51
|
Zhang M, Yan L, Huang Q, Bu T, Yu S, Zhao X, Wang J, Zhang D. Highly sensitive simultaneous detection of major ochratoxins by an immunochromatographic assay. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.07.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
52
|
Man Y, Liang G, Li A, Pan L. Recent Advances in Mycotoxin Determination for Food Monitoring via Microchip. Toxins (Basel) 2017; 9:E324. [PMID: 29036884 PMCID: PMC5666371 DOI: 10.3390/toxins9100324] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/30/2017] [Accepted: 10/09/2017] [Indexed: 11/28/2022] Open
Abstract
Mycotoxins are one of the main factors impacting food safety. Mycotoxin contamination has threatened the health of humans and animals. Conventional methods for the detection of mycotoxins are gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS), or enzyme-linked immunosorbent assay (ELISA). However, all these methods are time-consuming, require large-scale instruments and skilled technicians, and consume large amounts of hazardous regents and solvents. Interestingly, a microchip requires less sample consumption and short analysis time, and can realize the integration, miniaturization, and high-throughput detection of the samples. Hence, the application of a microchip for the detection of mycotoxins can make up for the deficiency of the conventional detection methods. This review focuses on the application of a microchip to detect mycotoxins in foods. The toxicities of mycotoxins and the materials of the microchip are firstly summarized in turn. Then the application of a microchip that integrates various kinds of detection methods (optical, electrochemical, photo-electrochemical, and label-free detection) to detect mycotoxins is reviewed in detail. Finally, challenges and future research directions in the development of a microchip to detect mycotoxins are previewed.
Collapse
Affiliation(s)
- Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products, Ministry of Agriculture of the People's Republic of China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Gang Liang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products, Ministry of Agriculture of the People's Republic of China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - An Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products, Ministry of Agriculture of the People's Republic of China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Ligang Pan
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products, Ministry of Agriculture of the People's Republic of China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| |
Collapse
|
53
|
Yang M, Liu G, Mehedi HM, Ouyang Q, Chen Q. A universal SERS aptasensor based on DTNB labeled GNTs/Ag core-shell nanotriangle and CS-Fe 3 O 4 magnetic-bead trace detection of Aflatoxin B1. Anal Chim Acta 2017; 986:122-130. [DOI: 10.1016/j.aca.2017.07.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/29/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
|
54
|
Badie Bostan H, Danesh NM, Karimi G, Ramezani M, Mousavi Shaegh SA, Youssefi K, Charbgoo F, Abnous K, Taghdisi SM. Ultrasensitive detection of ochratoxin A using aptasensors. Biosens Bioelectron 2017; 98:168-179. [PMID: 28672192 DOI: 10.1016/j.bios.2017.06.055] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/22/2017] [Accepted: 06/25/2017] [Indexed: 12/28/2022]
Abstract
Regarding teratogenic, carcinogenic, and immunotoxic nature of ochratoxin A (OTA), selective and sensitive monitoring of this molecule in food samples is of great importance. In recent years, various methods have been introduced for detection of OTA. However, they are usually time-consuming, labor-intensive and expensive. Therefore, these parameters limited their usage. The emerging method of detection, aptasensor, has attracted more attention for OTA detection, due to distinctive advantages including high sensitivity, selectivity and simplicity. In this review, the new developed aptasensors for detection of OTA have been investigated. We also highlighted advantages and disadvantages of different types of OTA aptasensors. This review also takes into consideration the goal to find out which designs are the most rational ones for highly sensitive detection of OTA.
Collapse
Affiliation(s)
- Hasan Badie Bostan
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Noor Mohammad Danesh
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Research Institute of Sciences and New Technology, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Kazem Youssefi
- Department of English, Tabaran Institute of Higher Education, Mashhad, Iran
| | - Fahimeh Charbgoo
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
55
|
Duan H, Huang X, Shao Y, Zheng L, Guo L, Xiong Y. Size-Dependent Immunochromatographic Assay with Quantum Dot Nanobeads for Sensitive and Quantitative Detection of Ochratoxin A in Corn. Anal Chem 2017; 89:7062-7068. [DOI: 10.1021/acs.analchem.7b00869] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hong Duan
- State
Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People’s Republic of China
- Jiangxi-OAI
Joint Research Institute, Nanchang University, Nanchang 330047, People’s Republic of China
| | - Xiaolin Huang
- State
Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People’s Republic of China
- Jiangxi-OAI
Joint Research Institute, Nanchang University, Nanchang 330047, People’s Republic of China
| | - Yanna Shao
- State
Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People’s Republic of China
- Jiangxi-OAI
Joint Research Institute, Nanchang University, Nanchang 330047, People’s Republic of China
| | - Lingyan Zheng
- State
Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People’s Republic of China
- Jiangxi-OAI
Joint Research Institute, Nanchang University, Nanchang 330047, People’s Republic of China
| | - Liang Guo
- State
Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People’s Republic of China
- Jiangxi-OAI
Joint Research Institute, Nanchang University, Nanchang 330047, People’s Republic of China
| | - Yonghua Xiong
- State
Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People’s Republic of China
- Jiangxi-OAI
Joint Research Institute, Nanchang University, Nanchang 330047, People’s Republic of China
| |
Collapse
|
56
|
Vasylieva N, Barnych B, Rand A, Inceoglu B, Gee SJ, Hammock BD. Sensitive Immunoassay for Detection and Quantification of the Neurotoxin, Tetramethylenedisulfotetramine. Anal Chem 2017; 89:5612-5619. [PMID: 28398746 PMCID: PMC5920647 DOI: 10.1021/acs.analchem.7b00846] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tetramethylenedisulfotetramine (TETS, tetramine) is a formerly used and highly neurotoxic rodenticide. Its lethality, recent history of intentional use for mass poisoning, and the absence of a known antidote raise public health concerns. Therefore, rapid, high throughput, and sensitive methods for detection and quantification of TETS are critical. Instrumental analysis method such as GC/MS is sensitive but not rapid or high throughput. Therefore, an immunoassay selective to TETS was developed. The assay shows an IC50 of 4.5 ± 1.2 ng/mL, with a limit of detection of 0.2 ng/mL, comparable to GC/MS. Performance of the immunoassay was demonstrated by a recovery study using known concentrations of TETS spiked into buffer and human and mouse serum matrices giving recoveries in the range of 80-120%. The assay demonstrated good correlation in TETS recovery with established GC/MS analysis. The immunoassay was then used to quantify TETS concentration in the serum of mice exposed to 2× LD50 dose of TETS and to monitor kinetics of TETS clearance from blood over a short period of time. TETS concentration in the serum reached 150 ng/mL without significant change over 4 h post-treatment. Results obtained with the immunoassay had good correlation with GC/MS analysis. Overall, this immunoassay is an important tool to rapidly detect and quantify levels of TETS from biological samples with high sensitivity. The assay can be adapted to multiple formats including field or hospital use.
