.); (C.V.)
| |
Collapse
|
71
|
Amini N, Milan PB, Sarmadi VH, Derakhshanmehr B, Hivechi A, Khodaei F, Hamidi M, Ashraf S, Larijani G, Rezapour A. Microorganism-derived biological macromolecules for tissue engineering. Front Med 2022; 16:358-377. [PMID: 35687278 DOI: 10.1007/s11684-021-0903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 11/04/2022]
Abstract
According to literature, certain microorganism productions mediate biological effects. However, their beneficial characteristics remain unclear. Nowadays, scientists concentrate on obtaining natural materials from live creatures as new sources to produce innovative smart biomaterials for increasing tissue reconstruction in tissue engineering and regenerative medicine. The present review aims to introduce microorganism-derived biological macromolecules, such as pullulan, alginate, dextran, curdlan, and hyaluronic acid, and their available sources for tissue engineering. Growing evidence indicates that these materials can be used as biological material in scaffolds to enhance regeneration in damaged tissues and contribute to cosmetic and dermatological applications. These natural-based materials are attractive in pharmaceutical, regenerative medicine, and biomedical applications. This study provides a detailed overview of natural-based biomaterials, their chemical and physical properties, and new directions for future research and therapeutic applications.
Collapse
Affiliation(s)
- Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran.,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran. .,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran. .,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran.,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Bahareh Derakhshanmehr
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ahmad Hivechi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran.,Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fateme Khodaei
- Burn Research Center, Department of Plastic and Reconstructive Surgery, Iran University of Medical Sciences, Tehran, 1591639675, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, 4477166595, Iran
| | - Sara Ashraf
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Alireza Rezapour
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, 3715835155, Iran. .,Department of Tissue Engineering and Regenerative Medicine, School of Medicine, Qom University of Medical Sciences, Qom, 3715835155, Iran.
| |
Collapse
|
72
|
Hussein SAM, Kareem RA, Al-Dahbi AMH, Birhan M. Investigation of the Role of Leuconostoc mesenteroides subsp. cremoris in Periodontitis around Abutments of Fixed Prostheses. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8790096. [PMID: 35647195 PMCID: PMC9142281 DOI: 10.1155/2022/8790096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022]
Abstract
This study included the role of Leuconostoc mesenteroides subsp. cremoris in oral diseases such as periodontitis. Material and Method. Isolation and identification of Leuconostoc mesenteroides subsp. cremoris from a saliva sample of twenty patients wearing fixed dental prostheses suffering from periodontitis followed by estimating susceptibility generally to the most common antibiotics and specifically to chlorhexidine (CHX) to determine the MIC of CHX and also screening of the strength of biofilm production under aerobic and anaerobic conditions; here, the study included six groups: Group I: screening of biofilm formation under aerobic condition, Group II: screening the MIC of CHX effect on biofilm formation under aerobic condition, Group III: screening of the MIC of CHX effect on preformed biofilm under aerobic condition, Group IV: screening of biofilm formation under anaerobic condition, Group V: screening of MIC of CHX effect on biofilm formation under anaerobic condition, and Group VI: screening of MIC of CHX effect on preformed biofilm under anaerobic condition. Results. The results showed that about 5 (25%) isolates were identified as L. mesenteroides subsp. cremoris, while 75% are other isolates. Furthermore, susceptibility results to antibiotic showed the sensitivity to penicillin (100%), azithromycin (100%), ciprofloxacin (100%), tetracycline (100%), gentamicin (100%), doxycycline (100%), vancomycin (100%), ofloxacin (60%), chloramphenicol (80%), ampicillin (80%), and cefoxitin (60%). On the other side, the biofilm production assays revealed that all isolates were moderate biofilm former under the aerobic and anaerobic conditions but for the biofilm treated with MIC of CHX, the current study noticed that the strength of the biofilm became weaker in aerobic and anaerobic conditions; regardless, the strength of the biofilm under anaerobic conditions was higher than in that under aerobic conditions, with no significant differences at p ≤ 0.05 depending on the statistical analysis (T-test) before and after the treatment with MIC of CHX in aerobic and anaerobic conditions. Conclusions. The presence of mesenteroides subsp. cremoris in the oral cavity is due to eating foods and vegetables; based on the strength of the biofilm and sensitivity tests, the isolates have less pathogenicity in the oral cavity due to the weakness of the biofilm production and the lack of resistance to antibiotics.
