51
|
Shandilya R, Ranjan S, Khare S, Bhargava A, Goryacheva IY, Mishra PK. Point-of-care diagnostics approaches for detection of lung cancer-associated circulating miRNAs. Drug Discov Today 2021; 26:1501-1509. [PMID: 33647439 DOI: 10.1016/j.drudis.2021.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Circulating cell-free miRNAs (ccf-miRs) have gained significant interest as biomarkers for lung cancer (LC) diagnosis. However, the clinical application of ccf-miRs is mainly limited by time, cost, and expertise-related problems of existing detection strategies. Recently, the development of different point-of-care (POC) approaches offers useful on-site platforms, because these technologies have important features such as portability, rapid turnaround time, minimal sample requirement, and cost-effectiveness. In this review, we discuss different POC approaches for detecting ccf-miRs and highlight the utility of incorporating nanomaterials for enhanced biorecognition and signal transduction, further improving their diagnostic applicability in LC settings.
Collapse
Affiliation(s)
- Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Shashi Ranjan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Surbhi Khare
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Institute of Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
52
|
Mahmoudinobar F, Britton D, Montclare JK. Protein-based lateral flow assays for COVID-19 detection. Protein Eng Des Sel 2021; 34:gzab010. [PMID: 33991088 PMCID: PMC8194834 DOI: 10.1093/protein/gzab010] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
To combat the enduring and dangerous spread of COVID-19, many innovations to rapid diagnostics have been developed based on proteinprotein interactions of the SARS-CoV-2 spike and nucleocapsid proteins to increase testing accessibility. These antigen tests have most prominently been developed using the lateral flow assay (LFA) test platform which has the benefit of administration at point-of-care, delivering quick results, lower cost, and does not require skilled personnel. However, they have gained criticism for an inferior sensitivity. In the last year, much attention has been given to creating a rapid LFA test for detection of COVID-19 antigens that can address its high limit of detection while retaining the advantages of rapid antibodyantigen interaction. In this review, a summary of these proteinprotein interactions as well as the challenges, benefits, and recent improvements to protein based LFA for detection of COVID-19 are discussed.
Collapse
Affiliation(s)
- Farbod Mahmoudinobar
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Department of Chemistry New York University, New York, NY 10003, USA
- Department of Biomaterials New York University College of Dentistry, New York, NY 10010, USA
- Department of Radiology New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
53
|
Sachdeva S, Davis RW, Saha AK. Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions. Front Bioeng Biotechnol 2021; 8:602659. [PMID: 33520958 PMCID: PMC7843572 DOI: 10.3389/fbioe.2020.602659] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Point-of-care testing (POCT) allows physicians to detect and diagnose diseases at or near the patient site, faster than conventional lab-based testing. The importance of POCT is considerably amplified in the trying times of the COVID-19 pandemic. Numerous point-of-care tests and diagnostic devices are available in the market including, but not limited to, glucose monitoring, pregnancy and infertility testing, infectious disease testing, cholesterol testing and cardiac markers. Integrating microfluidics in POCT allows fluid manipulation and detection in a singular device with minimal sample requirements. This review presents an overview of two technologies - (a.) Lateral Flow Assay (LFA) and (b.) Nucleic Acid Amplification - upon which a large chunk of microfluidic POCT diagnostics is based, some of their applications, and commercially available products. Apart from this, we also delve into other microfluidic-based diagnostics that currently dominate the in-vitro diagnostic (IVD) market, current testing landscape for COVID-19 and prospects of microfluidics in next generation diagnostics.