Collapse
Affiliation(s)
- Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| | - Amy Rand
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| | - Bora Inceoglu
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| | - Shirley J Gee
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| |
Collapse
|
57
|
Development of a QCM-D biosensor for Ochratoxin A detection in red wine. Talanta 2017; 166:193-197. [PMID: 28213222 DOI: 10.1016/j.talanta.2017.01.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 01/27/2023]
Abstract
Ochratoxin A (OTA), a highly toxic compound, is one of the most widely spread mycotoxins that contaminates a large variety of agricultural commodities. Due to its presence in the food chain, it imposes a hazard on both human and animal health. Therefore, there is a need for precise, fast and simple methods for toxin quantification. Herein, a novel sensor based on a quartz crystal microbalance with dissipation monitoring (QCM-D) and antibodies for specific analyte recognition was developed for rapid and sensitive detection of OTA in red wine. The combination of indirect competitive assay with QCM-D gives a straightforward device, which can simultaneously measure frequency (Δf) and dissipation (ΔD) changes resulting in detailed information about the mass attached to the sensor surface as well as conformational changes, viscoelastic properties and the hydration state of the film. Small molecules (such as OTA) suffer from poor LOD due to the high concentration of primary antibody needed to generate adequate signal. In the present study, amplification of the QCM-D signal was obtained by applying secondary antibodies conjugated with gold nanoparticles (AuNPs). Thanks to this, a linear detection range of 0.2-40ngmL-1 has been achieved with an excellent LOD of 0.16ngmL-1, which is one order of magnitude lower than LOD specified by European Union legislation concerning the limit of OTA in food. Moreover, a matrix effect (caused by the occurrence of polyphenols in wine) and associated non-specific interactions with the sensor surface was completely eliminated by a simple pre-treatment of the wine with the addition of 3% poly(vinylpyrrolidone) (PVP).
Collapse
|
58
|
García-Fonseca S, Ballesteros-Gómez A, Rubio S. Restricted access supramolecular solvents for sample treatment in enzyme-linked immuno-sorbent assay of mycotoxins in food. Anal Chim Acta 2016; 935:129-35. [DOI: 10.1016/j.aca.2016.06.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
|
59
|
Malir F, Ostry V, Pfohl-Leszkowicz A, Malir J, Toman J. Ochratoxin A: 50 Years of Research. Toxins (Basel) 2016; 8:E191. [PMID: 27384585 PMCID: PMC4963825 DOI: 10.3390/toxins8070191] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/21/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022] Open
Abstract
Since ochratoxin A (OTA) was discovered, it has been ubiquitous as a natural contaminant of moldy food and feed. The multiple toxic effects of OTA are a real threat for human beings and animal health. For example, OTA can cause porcine nephropathy but can also damage poultries. Humans exposed to OTA can develop (notably by inhalation in the development of acute renal failure within 24 h) a range of chronic disorders such as upper urothelial carcinoma. OTA plays the main role in the pathogenesis of some renal diseases including Balkan endemic nephropathy, kidney tumors occurring in certain endemic regions of the Balkan Peninsula, and chronic interstitial nephropathy occurring in Northern African countries and likely in other parts of the world. OTA leads to DNA adduct formation, which is known for its genotoxicity and carcinogenicity. The present article discusses how renal carcinogenicity and nephrotoxicity cause both oxidative stress and direct genotoxicity. Careful analyses of the data show that OTA carcinogenic effects are due to combined direct and indirect mechanisms (e.g., genotoxicity, oxidative stress, epigenetic factors). Altogether this provides strong evidence that OTA carcinogenicity can also occur in humans.
Collapse
Affiliation(s)
- Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic.
| | - Vladimir Ostry
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Brno 61242, Czech Republic.
| | - Annie Pfohl-Leszkowicz
- Department Bioprocess & Microbial Systems, Laboratory Chemical Engineering, INP/ENSA Toulouse, University of Toulouse, UMR 5503 CNRS/INPT/UPS, Auzeville-Tolosane 31320, France.
| | - Jan Malir
- Institute of State and Law, Czech Academy of Sciences, Narodni 18, Prague 11600, Czech Republic.
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic.
| |
Collapse
|
60
|
Bazin I, Tria SA, Hayat A, Marty JL. New biorecognition molecules in biosensors for the detection of toxins. Biosens Bioelectron 2016; 87:285-298. [PMID: 27568847 DOI: 10.1016/j.bios.2016.06.083] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
Biological and synthetic recognition elements are at the heart of the majority of modern bioreceptor assays. Traditionally, enzymes and antibodies have been integrated in the biosensor designs as a popular choice for the detection of toxin molecules. But since 1970s, alternative biological and synthetic binders have been emerged as a promising alternative to conventional biorecognition elements in detection systems for laboratory and field-based applications. Recent research has witnessed immense interest in the use of recombinant enzymatic methodologies and nanozymes to circumvent the drawbacks associated with natural enzymes. In the area of antibody production, technologies based on the modification of in vivo synthesized materials and in vitro approaches with development of "display "systems have been introduced in the recent years. Subsequently, molecularly-imprinted polymers and Peptide nucleic acid (PNAs) were developed as an attractive receptor with applications in the area of sample preparation and detection systems. In this article, we discuss all alternatives to conventional biomolecules employed in the detection of various toxin molecules We review recent developments in modified enzymes, nanozymes, nanobodies, aptamers, peptides, protein scaffolds and DNazymes. With the advent of nanostructures and new interface materials, these recognition elements will be major players in future biosensor development.