Collapse
Affiliation(s)
| | - Rehab Aamer Kareem
- Department of Prosthodontics, College of Dentistry, University of Dijlah, Iraq
| | | | - Mequanint Birhan
- Department of Mechanical Engineering, Mizan-Tepi University, Ethiopia
| |
Collapse
|
73
|
Di X, Liang X, Shen C, Pei Y, Wu B, He Z. Carbohydrates Used in Polymeric Systems for Drug Delivery: From Structures to Applications. Pharmaceutics 2022; 14:739. [PMID: 35456573 PMCID: PMC9025897 DOI: 10.3390/pharmaceutics14040739] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 01/17/2023] Open
Abstract
Carbohydrates, one of the most important compounds in living organisms, perform numerous roles, including those associated with the extracellular matrix, energy-related compounds, and information. Of these, polymeric carbohydrates are a class of substance with a long history in drug delivery that have attracted more attention in recent years. Because polymeric carbohydrates have the advantages of nontoxicity, biocompatibility, and biodegradability, they can be used in drug targeting, sustained drug release, immune antigens and adjuvants. In this review, various carbohydrate-based or carbohydrate-modified drug delivery systems and their applications in disease therapy have been surveyed. Specifically, this review focuses on the fundamental understanding of carbohydrate-based drug delivery systems, strategies for application, and the evaluation of biological activity. Future perspectives, including opportunities and challenges in this field, are also discussed.
Collapse
Affiliation(s)
- Xiangjie Di
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Liang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Chao Shen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
| | - Yuwen Pei
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
| | - Bin Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
74
|
Islam MS, Sharif A, Kwan N, Tam KC. Bile Acid Sequestrants for Hypercholesterolemia Treatment Using Sustainable Biopolymers: Recent Advances and Future Perspectives. Mol Pharm 2022; 19:1248-1272. [PMID: 35333534 DOI: 10.1021/acs.molpharmaceut.2c00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bile acids, the endogenous steroid nucleus containing signaling molecules, are responsible for the regulation of multiple metabolic processes, including lipoprotein and glucose metabolism to maintain homeostasis. Within our body, they are directly produced from their immediate precursors, cholesterol C (low-density lipoprotein C, LDL-C), through the enzymatic catabolic process mediated by 7-α-hydroxylase (CYP7A1). Bile acid sequestrants (BASs) or amphiphilic resins that are nonabsorbable to the human body (being complex high molecular weight polymers/electrolytes) are one of the classes of drugs used to treat hypercholesterolemia (a high plasma cholesterol level) or dyslipidemia (lipid abnormalities in the body); thus, they have been used clinically for more than 50 years with strong safety profiles as demonstrated by the Lipid Research Council-Cardiovascular Primary Prevention Trial (LRC-CPPT). They reduce plasma LDL-C and can slightly increase high-density lipoprotein C (HDL-C) levels, whereas many of the recent clinical studies have demonstrated that they can reduce glucose levels in patients with type 2 diabetes mellitus (T2DM). However, due to higher daily dosage requirements, lower efficacy in LDL-C reduction, and concomitant drug malabsorption, research to develop an "ideal" BAS from sustainable or natural sources with better LDL-C lowering efficacy and glucose regulations and lower side effects is being pursued. This Review discusses some recent developments and their corresponding efficacies as bile removal or LDL-C reduction of natural biopolymer (polysaccharide)-based compounds.