Collapse
Affiliation(s)
| | | | - Amit K. Saha
- Genome Technology Center, School of Medicine, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
54
|
Loew N, Shitanda I, Kishiro K, Hoshi Y, Itagaki M. Paper-based Electrochemical Flow Biosensor Using Enzyme-modified Polystyrene Particles. CHEM LETT 2021. [DOI: 10.1246/cl.200703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Noya Loew
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Isao Shitanda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kanako Kishiro
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yoshinao Hoshi
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masayuki Itagaki
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
55
|
Charbaji A, Heidari-Bafroui H, Anagnostopoulos C, Faghri M. A New Paper-Based Microfluidic Device for Improved Detection of Nitrate in Water. SENSORS 2020; 21:s21010102. [PMID: 33375290 PMCID: PMC7794956 DOI: 10.3390/s21010102] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/06/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
In this paper, we report a simple and inexpensive paper-based microfluidic device for detecting nitrate in water. This device incorporates two recent developments in paper-based technology suitable for nitrate detection and has an optimized microfluidic design. The first technical advancement employed is an innovative fibrous composite material made up of cotton fibers and zinc microparticles that can be incorporated in paper-based devices and results in better nitrate reduction. The second is a detection zone with an immobilized reagent that allows the passage of a larger sample volume. Different acids were tested—citric and phosphoric acids gave better results than hydrochloric acid since this acid evaporates completely without leaving any residue behind on paper. Different microfluidic designs that utilize various fluid control technologies were investigated and a design with a folding detection zone was chosen and optimized to improve the uniformity of the signal produced. The optimized design allowed the device to achieve a limit of detection and quantification of 0.53 ppm and 1.18 ppm, respectively, for nitrate in water. This accounted for more than a 40% improvement on what has been previously realized for the detection of nitrate in water using paper-based technology.
Collapse
|
56
|
Mulvaney SP, Kidwell DA, Lanese JN, Lopez RP, Sumera ME, Wei E. Catalytic lateral flow immunoassays (cLFIA™): Amplified signal in a self-contained assay format. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
57
|
Daoud Z, McLeod J, Stockman DL. Higher Sensitivity Provided by the Combination of Two Lateral Flow Immunoassay Tests for the Detection of COVID-19 Immunoglobulins. Front Cell Infect Microbiol 2020; 10:479. [PMID: 33194776 PMCID: PMC7645256 DOI: 10.3389/fcimb.2020.00479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/03/2020] [Indexed: 11/13/2022] Open
Abstract
SARS-Cov-2 was identified in Wuhan, China in December 2019. The World Health Organization (WHO) declared it a pandemic in March of 2020. COVID-19 has now been reported on every continent. In the United States, the total number of confirmed reported cases of COVID-19 has exceeded 1.8 million with the total death exceeding 100,000 people. The most common investigational diagnostics of this disease are RT-PCR and serology testing. The objective of this work was to validate two commercial kits for the detection of IgM and IgG using lateral flow immunoassay tests and to study the effect of the combination of both serology kits for better detection of immunoglobulins. A total of 195 patients presenting with respiratory symptoms suggestive of infection with SARS-Cov-2 were subject to serology and molecular testing. Two lateral flow immunochromatographic assay kits were used: the Healgen Scientific for SARS-CoV-2 IgM/IgG and the Raybiotech for SARS-CoV-2 IgM/IgG. Sensitivity and specificity of each kit alone and in combination were determined and compared. The limit of detection, inter and intra test variations, as well interfering substances and cross reactivity were also studied for both kits. The results show sensitivities for IgM detection varying between 58.9 and 66.2% for the kits alone and 87.7% of the combination of both kits. IgG detection was not significantly affected by this combination. Both kits manifested high specificities (99.2–100%). Both kits showed high clinical performance in terms of cross reactivity and interfering substances. Our results suggest using combinatory testing for the serology of COVID-19 after a full evaluation study, assessing all the parameters affecting their clinical performance before deciding on this combination.
Collapse
Affiliation(s)
- Ziad Daoud
- Department of Clinical Microbiology and Infection Prevention, Michigan Health Clinics and Public Health Institute of Science, Epidemiology, and Research, Saginaw, MI, United States.,Faculty of Medicine and Medical Sciences, University of Balamand and Clinical Microbiology Division, Saint George Hospital-University Medical Center (UMC), Beirut, Lebanon
| | - Jesse McLeod
- Department of Clinical Microbiology and Infection Prevention, Michigan Health Clinics and Public Health Institute of Science, Epidemiology, and Research, Saginaw, MI, United States
| | - David L Stockman
- Department of Clinical Microbiology and Infection Prevention, Michigan Health Clinics and Public Health Institute of Science, Epidemiology, and Research, Saginaw, MI, United States
| |
Collapse
|
58
|
Khlebtsov B, Khlebtsov N. Surface-Enhanced Raman Scattering-Based Lateral-Flow Immunoassay. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2228. [PMID: 33182579 PMCID: PMC7696391 DOI: 10.3390/nano10112228] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022]
Abstract
Lateral flow immunoassays (LFIAs) have been developed and used in a wide range of applications, in point-of-care disease diagnoses, environmental safety, and food control. However, in its classical version, it has low sensitivity and can only perform semiquantitative detection, based on colorimetric signals. Over the past decade, surface-enhanced Raman scattering (SERS) tags have been developed in order to decrease the detection limit and enable the quantitative analysis of analytes. Of note, these tags needed new readout systems and signal processing algorithms, while the LFIA design remained unchanged. This review highlights SERS strategies of signal enhancement for LFIAs. The types of labels used, the possible gain in sensitivity from their use, methods of reading and processing the signal, and the prospects for use are discussed.