Collapse
Affiliation(s)
- Ingrid Bazin
- École des Mines d'Alès, 6 Avenuede Clavières, 30100 Alès Cedex, France.
| | - Scherrine A Tria
- École des Mines d'Alès, 6 Avenuede Clavières, 30100 Alès Cedex, France
| | - Akhtar Hayat
- BAE (Biocapteurs-Analyses-Environnement), Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan
| | - Jean-Louis Marty
- BAE (Biocapteurs-Analyses-Environnement), Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France
| |
Collapse
|
61
|
Microfabricated biosensor for the simultaneous amperometric and luminescence detection and monitoring of Ochratoxin A. Biosens Bioelectron 2016; 79:835-42. [DOI: 10.1016/j.bios.2016.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/10/2015] [Accepted: 01/06/2016] [Indexed: 11/23/2022]
|
62
|
Recent development of electrochemiluminescence sensors for food analysis. Anal Bioanal Chem 2016; 408:7035-48. [DOI: 10.1007/s00216-016-9548-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022]
|
63
|
Turner NW, Bramhmbhatt H, Szabo-Vezse M, Poma A, Coker R, Piletsky SA. Analytical methods for determination of mycotoxins: An update (2009-2014). Anal Chim Acta 2015; 901:12-33. [PMID: 26614054 DOI: 10.1016/j.aca.2015.10.013] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 12/25/2022]
Abstract
Mycotoxins are a problematic and toxic group of small organic molecules that are produced as secondary metabolites by several fungal species that colonise crops. They lead to contamination at both the field and postharvest stages of food production with a considerable range of foodstuffs affected, from coffee and cereals, to dried fruit and spices. With wide ranging structural diversity of mycotoxins, severe toxic effects caused by these molecules and their high chemical stability the requirement for robust and effective detection methods is clear. This paper builds on our previous review and summarises the most recent advances in this field, in the years 2009-2014 inclusive. This review summarises traditional methods such as chromatographic and immunochemical techniques, as well as newer approaches such as biosensors, and optical techniques which are becoming more prevalent. A section on sampling and sample treatment has been prepared to highlight the importance of this step in the analytical methods. We close with a look at emerging technologies that will bring effective and rapid analysis out of the laboratory and into the field.
Collapse
Affiliation(s)
- Nicholas W Turner
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK.
| | - Heli Bramhmbhatt
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Monika Szabo-Vezse
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK; Toximet Ltd., ToxiMet Limited, 130 Abbott Drive, Kent Science Park, Sittingbourne, Kent, ME9 8AZ, UK
| | - Alessandro Poma
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK; Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Raymond Coker
- Toximet Ltd., ToxiMet Limited, 130 Abbott Drive, Kent Science Park, Sittingbourne, Kent, ME9 8AZ, UK
| | - Sergey A Piletsky
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|
64
|
Heussner AH, Bingle LEH. Comparative Ochratoxin Toxicity: A Review of the Available Data. Toxins (Basel) 2015; 7:4253-82. [PMID: 26506387 PMCID: PMC4626733 DOI: 10.3390/toxins7104253] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/27/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022] Open
Abstract
Ochratoxins are a group of mycotoxins produced by a variety of moulds. Ochratoxin A (OTA), the most prominent member of this toxin family, was first described by van der Merwe et al. in Nature in 1965. Dietary exposure to OTA represents a serious health issue and has been associated with several human and animal diseases including poultry ochratoxicosis, porcine nephropathy, human endemic nephropathies and urinary tract tumours in humans. More than 30 years ago, OTA was shown to be carcinogenic in rodents and since then extensive research has been performed in order to investigate its mode of action, however, this is still under debate. OTA is regarded as the most toxic family member, however, other ochratoxins or their metabolites and, in particular, ochratoxin mixtures or combinations with other mycotoxins may represent serious threats to human and animal health. This review summarises and evaluates current knowledge about the differential and comparative toxicity of the ochratoxin group.
Collapse
Affiliation(s)
- Alexandra H Heussner
- Human and Environmental Toxicology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.
- Department of Pharmacy, Health and Well-Being, University of Sunderland, City Campus, Sunderland SR1 3SD, UK.
| | - Lewis E H Bingle
- Department of Pharmacy, Health and Well-Being, University of Sunderland, City Campus, Sunderland SR1 3SD, UK.
| |
Collapse
|
65
|
Man-Made Synthetic Receptors for Capture and Analysis of Ochratoxin A. Toxins (Basel) 2015; 7:4083-98. [PMID: 26473924 PMCID: PMC4626722 DOI: 10.3390/toxins7104083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
Contemporary analytical methods have the sensitivity required for Ochratoxin A detection and quantification, but direct application of these methods on real samples can be rarely performed because of matrix complexity. Thus, efficient sample pre-treatment methods are needed. Recent years have seen the increasing use of artificial recognition systems as a viable alternative to natural receptors, because these materials seem to be particularly suitable for applications where selectivity for Ochratoxin A is essential. In this review, molecularly imprinted polymers, aptamers and tailor-made peptides for Ochratoxin A capture and analysis with particular attention to solid phase extraction applications will be discussed.