Collapse
Affiliation(s)
- Muhammad Shahidul Islam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Anjiya Sharif
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Nathania Kwan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Kam C Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
75
|
Yilmaz MT, İspirli H, Taylan O, Bilgrami AL, Dertli E. Structural and bioactive characteristics of a dextran produced by Lactobacillus kunkeei AK1. Int J Biol Macromol 2022; 200:293-302. [PMID: 35016972 DOI: 10.1016/j.ijbiomac.2022.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 11/05/2022]
Abstract
In this study, structural and techno-functional characteristics of an exopolysaccharide (EPS) produced by Lactobacillus kunkeei AK1 were determined. High-performance liquid chromatography (HPLC) analysis demonstrated that EPS AK1 was composed of only glucose units. 1H and 13C Nuclear magnetic resonance (NMR) analysis revealed that EPS AK1 was a dextran type EPS containing 4.78% (1 → 4)-linked α-d-glucose branches. The molecular weight of EPS AK1 was determined to be 45 kDa by Gel Permeation Chromatography (GPC) analysis. A high level of thermal stability up to 280 °C was determined for dextran AK1 detected by Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). Dextran AK1 appeared as regular spheres with compact morphology and as irregular particles in the solution with no clear cross-linking between the chains of the polysaccharide observed by Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) analysis, respectively. X-ray diffraction analysis (XRD) analysis demonstrated that dextran AK1 had a crystalline structure. A relatively strong antioxidant activity was observed for dextran AK1 determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging and cupric reducing antioxidant capacity (CUPRAC) tests. Finally, only a digestion ratio of 3.1% was observed for dextran AK1 following the in vitro simulated gastric digestion test.
Collapse
Affiliation(s)
- Mustafa Tahsin Yilmaz
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hümeyra İspirli
- Central Research Laboratory, Bayburt University, Bayburt, Turkey.
| | - Osman Taylan
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar L Bilgrami
- Faculty of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul, Turkey
| |
Collapse
|
76
|
Yadav N, Francis AP, Priya VV, Patil S, Mustaq S, Khan SS, Alzahrani KJ, Banjer HJ, Mohan SK, Mony U, Rajagopalan R. Polysaccharide-Drug Conjugates: A Tool for Enhanced Cancer Therapy. Polymers (Basel) 2022; 14:polym14050950. [PMID: 35267773 PMCID: PMC8912870 DOI: 10.3390/polym14050950] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most widespread deadly diseases, following cardiovascular disease, worldwide. Chemotherapy is widely used in combination with surgery, hormone and radiation therapy to treat various cancers. However, chemotherapeutic drugs can cause severe side effects due to non-specific targeting, poor bioavailability, low therapeutic indices, and high dose requirements. Several drug carriers successfully overcome these issues and deliver drugs to the desired sites, reducing the side effects. Among various drug delivery systems, polysaccharide-based carriers that target only the cancer cells have been developed to overcome the toxicity of chemotherapeutics. Polysaccharides are non-toxic, biodegradable, hydrophilic biopolymers that can be easily modified chemically to improve the bioavailability and stability for delivering therapeutics into cancer tissues. Different polysaccharides, such as chitosan, alginates, cyclodextrin, pullulan, hyaluronic acid, dextran, guar gum, pectin, and cellulose, have been used in anti-cancer drug delivery systems. This review highlights the recent progress made in polysaccharides-based drug carriers in anti-cancer therapy.
Collapse
Affiliation(s)
- Neena Yadav
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (N.Y.); (A.P.F.)
| | - Arul Prakash Francis
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (N.Y.); (A.P.F.)
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Institute of Medical & Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India; (V.V.P.); (U.M.)
| | - Veeraraghavan Vishnu Priya
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Institute of Medical & Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India; (V.V.P.); (U.M.)
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (S.P.); (S.S.K.)
| | - Shazia Mustaq
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sameer Saeed Khan
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (S.P.); (S.S.K.)
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia; (K.J.A.); (H.J.B.)
| | - Hamsa Jameel Banjer
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia; (K.J.A.); (H.J.B.)
| | - Surapaneni Krishna Mohan
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills & Research Institute & Simulation, Panimalar Medical College Hospital, Varadharajapuram, Poonamallee, Chennai 600123, India;
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Institute of Medical & Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India; (V.V.P.); (U.M.)
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (N.Y.); (A.P.F.)