Collapse
Affiliation(s)
- Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, Russia;
| | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, Russia;
- Faculty of Nano- and Biomedical Technologies, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
59
|
Nath P, Kabir A, Khoubafarin Doust S, Kreais ZJ, Ray A. Detection of Bacterial and Viral Pathogens Using Photonic Point-of-Care Devices. Diagnostics (Basel) 2020; 10:diagnostics10100841. [PMID: 33086578 PMCID: PMC7603237 DOI: 10.3390/diagnostics10100841] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases caused by bacteria and viruses are highly contagious and can easily be transmitted via air, water, body fluids, etc. Throughout human civilization, there have been several pandemic outbreaks, such as the Plague, Spanish Flu, Swine-Flu, and, recently, COVID-19, amongst many others. Early diagnosis not only increases the chance of quick recovery but also helps prevent the spread of infections. Conventional diagnostic techniques can provide reliable results but have several drawbacks, including costly devices, lengthy wait time, and requirement of trained professionals to operate the devices, making them inaccessible in low-resource settings. Thus, a significant effort has been directed towards point-of-care (POC) devices that enable rapid diagnosis of bacterial and viral infections. A majority of the POC devices are based on plasmonics and/or microfluidics-based platforms integrated with mobile readers and imaging systems. These techniques have been shown to provide rapid, sensitive detection of pathogens. The advantages of POC devices include low-cost, rapid results, and portability, which enables on-site testing anywhere across the globe. Here we aim to review the recent advances in novel POC technologies in detecting bacteria and viruses that led to a breakthrough in the modern healthcare industry.
Collapse
|
60
|
Abstract
The pervasive spread of infectious diseases and pandemics, such as the 2019 coronavirus disease (COVID-19), are becoming increasingly serious and urgent threats to human health. Preventing the spread of such diseases prioritizes the development of sensing devices that can rapidly, selectively, and reliably detect pathogens at minimal cost. Paper-based analytical devices (PADs) are promising tools that satisfy those criteria. Numerous paper-based biosensors have been established that rival conventional pathogen detection methods. Among them, colorimetric strategies are promising since results can be interpreted by eye, and are simple to operate, which is advantageous for point-of-care testing (POCT). Particularly, the application of nanomaterials on paper-based biosensors has become important as these materials are capable of converting signals from pathogens through unique mechanisms to yield an amplified colorimetric readout. To highlight the research progress on using nanomaterials in colorimetric paper-based biosensor for pathogen detection, we discuss the sensing mechanisms of how they work, structural and analytical characteristics of the devices, and representative recent applications. Current challenges and future directions of using PADs and nanomaterial-mediated strategies are also discussed.