Collapse
|
66
|
Determination of Ochratoxin A in Wheat and Maize by Solid Bar Microextraction with Liquid Chromatography and Fluorescence Detection. Toxins (Basel) 2015; 7:3000-11. [PMID: 26251923 PMCID: PMC4549736 DOI: 10.3390/toxins7083000] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/26/2015] [Accepted: 07/31/2015] [Indexed: 11/21/2022] Open
Abstract
Solid bar microextraction (SBME), followed by liquid chromatography with fluorescence detection (HPLC-FLD), for the quantification of ochratoxin A in wheat and maize was developed. Ground wheat and maize grains were extracted with acetonitrile-water-acetic acid (79:20:1, v/v/v), followed by defatting with cyclohexane, and subjected to SBME-LC-FLD analysis. SBME devices were constructed by packing 2 mg sorbent (C18) into porous polypropylene micro-tubes (2.5 cm length, 600 μm i.d., and 0.2 μm pore size). SBME devices were conditioned with methanol and placed into 5 mL stirred sample solutions for 70 min. After extraction, OTA was desorbed into 200 μL of methanol for 15 min, the solution was removed in vacuum, the residue was dissolved in 50 μL of methanol-water (1:1, v/v) and ochratoxin A content was determined by HPLC-FLD. Under optimized extraction conditions, the limit of detection of 0.9 μg·kg−1 and 2.5 μg·kg−1 and the precision of 3.4% and 5.0% over a concentration range of 1 to 100 μg·kg−1 in wheat and maize flour, respectively, were obtained.
Collapse
|
67
|
Kim S, Lim H. Chemiluminescence immunoassay using magnetic nanoparticles with targeted inhibition for the determination of ochratoxin A. Talanta 2015; 140:183-188. [DOI: 10.1016/j.talanta.2015.03.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 01/16/2023]
|
68
|
Rivas L, Mayorga-Martinez CC, Quesada-González D, Zamora-Gálvez A, de la Escosura-Muñiz A, Merkoçi A. Label-free impedimetric aptasensor for ochratoxin-A detection using iridium oxide nanoparticles. Anal Chem 2015; 87:5167-72. [PMID: 25901535 DOI: 10.1021/acs.analchem.5b00890] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this article, a novel aptasensor for ochratoxin A (OTA) detection based on a screen-printed carbon electrode (SPCE) modified with polythionine (PTH) and iridium oxide nanoparticles (IrO2 NPs) is presented. The electrotransducer surface is modified with an electropolymerized film of PTH followed by the assembly of IrO2 NPs on which the aminated aptamer selective to OTA is exchanged with the citrate ions surrounding IrO2 NPs via electrostatic interactions with the same surface. Electrochemical impedance spectroscopy (EIS) in the presence of the [Fe(CN)6](-3/-4) redox probe is employed to characterize each step in the aptasensor assay and also for label-free detection of OTA in a range between 0.01 and 100 nM, obtaining one of the lowest limits of detection reported so far for label-free impedimetric detection of OTA (14 pM; 5.65 ng/kg). The reported system also exhibits a high reproducibility, a good performance with a white wine sample, and an excellent specificity against another toxin present in such sample.
Collapse
Affiliation(s)
- Lourdes Rivas
- ‡Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| | | | | | | | | | - Arben Merkoçi
- §ICREA - Institucio Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
69
|
Lu L, Wang M, Liu LJ, Leung CH, Ma DL. Label-Free Luminescent Switch-On Probe for Ochratoxin A Detection Using a G-Quadruplex-Selective Iridium(III) Complex. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8313-8318. [PMID: 25836665 DOI: 10.1021/acsami.5b01702] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A library of six luminescent Ir(III) complexes were synthesized and studied for their capacity to function as probes for G-quadruplex DNA. The novel Ir(III) complex 1 was discovered to be selective for G-quadruplex structures and was subsequently used for the construction of a label-free G-quadruplex-based ochratoxin A (OTA) sensing platform in aqueous solution. The assay exhibited linearity for OTA in the range of 0 to 60 nM (R2=0.9933), and the limit of detection for OTA was 5 nM. Furthermore, this assay was highly selective for OTA over its structurally related analogues.
Collapse
Affiliation(s)
- Lihua Lu
- †Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Modi Wang
- †Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Li-Juan Liu
- ‡State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chung-Hang Leung
- ‡State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- †Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- §Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
70
|
Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification. Biosens Bioelectron 2015; 70:268-74. [PMID: 25835519 DOI: 10.1016/j.bios.2015.03.067] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/06/2015] [Accepted: 03/25/2015] [Indexed: 11/24/2022]
Abstract
Determination of ochratoxin A (OTA) is highly important for food safety control. In this study, a signal-on electrochemiluminescence (ECL) biosensor which combined the characteristics of high efficiency of hyperbranched rolling circle amplification (HRCA) and high selectivity of aptamer was developed for OTA determination. The capture probe DNA (CDNA) was firstly immobilized on the gold electrode surface through Au-S interaction, then the OTA aptamer was modified on the electrode surface through hybridization with CDNA. Since OTA can competitively bind with the aptamer due to their high affinity, which would induce the releasing of aptamer from the electrode surface. Subsequently, the free CDNA on the electrode surface can hybridize with the padlock probe and induce HRCA reaction subsequently. Thus, the HRCA products which contained large amount of double-stranded DNA (dsDNA) fragments can be accumulated on the electrode surface. Since Ru(phen)3(2+) can intercalate into the groove of dsDNA and acts as ECL indicator, high ECL intensity can be detected from the electrode surface. The enhanced ECL intensity has a linear relationship with OTA in the range of 0.05-500 pg/mL with a correlation coefficient of 0.9957, and the limit of detection (LOD) was 0.02 pg/mL. The developed biosensor has been applied to determine OTA concentration in the corn samples with satisfied results.