- Correspondence: ; Tel.: +91-(96)-7784-7337
| |
Collapse
|
77
|
Zhao Y, Jalili S. Dextran, as a biological macromolecule for the development of bioactive wound dressing materials: A review of recent progress and future perspectives. Int J Biol Macromol 2022; 207:666-682. [PMID: 35218804 DOI: 10.1016/j.ijbiomac.2022.02.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
Skin is the largest organ in the body which plays different roles in maintaining hemostasis. Although this tissue has a high healing potential, severe skin wounds cannot heal without external interventions. Among various treatment strategies, tissue-engineered wound dressings have gained significant attention. In this regard, tremendous progress has been made in the field of tissue engineering to develop constructs with higher healing activities. Material selection and optimization are key factors in development of such dressings. Among different candidates, dextran-based wound dressings have been extensively studied. Dextran is a branched biological macromolecule which is composed of anhydroglucose monomers. Due to its excellent biocompatibility, biodegradability, non-toxicity, modifiable functional groups, and proven clinical safety, dextran has found application in wound healing research. In the current review, applications, challenges, and future perspectives of dextran-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Yunfeng Zhao
- Analysis and Testing Center, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China.
| | - Saman Jalili
- Department of Biomaterials Science and Technology, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
78
|
Allyn MM, Luo RH, Hellwarth EB, Swindle-Reilly KE. Considerations for Polymers Used in Ocular Drug Delivery. Front Med (Lausanne) 2022; 8:787644. [PMID: 35155469 PMCID: PMC8831705 DOI: 10.3389/fmed.2021.787644] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Age-related eye diseases are becoming more prevalent. A notable increase has been seen in the most common causes including glaucoma, age-related macular degeneration (AMD), and cataract. Current clinical treatments vary from tissue replacement with polymers to topical eye drops and intravitreal injections. Research and development efforts have increased using polymers for sustained release to the eye to overcome treatment challenges, showing promise in improving drug release and delivery, patient experience, and treatment compliance. Polymers provide unique properties that allow for specific engineered devices to provide improved treatment options. Recent work has shown the utilization of synthetic and biopolymer derived biomaterials in various forms, with this review containing a focus on polymers Food and Drug Administration (FDA) approved for ocular use. METHODS This provides an overview of some prevalent synthetic polymers and biopolymers used in ocular delivery and their benefits, brief discussion of the various types and synthesis methods used, and administration techniques. Polymers approved by the FDA for different applications in the eye are listed and compared to new polymers being explored in the literature. This article summarizes research findings using polymers for ocular drug delivery from various stages: laboratory, preclinical studies, clinical trials, and currently approved. This review also focuses on some of the challenges to bringing these new innovations to the clinic, including limited selection of approved polymers. RESULTS Polymers help improve drug delivery by increasing solubility, controlling pharmacokinetics, and extending release. Several polymer classes including synthetic, biopolymer, and combinations were discussed along with the benefits and challenges of each class. The ways both polymer synthesis and processing techniques can influence drug release in the eye were discussed. CONCLUSION The use of biomaterials, specifically polymers, is a well-studied field for drug delivery, and polymers have been used as implants in the eye for over 75 years. Promising new ocular drug delivery systems are emerging using polymers an innovative option for treating ocular diseases because of their tunable properties. This review touches on important considerations and challenges of using polymers for sustained ocular drug delivery with the goal translating research to the clinic.
Collapse
Affiliation(s)
- Megan M. Allyn
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Richard H. Luo
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Elle B. Hellwarth
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Katelyn E. Swindle-Reilly
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
79
|
Kim G, Bae JH, Cheon S, Lee DH, Kim DH, Lee D, Park SH, Shim S, Seo JH, Han NS. Prebiotic activities of dextran from Leuconostoc mesenteroides SPCL742 analyzed in the aspect of the human gut microbial ecosystem. Food Funct 2022; 13:1256-1267. [PMID: 35023534 DOI: 10.1039/d1fo03287a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aim of this study was to investigate the prebiotic activities of dextran (LM742) produced by Leuconostoc mesenteroides SPCL742 in the aspect of the human gut microbial ecosystem focusing on microbiome and metabolome changes in in vitro colonic fermentation. LM742 dextran had a medium-chain structure with the molecular weight of 1394.87 kDa (DP = 7759.22) and α-1,6 and α-1,3 linkages with a 26.11 : 1 ratio. The LM742 dextran was resistent to digestive enzymes in the human gastrointestinal conditions. The individual cultivation of 30 intestinal bacteria with LM742 dextran showed the growth of Bacteroides spp., whereas in vitro human fecal fermentation with LM742 exhibited the symbiotic growth of Bacteroides spp. and beneficial bacteria such as Bifidobacterium spp. Further co-cultivation of Bacteroides xylanisolvens and several probiotics indicated that B. xylanisolvens provides a cross-feeding of dextran to probiotics. In fecal fermentation, LM742 dextran resulted in increased concentrations of short-chain fatty acids, valerate and pantothenate, but it rarely affected the conversion of betaine to trimethylamine. Lastly, LM742 dextran inhibited the adhesion of pathogenic E. coli to human epithelial cells. Taken together, these results demonstrate the prebiotic potential of LM742 dextran as a health-beneficial polysaccharide in the human intestine.