Collapse
Affiliation(s)
- Quynh Huong Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
61
|
A panel of anti-influenza virus nucleoprotein antibodies selected from phage-displayed synthetic antibody libraries with rapid diagnostic capability to distinguish diverse influenza virus subtypes. Sci Rep 2020; 10:13318. [PMID: 32770098 PMCID: PMC7414213 DOI: 10.1038/s41598-020-70135-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Immunoassays based on sandwich immuno-complexes of capture and detection antibodies simultaneously binding to the target analytes have been powerful technologies in molecular analyses. Recent developments in single molecule detection technologies enable the detection limit of the sandwich immunoassays approaching femtomolar (10-15 M), driving the needs of developing sensitive and specific antibodies for ever-increasingly broad applications in detecting and quantifying biomarkers. The key components underlying the sandwich immunoassays are antibody-based affinity reagents, for which the conventional sources are mono- or poly-clonal antibodies from immunized animals. The downsides of the animal-based antibodies as affinity reagents arise from the requirement of months of development timespan and limited choices of antibody candidates due to immunodominance of humoral immune responses in animals. Hence, developing animal antibodies capable of distinguishing highly related antigens could be challenging. To overcome the limitation imposed by the animal immune systems, we developed an in vitro methodology based on phage-displayed synthetic antibody libraries for diverse antibodies as affinity reagents against closely related influenza virus nucleoprotein (NP) subtypes, aiming to differentiating avian influenza virus (H5N1) from seasonal influenza viruses (H1N1 and H3N2), for which the NPs are closely related by 90-94% in terms of pairwise amino acid sequence identity. We applied the methodology to attain, within four weeks, a panel of IgGs with distinguishable specificities against a group of representative NPs with pairwise amino acid sequence identities up to more than 90%, and the antibodies derived from the antibody libraries without further affinity refinement had comparable affinity of mouse antibodies to the NPs with the detection limit less than 1 nM of viral NP from lysed virus with sandwich ELISA. The panel of IgGs were capable of rapidly distinguishing infections due to virulent avian influenza virus from infections of seasonal flu, in responding to a probable emergency scenario where avian influenza virus would be transmissible among humans overlapping with the seasonal influenza infections. The results indicate that the in vitro antibody development methodology enables developing diagnostic antibodies that would not otherwise be available from animal-based antibody technologies.
Collapse
|
62
|
Hristov DR, Pimentel AJ, Ujialele G, Hamad-Schifferli K. The Immunoprobe Aggregation State is Central to Dipstick Immunoassay Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34620-34629. [PMID: 32633115 DOI: 10.1021/acsami.0c08628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As new infectious disease outbreaks become more likely, it is important to be able to develop and deploy appropriate testing in time. Paper-based immunoassays are rapid, cheap, and easy to produce at scale and relatively user friendly but often suffer from low selectivity and sensitivity. Understanding the molecular mechanisms of paper immunoassays may help improve and hasten development and therefore production and market availability. Here, we study how the behavior of nanoparticle-antibody immunoprobes in paper dipstick immunoassays is impacted by synthesis strategy and surface chemistry architecture. We conjugate gold nanoparticles to polyclonal anti-immunoglobulin G (IgG) and anti-zika NS1 antibodies by electrostatic adsorption and N-hydroxysuccinimide (NHS) and hydrazide (Hz) chemistries. The immunoprobes were used in paper immunoassays and the effective affinity for the antigen was quantified from the test line intensities, as well as the distribution of the immunoprobes throughout the strips. The results show that nanoparticle colloidal stability, both post synthesis and during antigen binding, is a key factor and affects immunoassay results and performance, often through reduction or loss of signal.
Collapse
|
63
|
Dual emission nonionic molecular imprinting conjugated polythiophenes-based paper devices and their nanofibers for point-of-care biomarkers detection. Biosens Bioelectron 2020; 160:112211. [DOI: 10.1016/j.bios.2020.112211] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
|
64
|
Rodriguez-Quijada C, Lyons C, Santamaria C, Quinn S, Tlusty MF, Shiaris M, Hamad-Schifferli K. Optimization of paper-based nanoparticle immunoassays for direct detection of the bacterial pathogen V. parahaemolyticus in oyster hemolymph. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3056-3063. [PMID: 32930166 DOI: 10.1039/d0ay00725k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The detection of foodborne pathogens is critical for disease control and infection prevention, especially in seafood consumed raw or undercooked. Paper-based diagnostic tools are promising for rapid fieldable detection and provide a readout by eye due to the use of gold nanoparticle immunoprobes. Here we study different strategies to overcome these challenges in a real biological matrix, oyster hemolymph, for the detection of the pathogenic bacteria Vibrio parahaemolyticus (Vp). Nanoparticle surface chemistry, nitrocellulose speed and blocking, running steps, and antibody concentrations on the NP and nitrocellulose were all studied. Their effect on paper immunoassay signal intensity was quantified to determine optimal conditions, which enabled the detection of Vp directly from hemolymph below pathogenic concentrations.
Collapse
Affiliation(s)
| | - Casandra Lyons
- Dept. of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Charles Santamaria
- Dept. of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Sara Quinn
- Dept. of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Michael F Tlusty
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Michael Shiaris
- Dept. of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Kimberly Hamad-Schifferli
- Dept. of Engineering, University of Masschusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA.