Collapse
|
71
|
Kavanagh O, Elliott CT, Campbell K. Progress in the development of immunoanalytical methods incorporating recombinant antibodies to small molecular weight biotoxins. Anal Bioanal Chem 2015; 407:2749-70. [PMID: 25716465 DOI: 10.1007/s00216-015-8502-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/08/2023]
Abstract
Rapid immunoanalytical screening of food and environmental samples for small molecular weight (hapten) biotoxin contaminations requires the production of antibody reagents that possess the requisite sensitivity and specificity. To date animal-derived polyclonal (pAb) and monoclonal (mAb) antibodies have provided the binding element of the majority of these assays but recombinant antibodies (rAb) isolated from in vitro combinatorial phage display libraries are an exciting alternative due to (1) circumventing the need for experimental animals, (2) speed of production in commonly used in vitro expression systems and (3) subsequent molecular enhancement of binder performance. Short chain variable fragments (scFv) have been the most commonly employed rAb reagents for hapten biotoxin detection over the last two decades but antibody binding fragments (Fab) and single domain antibodies (sdAb) are increasing in popularity due to increased expression efficiency of functional binders and superior resistance to solvents. rAb-based immunochromatographic assays and surface plasmon resonance (SPR) biosensors have been reported to detect sub-regulatory levels of fungal (mycotoxins), marine (phycotoxins) and aquatic biotoxins in a wide range of food and environmental matrices, however this technology has yet to surpass the performances of the equivalent mAb- and pAb-based formats. As such the full potential of rAb technology in hapten biotoxin detection has yet to be achieved, but in time the inherent advantages of engineered rAb are set to provide the next generation of ultra-high performing binder reagents for the rapid and specific detection of hapten biotoxins.
Collapse
Affiliation(s)
- Owen Kavanagh
- Institute for Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK,
| | | | | |
Collapse
|
72
|
Majdinasab M, Sheikh-Zeinoddin M, Soleimanian-Zad S, Li P, Zhang Q, Li X, Tang X, Li J. A reliable and sensitive time-resolved fluorescent immunochromatographic assay (TRFICA) for ochratoxin A in agro-products. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.06.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
73
|
McMullin D, Mizaikoff B, Krska R. Advancements in IR spectroscopic approaches for the determination of fungal derived contaminations in food crops. Anal Bioanal Chem 2015; 407:653-60. [PMID: 25258282 PMCID: PMC4305099 DOI: 10.1007/s00216-014-8145-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/25/2014] [Accepted: 08/28/2014] [Indexed: 11/19/2022]
Abstract
Infrared spectroscopy is a rapid, nondestructive analytical technique that can be applied to the authentication and characterization of food samples in high throughput. In particular, near infrared spectroscopy is commonly utilized in the food quality control industry to monitor the physical attributes of numerous cereal grains for protein, carbohydrate, and lipid content. IR-based methods require little sample preparation, labor, or technical competence if multivariate data mining techniques are implemented; however, they do require extensive calibration. Economically important crops are infected by fungi that can severely reduce crop yields and quality and, in addition, produce mycotoxins. Owing to the health risks associated with mycotoxins in the food chain, regulatory limits have been set by both national and international institutions for specific mycotoxins and mycotoxin classes. This article discusses the progress and potential of IR-based methods as an alternative to existing chemical methods for the determination of fungal contamination in crops, as well as emerging spectroscopic methods.
Collapse
Affiliation(s)
- David McMullin
- Center for Analytical Chemistry, Department for Agrobiotechnology, University of Natural Resources and Applied Life Sciences Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89075 Ulm, Germany
| | - Rudolf Krska
- Center for Analytical Chemistry, Department for Agrobiotechnology, University of Natural Resources and Applied Life Sciences Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| |
Collapse
|
74
|
Lv X, Li Y, Yan T, Pang X, Hu L, Du B, Wei Q. An electrochemiluminescent immunosensor based on CdS–Fe3O4nanocomposite electrodes for the detection of Ochratoxin A. NEW J CHEM 2015. [DOI: 10.1039/c5nj00320b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A promising electrochemiluminescent immunosensor based on CdS–Fe3O4nanocomposites was developed for the detection of Ochratoxin A.
Collapse
Affiliation(s)
- Xiaohui Lv
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yueyun Li
- School of Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Tao Yan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xuehui Pang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Lihua Hu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Bin Du
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
75
|
Majdinasab M, Sheikh-Zeinoddin M, Soleimanian-Zad S, Li P, Zhang Q, Li X, Tang X. Ultrasensitive and quantitative gold nanoparticle-based immunochromatographic assay for detection of ochratoxin A in agro-products. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 974:147-54. [PMID: 25463210 DOI: 10.1016/j.jchromb.2014.10.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/19/2014] [Accepted: 10/25/2014] [Indexed: 11/16/2022]
Abstract
In most cases of mycotoxin detection, quantitation is critical while immunochromatographic strip tests are qualitative in nature. Moreover, the sensitivity of this technique is questioned. In order to overcome these limitations, an ultrasensitive and quantitative immunochromatographic assay (ICA) for rapid and sensitive quantitation of ochratoxin A (OTA) was developed. The assay was based on a competitive format and its sensitivity was improved by using a sensitive and selective OTA monoclonal antibody (OTA-mAb). The visible ICA results were obtained within 15 min, and in addition to visual examination, they were read by the rapid color intensity portable strip reader. The visual and computational detection limits (vLOD and cLOD, respectively) for ochratoxin A were 0.2 and 0.25 ng mL(-1), respectively. These values were lower than those reported by previous studies in a range 5-2500 folds. For validation, contaminated samples including wheat, maize, rice and soybean were assayed by ICA and a standard high performance liquid chromatography (HPLC). The results were in good agreement for both ICA and HPLC methods. The average recoveries of the HPLC were in the range 72-120% while the ICA values were from 76 to 104%, confirming the accuracy and sensitivity of this method.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahmoud Sheikh-Zeinoddin
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sabihe Soleimanian-Zad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, PR China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan 430062, PR China.