Collapse
Affiliation(s)
- Geonhee Kim
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jae-Han Bae
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Seongwon Cheon
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Dong Hyeon Lee
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Da Hye Kim
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Deukbuhm Lee
- Research Institute of Food and Biotechnology, SPC Group, Seoul 08826, Republic of Korea
| | - Sung-Hoon Park
- Research Institute of Food and Biotechnology, SPC Group, Seoul 08826, Republic of Korea.,Department of Food and Nutrition, Gangneung-Wonju National University, 25457, Gangneung, Korea
| | - Sangmin Shim
- Research Institute of Food and Biotechnology, SPC Group, Seoul 08826, Republic of Korea
| | - Jin-Ho Seo
- Research Institute of Food and Biotechnology, SPC Group, Seoul 08826, Republic of Korea.,Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
80
|
Insuasti‐Cruz E, Suárez‐Jaramillo V, Mena Urresta KA, Pila‐Varela KO, Fiallos‐Ayala X, Dahoumane SA, Alexis F. Natural Biomaterials from Biodiversity for Healthcare Applications. Adv Healthc Mater 2022; 11:e2101389. [PMID: 34643331 DOI: 10.1002/adhm.202101389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Natural biomaterials originating during the growth cycles of all living organisms have been used for many applications. They span from bioinert to bioactive materials including bioinspired ones. As they exhibit an increasing degree of sophistication, natural biomaterials have proven suitable to address the needs of the healthcare sector. Here the different natural healthcare biomaterials, their biodiversity sources, properties, and promising healthcare applications are reviewed. The variability of their properties as a result of considered species and their habitat is also discussed. Finally, some limitations of natural biomaterials are discussed and possible future developments are provided as more natural biomaterials are yet to be discovered and studied.
Collapse
Affiliation(s)
- Erick Insuasti‐Cruz
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | | | | | - Kevin O. Pila‐Varela
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Xiomira Fiallos‐Ayala
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Si Amar Dahoumane
- Department of Chemical Engineering Polytech Montreal Montreal Quebec H3C 3A7 Canada
- Center for Advances in Water and Air Quality (CAWAQ) Lamar University Beaumont TX 77710 USA
| | - Frank Alexis
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| |
Collapse
|
81
|
Basiri S. Applications of Microbial Exopolysaccharides in the Food Industry. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2021. [DOI: 10.34172/ajmb.2021.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Exopolysaccharides (EPSs) are high molecular weight polysaccharides secreted by microorganisms in the surrounding environment. In addition to the favorable benefits of these compounds for microorganisms, including microbial cell protection, they are used in various food, pharmaceutical, and cosmetic industries. Investigating the functional and health-promoting characteristics of microbial EPS, identifying the isolation method of these valuable compounds, and their applications in the food industry are the objectives of this study. EPS are used in food industries as thickeners, gelling agents, viscosifiers, and film formers. The antioxidative, anticancer, prebiotic, and cholesterol-lowering effects of some of these compounds make it possible to use them in functional food production.