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| |
Collapse
|
65
|
Han GR, Kim MG. Highly Sensitive Chemiluminescence-Based Lateral Flow Immunoassay for Cardiac Troponin I Detection in Human Serum. SENSORS 2020; 20:s20092593. [PMID: 32370181 PMCID: PMC7248921 DOI: 10.3390/s20092593] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022]
Abstract
Lateral flow assays (LFAs) have become the most common biosensing platforms for point-of-care testing due to their compliance with the ASSURED (affordable, sensitive, specific, user-friendly, rapid/robust, equipment-free, and deliverable to end-users) guidelines stipulated by the World Health Organization. However, the limited analytical sensitivity and low quantitative capability of conventional LFAs, which use gold nanoparticles (AuNPs) for colorimetric labeling, have prevented high-performance testing. Here, we report the development of a highly sensitive chemiluminescence (CL)-based LFA involving AuNPs conjugated with aldehyde-activated peroxidase and antibody molecules-i.e., AuNP-(ald)HRP-Ab-as a new conjugation scheme for high-performance testing in LFAs. When paired with the CL-based signal readout modality, the AuNP-(ald)HRP-Ab conjugate resulted in 110-fold enhanced sensitivity over the colorimetric response of a typical AuNP-Ab conjugate. To evaluate the performance of the CL-based LFA, we tested it with human cardiac troponin I (cTnI; a standard cardiac biomarker used to diagnose myocardial infarction) in standard and clinical serum samples. Testing the standard samples revealed a detection limit of 5.6 pg·mL-1 and acceptably reliable precision (with a coefficient of variation of 2.3%-8.4%), according to clinical guidelines. Moreover, testing the clinical samples revealed a high correlation (r = 0.97) with standard biochemical analyzers, demonstrating the potential clinical utility of the CL-based LFA for high-performance cTnI testing.
Collapse
|
66
|
Hsu YP, Li NS, Chen YT, Pang HH, Wei KC, Yang HW. A serological point-of-care test for Zika virus detection and infection surveillance using an enzyme-free vial immunosensor with a smartphone. Biosens Bioelectron 2020; 151:111960. [DOI: 10.1016/j.bios.2019.111960] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/17/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
|
67
|
Ratajczak K, Stobiecka M. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydr Polym 2020; 229:115463. [DOI: 10.1016/j.carbpol.2019.115463] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
|
68
|
Fu Y, Wu S, Zhou H, Zhao S, Lan M, Huang J, Song X. Carbon Dots and a CdTe Quantum Dot Hybrid-Based Fluorometric Probe for Spermine Detection. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06289] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yanzhao Fu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Shenzhen Research Institute of Central South University, Shenzhen 518057, P. R. China
| | - Shuilin Wu
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077Hong Kong SAR, P. R. China
| | - Hongkang Zhou
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Shaojing Zhao
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Shenzhen Research Institute of Central South University, Shenzhen 518057, P. R. China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, P. R. China
| | - Xiangzhi Song
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
69
|
Pavagada S, Channon RB, Chang JYH, Kim SH, MacIntyre D, Bennett PR, Terzidou V, Ladame S. Oligonucleotide-templated lateral flow assays for amplification-free sensing of circulating microRNAs. Chem Commun (Camb) 2019; 55:12451-12454. [PMID: 31556888 DOI: 10.1039/c9cc05607f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein we demonstrate the first example of oligonucleotide-templated reaction (OTR) performed on paper, using lateral flow to capture and concentrate specific nucleic acid biomarkers on a test line. Quantitative analysis, using a low-cost benchtop fluorescence reader showed very high specificity down to the single nucleotide level and proved sensitive enough for amplification-free, on-chip, detection of endogenous concentrations of miR-150-5p, a recently identified predictive blood biomarker for preterm birth.
Collapse
Affiliation(s)
- Suraj Pavagada
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Robert B Channon
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Jason Y H Chang
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Sung Hye Kim
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK
| | - David MacIntyre
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK and March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK and Queen Charlotte's Hospital, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Phillip R Bennett
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK and March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK and Queen Charlotte's Hospital, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Vasso Terzidou
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK and March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK and Chelsea & Westminster Hospital, Imperial College Healthcare NHS Trust, London, SW10 9NH, UK
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. and March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK
| |
Collapse
|