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, PR China.
| | - Xin Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, PR China
| | - Xiaoqian Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, PR China
| |
Collapse
|
76
|
Poór M, Kuzma M, Matisz G, Li Y, Perjési P, Kunsági-Máté S, Kőszegi T. Further aspects of ochratoxin A-cation interactions: complex formation with zinc ions and a novel analytical application of ochratoxin A-magnesium interaction in the HPLC-FLD system. Toxins (Basel) 2014; 6:1295-307. [PMID: 24727553 PMCID: PMC4014734 DOI: 10.3390/toxins6041295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 12/25/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by different Aspergillus and Penicillium species. Since its mechanism of action is not fully understood yet, it is important to gain further insight into different interactions of OTA at the molecular level. OTA is found worldwide in many foods and drinks. Moreover, it can also be detected in human and animal tissues and body fluids, as well. Therefore, the development of highly sensitive quantitative methods for the determination of OTA is of utmost importance. OTA most likely forms complexes with divalent cations, both in cells and body fluids. In the present study, the OTA-zinc interaction was investigated and compared to OTA-magnesium complex formation using fluorescence spectroscopy and molecular modeling. Our results show that zinc(II) ion forms a two-fold higher stable complex with OTA than magnesium(II) ion. In addition, based on the enhanced fluorescence emission of OTA in its magnesium-bound form, a novel RP-HPLC-fluorescence detector (FLD) method was also established. Our results highlight that the application of magnesium chloride in alkaline eluents results in an approximately two-fold increase in sensitivity using the HPLC-FLD technique.
Collapse
Affiliation(s)
- Miklós Poór
- Institute of Laboratory Medicine, University of Pécs, Pécs H-7624, Hungary.
| | - Mónika Kuzma
- Department of Pharmaceutical Chemistry, University of Pécs, Pécs H-7624, Hungary.
| | - Gergely Matisz
- Department of General and Physical Chemistry, University of Pécs, Pécs H-7624, Hungary.
| | - Yin Li
- Department of General and Physical Chemistry, University of Pécs, Pécs H-7624, Hungary.
| | - Pál Perjési
- Department of Pharmaceutical Chemistry, University of Pécs, Pécs H-7624, Hungary.
| | - Sándor Kunsági-Máté
- Department of General and Physical Chemistry, University of Pécs, Pécs H-7624, Hungary.
| | - Tamás Kőszegi
- Institute of Laboratory Medicine, University of Pécs, Pécs H-7624, Hungary.
| |
Collapse
|
77
|
Stoffmonographie Ochratoxin A. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2014. [DOI: 10.1007/s00103-014-1939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
78
|
Dzantiev BB, Byzova NA, Urusov AE, Zherdev AV. Immunochromatographic methods in food analysis. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.11.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
79
|
Meneely J, Elliott C. Rapid surface plasmon resonance immunoassays for the determination of mycotoxins in cereals and cereal-based food products. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1673] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In recent times surface plasmon resonance has demonstrated its applicability to the detection of a wide range of contaminants in food and feed including mycotoxins in cereals and cereal-based food products. Commercially available, laboratory-based systems have exploited high affinity polyclonal, monoclonal and recombinant antibodies and robust sensing surfaces to provide rapid, accurate and sensitive means of determining these toxins. In addition many custom-built, prototype devices have shown a great deal of potential for this particular application and have included the combination of surface plasmon resonance with enzyme-derivatised sensors, molecularly imprinted polymers, fluorescence spectroscopy and the use of gold nanoparticles for signal enhancement. Of note is the lack of available devices that allow the detection of multiple mycotoxins simultaneously and portable devices that could be used in the field, therefore future research and development should focus on these areas to deliver cost-effective miniaturised devices with multiplexing capabilities.
Collapse
Affiliation(s)
- J.P. Meneely
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - C.T. Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| |
Collapse
|
80
|
Zachariasova M, Cuhra P, Hajslova J. Cross-reactivity of rapid immunochemical methods for mycotoxins detection towards metabolites and masked mycotoxins: the current state of knowledge. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2014.1701] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cross-reactivity of antibodies employed within immunochemistry-based analytical methods may lead to overestimation of the results. Under certain conditions, specifically when controlling mycotoxin maximum limits serious problems can be encountered. Not only the structurally related mycotoxins, such as their masked (conjugated) forms, but also the unidentified matrix components are responsible for concentration overestimation of respective target analytes. The cross-reactivity phenomenon may also pose a risk of miss-interpretation of the proficiency tests results, when the assigned value becomes influenced by over-estimated results reported by users of immunochemical tests. In this paper, the current state of the knowledge on trueness problems associated with the rapid screening immunochemical methods have been reviewed. Special attention is focused on discussion of cross-reactivity in the ELISA tests, because this rapid test dominates the routine screening practice. However, the cross-reactions reported in lateral flow test strips, fluorescence polarisation immunoassay, or immunosensors have also been addressed.
Collapse
Affiliation(s)
- M. Zachariasova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Institute of Chemical Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - P. Cuhra
- Czech Agriculture and Food Inspection Authority, Za Opravnou 300/6, 150 06 Prague 5, Czech Republic
| | - J. Hajslova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Institute of Chemical Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| |
Collapse
|
81
|
Miller J, Schaafsma A, Bhatnagar D, Bondy G, Carbone I, Harris L, Harrison G, Munkvold G, Oswald I, Pestka J, Sharpe L, Sumarah M, Tittlemier S, Zhou T. Mycotoxins that affect the North American agri-food sector: state of the art and directions for the future. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1624] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper summarises workshop discussions at the 5th international MYCORED meeting in Ottawa, Canada (June 2012) with over 200 participants representing academics, government and industry scientists, government officials and farming organisations (present in roughly equal proportions) from 27 countries. Workshops centred on how mycotoxins in food and feed affect value chains and trade in the region covered by the North American Free Trade Agreement. Crops are contaminated by one or more of five important mycotoxins in parts of Canada and the United States every year, and when contaminated food and feed are consumed in amounts above tolerable limits, human and animal health are at risk. Economic loss from such contamination includes reduced crop yield, grain quality, animal productivity and loss of domestic and export markets. A systematic effort by grain producers, primary, transfer, and terminal elevators, millers and food and feed processers is required to manage these contaminants along the value chain. Workshops discussed lessons learned from investments in plant genetics, fungal genomics, toxicology, analytical and sampling science, management strategies along the food and feed value chains and methods to ameliorate the effects of toxins in grain on animal production and on reducing the impact of mycotoxins on population health in developing countries. These discussions were used to develop a set of priorities and recommendations.