Collapse
Affiliation(s)
- Sara Basiri
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
82
|
Delvart A, Moreau C, D'Orlando A, Falourd X, Cathala B. Dextran-based polyelectrolyte multilayers: Effect of charge density on film build-up and morphology. Colloids Surf B Biointerfaces 2021; 210:112258. [PMID: 34891063 DOI: 10.1016/j.colsurfb.2021.112258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022]
Abstract
We have studied the growth process of thin polyelectrolyte (PE) films fabricated by the layer-by-layer assembly (LbL) and composed of Dextran sulfate with high (DexS H) and low (DexS L) sulfation rate and poly(allylamine hydrochloride) (PAH). Film growths were monitored by combining Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), Surface Plasmon Resonance (SPR) and Atomic Force Microscopy (AFM). Even though, the two films growth up to 10 bilayers, QCM-D showed that polyelectrolyte pairs do not display similar behaviours. (PAH/DexS H) systems lead to linear growth, i.e. amounts deposited increase both for PAH and DexS H, while the PAH/DexS L pair generated zig-zag shaped asymmetric growth. Film water contents were determined by QCM-D solvent exchange and SPR experiments. DexS L contains less water than DexS H and in agreement with the QCM-D dissipation values that suggest the formation of more rigid films in the case of DexS L than DexS H. Surface morphology investigated by AFM display distinct surface patterns since DexS H form thin films with fibril-like morphology covering all the surface while heterogeneous films with "puddle-like" aggregates were imaged in the case of DexS L. Difference of charge compensation and charge neutralisation between both systems likely lead to dissimilar growth mechanisms that are tentatively proposed in this paper.
Collapse
|
83
|
Pihurov M, Păcularu-Burada B, Cotârleţ M, Vasile MA, Bahrim GE. Novel Insights for Metabiotics Production by Using Artisanal Probiotic Cultures. Microorganisms 2021; 9:2184. [PMID: 34835310 PMCID: PMC8624174 DOI: 10.3390/microorganisms9112184] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 01/15/2023] Open
Abstract
Wild probiotic consortia of microorganisms (bacteria and yeasts) associated in the artisanal cultures' microbiota (milk kefir grains, water kefir grains and kombucha) are considered valuable promoters for metabiotics (prebiotics, probiotics, postbiotics and paraprobiotics) production. The beneficial effects of the fermented products obtained with the artisanal cultures on human well-being are described by centuries and the interest for them is continuously increasing. The wild origin and microbial diversity of these above-mentioned consortia give them extraordinary protection capacity against microbiological contaminants in unusual physico-chemical conditions and unique fermentative behaviour. This review summarizes the state of the art for the wild artisanal cultures (milk and water kefir grains, respectively, kombucha-SCOBY), their symbiotic functionality, and the ability to ferment unconventional substrates in order to obtain valuable bioactive compounds with in vitro and in vivo beneficial functional properties. Due to the necessity of the bioactives production and their use as metabiotics in the modern consumer's life, artisanal cultures are the perfect sources able to biosynthesize complex functional metabolites (bioactive peptides, antimicrobials, polysaccharides, enzymes, vitamins, cell wall components). Depending on the purposes of the biotechnological fermentation processes, artisanal cultures can be used as starters on different substrates. Current studies show that the microbial synergy between bacteria-yeast and/or bacteria-offers new perspectives to develop functional products (food, feeds, and ingredients) with a great impact on life quality.
Collapse
Affiliation(s)
| | | | | | | | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (M.P.); (B.P.-B.); (M.C.); (M.A.V.)
| |
Collapse
|
84
|
Polysaccharide-Based Micro- and Nanosized Drug Delivery Systems for Potential Application in the Pediatric Dentistry. Polymers (Basel) 2021; 13:polym13193342. [PMID: 34641160 PMCID: PMC8512615 DOI: 10.3390/polym13193342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
The intensive development of micro- and nanotechnologies in recent years has offered a wide horizon of new possibilities for drug delivery in dentistry. The use of polymeric drug carriers turned out to be a very successful technique for formulating micro- and nanoparticles with controlled or targeted drug release in the oral cavity. Such innovative strategies have the potential to provide an improved therapeutic approach to prevention and treatment of various oral diseases not only for adults, but also in the pediatric dental practice. Due to their biocompatibility, biotolerance and biodegradability, naturally occurring polysaccharides like chitosan, alginate, pectin, dextran, starch, etc., are among the most preferred materials for preparation of micro- and nano-devices for drug delivery, offering simple particle-forming characteristics and easily tunable properties of the formulated structures. Their low immunogenicity and low toxicity provide an advantage over most synthetic polymers for the development of pediatric formulations. This review is focused on micro- and nanoscale polysaccharide biomaterials as dental drug carriers, with an emphasis on their potential application in pediatric dentistry.
Collapse
|