Collapse
Affiliation(s)
- J.D. Miller
- Department of Chemistry, Carleton University, 228 Steacie Building, Ottawa, ON K1S 5B6, Canada
| | - A.W. Schaafsma
- Ridgetown Campus, University of Guelph, 120 Main Street East, Ridgetown, ON N0P 2C0, Canada
| | - D. Bhatnagar
- Southern Regional Research Center, USDA, ARS, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - G. Bondy
- Health Canada, Food Directorate, Bureau of Chemical Safety, 251 Sir Frederick Banting Driveway, 2202C Ottawa, ON K1A 0K9, Canada
| | - I. Carbone
- Department of Plant Pathology, North Carolina State University, 851 Main Campus Drive, Suite 233, Partners III, Raleigh, NC 27606, USA
| | - L.J. Harris
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - G. Harrison
- Canadian National Millers' Association, 236 Metcalfe Street, Ottawa, ON K2P 1R3, Canada
| | - G.P. Munkvold
- Department of Plant Pathology and Microbiology, Iowa State University, 160 Seed Science Building, Ames, IA 50011, USA
| | - I.P. Oswald
- Toxalim, Research Centre in Food Toxicology, INRA, UMR1331, 180 Chemin de Tournefeuille, 31027 Toulouse, France
| | - J.J. Pestka
- Department of Microbiology and Molecular Genetics, Michigan State University, 234 GM Trout Building, East Lansing, MI 48824-1224, USA
| | - L. Sharpe
- DuPont Pioneer Hi-Bred, 7398 Queen's Line, Chatham, ON N7M 5L1, Canada
| | - M.W. Sumarah
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | - S.A. Tittlemier
- Grain Research Laboratory, Canadian Grain Commission, 1404-303 Main Street, Winnipeg, MB R3C 3G8, Canada
| | - T. Zhou
- Agriculture and Agri-Food Canada, Guelph Food Research Center, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| |
Collapse
|
82
|
Evtugyn G, Porfireva A, Stepanova V, Kutyreva M, Gataulina A, Ulakhovich N, Evtugyn V, Hianik T. Impedimetric aptasensor for ochratoxin A determination based on Au nanoparticles stabilized with hyper-branched polymer. SENSORS (BASEL, SWITZERLAND) 2013; 13:16129-45. [PMID: 24287535 PMCID: PMC3892811 DOI: 10.3390/s131216129] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 02/07/2023]
Abstract
An impedimetric aptasensor for ochratoxin A (OTA) detection has been developed on the base of a gold electrode covered with a new modifier consisting of electropolymerized Neutral Red and a mixture of Au nanoparticles suspended in the dendrimeric polymer Botlorn H30®. Thiolated aptamer specific to OTA was covalently attached to Au nanoparticles via Au-S bonding. The interaction of the aptamer with OTA induced the conformational switch of the aptamer from linear to guanine quadruplex form followed by consolidation of the surface layer and an increase of the charge transfer resistance. The aptasensor makes it possible to detect from 0.1 to 100 nM of OTA (limit of detection: 0.02 nM) in the presence of at least 50 fold excess of ochratoxin B. The applicability of the aptasensor for real sample assay was confirmed by testing spiked beer samples. The recovery of 2 nM OTA was found to be 70% for light beer and 78% for dark beer.
Collapse
Affiliation(s)
- Gennady Evtugyn
- Analytical Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (G.E.); (A.P.); (V.S.)
| | - Anna Porfireva
- Analytical Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (G.E.); (A.P.); (V.S.)
| | - Veronika Stepanova
- Analytical Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (G.E.); (A.P.); (V.S.)
| | - Marianna Kutyreva
- Inorganic Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (M.K.); (A.G.); (N.U.)
| | - Alfiya Gataulina
- Inorganic Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (M.K.); (A.G.); (N.U.)
| | - Nikolay Ulakhovich
- Inorganic Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (M.K.); (A.G.); (N.U.)
| | - Vladimir Evtugyn
- Electron Microscopy Laboratory of the Faculty of Biology, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mail:
| | - Tibor Hianik
- Electron Microscopy Laboratory of the Faculty of Biology, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mail:
| |
Collapse
|
83
|
Rhouati A, Yang C, Hayat A, Marty JL. Aptamers: a promosing tool for ochratoxin A detection in food analysis. Toxins (Basel) 2013; 5:1988-2008. [PMID: 24196457 PMCID: PMC3847711 DOI: 10.3390/toxins5111988] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 12/22/2022] Open
Abstract
The contamination of food and feed by mycotoxins has become an increasingly serious problem. Mycotoxins represent a major risk to human and animal health, as well as economics. Herein, we focus on Ochratoxin A (OTA), which is one of the most common mycotoxins contaminating feed and foodstuffs. OTA is a secondary metabolite produced by various Aspergillus and Penicillium strains. Upon ingestion, OTA has a number of acute and chronic toxic effects. It is nephrotoxic, teratogenic, immunosuppressive, and carcinogenic (group 2B). As a consequence, some regulatory limits have been introduced on the levels of OTA in several commodities. The toxic nature of OTA demands highly sensitive and selective monitoring techniques to protect human and animal health. As alternative to traditional analytical techniques, biochemical methods for OTA analysis have attained great interest in the last few decades. They are mainly based on the integration of antibodies or aptamers as biorecognition elements in sensing platforms. However, aptamers have gained more attention in affinity-based assays because of their high affinity, specificity, stability, and their easy chemical synthesis. In this brief review, we present an overview of aptamer-based assays and their applications in OTA purification and detection, appeared in the literature in the last five years.
Collapse
Affiliation(s)
- Amina Rhouati
- IMAGES, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; E-Mails: (A.R.); (C.Y.)
| | - Cheng Yang
- IMAGES, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; E-Mails: (A.R.); (C.Y.)
| | - Akhtar Hayat
- Department of Chemistry and Biomolecular science, Clarkson University, Potsdam, NY 13699, USA; E-Mail:
| | - Jean-Louis Marty
- IMAGES, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; E-Mails: (A.R.); (C.Y.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-468662254; Fax: +33-468662223
| |
Collapse
|
84
|
Increased sensitivity of lateral flow immunoassay for ochratoxin A through silver enhancement. Anal Bioanal Chem 2013; 405:9859-67. [PMID: 24162821 DOI: 10.1007/s00216-013-7428-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/03/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
Silver nucleation on gold has been exploited for signal amplification and has found application in several qualitative and quantitative bio-sensing techniques, thanks to the simplicity of the method and the high sensitivity achieved. Very recently, this technique has been tentatively applied to improve the performance of gold-based immunoassays. In this work, the exploitation of the signal amplification due to silver deposition on gold nanoparticles has been first applied to a competitive lateral flow immunoassay (LFIA). The signal enhancement due to silver allowed us to strongly reduce the amount of the competitor and of specific antibodies employed to build an LF device for measuring ochratoxin A (OTA), thus permitting the attainment of a highly sensitive assessment of OTA contamination, with a sensitivity gain of more than 10-fold compared to the gold-based LFIA that used the same immunoreagents and to all previously reported LFIA for measuring OTA. In addition, a less sensitive "quantitative" LFIA could be established, by suitably tuning competitor and antibody amounts, which was characterized by reproducible and accurate OTA determinations (RSD% 6-12%, recovery% 82-117%). The quantitative system allowed a reliable OTA quantification in wines and grape musts at the microgram per liter level requested by the European legislation, as demonstrated by a highly results obtained through the quantitative silver-enhanced LFIA and a reference HPLC-FLD on 30 samples.
Collapse
|
85
|
Thornton CR, Wills OE. Immunodetection of fungal and oomycete pathogens: established and emerging threats to human health, animal welfare and global food security. Crit Rev Microbiol 2013; 41:27-51. [PMID: 23734714 DOI: 10.3109/1040841x.2013.788995] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Filamentous fungi (moulds), yeast-like fungi, and oomycetes cause life-threatening infections of humans and animals and are a major constraint to global food security, constituting a significant economic burden to both agriculture and medicine. As well as causing localized or systemic infections, certain species are potent producers of allergens and toxins that exacerbate respiratory diseases or cause cancer and organ damage. We review the pathogenic and toxigenic organisms that are etiologic agents of both animal and plant diseases or that have recently emerged as serious pathogens of immunocompromised individuals. The use of hybridoma and phage display technologies and their success in generating monoclonal antibodies for the detection and control of fungal and oomycete pathogens are explored. Monoclonal antibodies hold enormous potential for the development of rapid and specific tests for the diagnosis of human mycoses, however, unlike plant pathology, their use in medical mycology remains to be fully exploited.
Collapse
|
86
|
Lippolis V, Pascale M, Valenzano S, Porricelli ACR, Suman M, Visconti A. Fluorescence Polarization Immunoassay for Rapid, Accurate and Sensitive Determination of Ochratoxin A in Wheat. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9627-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
87
|
Shephard G, Berthiller F, Burdaspal P, Crews C, Jonker M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Sabino M, Solfrizzo M, van Egmond H, Whitaker T. Developments in mycotoxin analysis: an update for 2011-2012. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1492] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2011 and mid- 2012. It covers the major mycotoxins aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxin, patulin, trichothecenes, and zearalenone. A section on mycotoxins in botanicals and spices is also included. Methods for mycotoxin determination continue to be developed using a wide range of analytical systems ranging from rapid immunochemical-based methods to the latest advances in mass spectrometry. This review follows the format of previous reviews in this series (i.e. sections on individual mycotoxins), but due to the rapid spread and developments in the field of multimycotoxin methods by liquid chromatography-tandem mass spectrometry, a separate section has been devoted to advances in this area of research.
Collapse
Affiliation(s)
- G.S. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa
| | - F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - P.A. Burdaspal
- Spanish Food Safety and Nutrition Agency, National Centre for Food, km 5.100, 28220 Majadahonda (Madrid), Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.A. Jonker
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St, Peoria, IL 61604, USA
| | - M. Sabino
- Instituto Adolfo Lutz, Av Dr Arnaldo 355, 01246-902 São Paulo/SP, Brazil
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - H.P. van Egmond
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|
88
|
Anfossi L, Giovannoli C, Giraudi G, Biagioli F, Passini C, Baggiani C. A lateral flow immunoassay for the rapid detection of ochratoxin A in wine and grape must. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11491-11497. [PMID: 23121293 DOI: 10.1021/jf3031666] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A one-step lateral flow immunoassay was developed for semiquantitatively detecting ochratoxin A (OTA) in wines and grape musts. Matrix-matched calibration curves carried out in blank wines showed a detection limit of 1 μg L(-1) and IC(50) of 3.2 μg L(-1). Relative standard deviations for intra- and interday precision were in the 20-40% range. A simple treatment of samples, which only included dilution with sodium bicarbonate and polyethylene glycol (4% w/v) for red and white wines and the further addition of ethanol (12% v/v) for grape musts, was established. The developed assay allowed OTA detection in 5 min and proved to be accurate and sensitive enough to allow the correct attribution of samples as compliant or noncompliant according to EU legislation. Results agreeing with those of a reference chromatographic method were obtained on 38 wines and 16 musts. Although some lateral flow devices aimed at detecting OTA have been previously described, this is the first assay capable of measuring the toxin in wine and grape must, which represent a major source of OTA dietary intake. Analytical performances of the method are comparable to or better than previously reported assays showed. In addition, the assay, including sample treatments, is extremely simple and rapid and can be effectively regarded as a one-step assay usable virtually anywhere.
Collapse
Affiliation(s)
- Laura Anfossi
- Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin, Italy.
| | | | | | | | | | | |
Collapse
|