51
|
Chen QZ, Luo F, Lu MX, Li N, Teng Y, Huang QL, Zhu N, Wang GY, Yue M, Zhang Y, Feng Y, Xiong HR, Hou W. HTNV-induced upregulation of miR-146a in HUVECs promotes viral infection by modulating pro-inflammatory cytokine release. Biochem Biophys Res Commun 2017; 493:807-813. [PMID: PMID: 28843856 DOI: 10.1016/j.bbrc.2017.08.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 10/19/2022]
Abstract
Increasing research has shown a link between viruses and miRNAs, such as miRNA-146a, in regulating virus infection and replication. In the current study, the association between miR-146a and hantaan virus (HTNV) infection in human umbilical vein endothelial cells (HUVECs) was investigated, with a focus on examining the expression of pro-inflammatory cytokines. The results showed that HTNV infection promoted the production of miR-146a in HUVECs and activated nuclear factor-κB (NF-κB) signaling, along with the upregulation of pro-inflammatory cytokines, including interleukin 8 (IL-8), C-C Motif Chemokine Ligand 5 (CCL5, also RANTES), interferon-inducible protein-10 (IP-10) and interferon beta (IFN-β). Moreover, miR-146a exhibited a negative regulatory effect on the NF-κB pathway. Accordingly, a miR-146a inhibitor increased the expression of IL-8, CCL5, IP-10 and IFN-β, whereas a miR-146a mimic reduced the levels of these cytokines. Consequently, exogenous transduction of miR-146a significantly enhanced HTNV replication in HUVEC cells. We also discovered that viral proteins (NP/GP) contributed to miR-146a expression via enhancement the activity of miR-146a promoter. In conclusion, these results imply the negative regulation of miR-146a on the production of HTNV-induced pro-inflammatory cytokines contributes to virus replication, which suggest that miR-146a may be regarded as a novel therapeutic target for HTNV infection.
Collapse
Affiliation(s)
- Qing-Zhou Chen
- State Key Laboratory of Virology, Institute of Medical Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Fan Luo
- State Key Laboratory of Virology, Institute of Medical Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Ming-Xiang Lu
- Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Ning Li
- State Key Laboratory of Virology, Institute of Medical Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Yan Teng
- State Key Laboratory of Virology, Institute of Medical Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Qiu-Ling Huang
- State Key Laboratory of Virology, Institute of Medical Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Ni Zhu
- School of Basic Medicine, Hubei University of Science and Technology, No.88 Xianning Avenue, Xianning 437100, Hubei Province, China
| | - Guan-Yi Wang
- State Key Laboratory of Virology, Institute of Medical Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Yun Zhang
- Institute of Military Medical Sciences Nanjing Command, Nanjing 210002, Jiangsu Province, China
| | - Yong Feng
- State Key Laboratory of Virology, Institute of Medical Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Hai-Rong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China.
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China; School of Basic Medicine, Hubei University of Science and Technology, No.88 Xianning Avenue, Xianning 437100, Hubei Province, China.
| |
Collapse
|
52
|
Heparan Sulfate Proteoglycan Is an Important Attachment Factor for Cell Entry of Akabane and Schmallenberg Viruses. J Virol 2017; 91:JVI.00503-17. [PMID: 28539443 DOI: 10.1128/jvi.00503-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/10/2017] [Indexed: 12/24/2022] Open
Abstract
Akabane virus (AKAV) and Schmallenberg virus (SBV) are members of the genus Orthobunyavirus, which are transmitted by arthropod vectors with a broad cellular tropism in vitro as well as in vivo Both AKAV and SBV cause arthrogryposis-hydranencephaly syndrome in ruminants. The main cellular receptor and attachment factor for entry of these orthobunyaviruses are unknown. Here, we found that AKAV and SBV infections were inhibited by the addition of heparin or enzymatic removal of cell surface heparan sulfates. To confirm this finding, we prepared heparan sulfate proteoglycan (HSPG)-knockout (KO) cells by using a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system and measured the quantities of binding of these viruses to cell surfaces. We observed a substantial reduction in AKAV and SBV binding to cells, limiting the infections by these viruses. These data demonstrate that HSPGs are important cellular attachment factors for AKAV and SBV, at least in vitro, to promote virus replication in susceptible cells.IMPORTANCE AKAV and SBV are the etiological agents of arthrogryposis-hydranencephaly syndrome in ruminants, which causes considerable economic losses in the livestock industry. Here, we identified heparan sulfate proteoglycan as a major cellular attachment factor for the entry of AKAV and SBV. Moreover, we found that heparin is a strong inhibitor of AKAV and SBV infections. Revealing the molecular mechanisms of virus-host interactions is critical in order to understand virus biology and develop novel live attenuated vaccines.
Collapse
|
53
|
Jansen van Vuren P, Wiley MR, Palacios G, Storm N, Markotter W, Birkhead M, Kemp A, Paweska JT. Isolation of a novel orthobunyavirus from bat flies (Eucampsipoda africana). J Gen Virol 2017; 98:935-945. [PMID: 28488954 PMCID: PMC5656801 DOI: 10.1099/jgv.0.000753] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Bunyaviridae family comprises viruses causing diseases of public and veterinary health importance, including viral haemorrhagic and arboviral fevers. We report the isolation, identification and genome characterization of a novel orthobunyavirus, named Wolkberg virus (WBV), from wingless bat fly ectoparasites (Eucampsipoda africana) of Egyptian fruit bats (Rousettus aegyptiacus) in South Africa. Complete genome sequence data of WBV suggests it is most closely related to two bat viruses (Mojuí dos Campos and Kaeng Khoi viruses) and an arbovirus (Nyando virus) previously shown to infect humans. WBV replicates to high titres in VeroE6 and C6-36 cells, characteristic of mosquito-borne arboviruses. These findings expand our knowledge of the diversity of orthobunyaviruses and their insect vector host range.
Collapse
Affiliation(s)
- Petrus Jansen van Vuren
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Science, University of Pretoria, South Africa
| | - Michael R. Wiley
- Centre for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Gustavo Palacios
- Centre for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Nadia Storm
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Monica Birkhead
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
| | - Alan Kemp
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
| | - Janusz T. Paweska
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Science, University of Pretoria, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Janusz T. Paweska,
| |
Collapse
|
54
|
Amroun A, Priet S, de Lamballerie X, Quérat G. Bunyaviridae RdRps: structure, motifs, and RNA synthesis machinery. Crit Rev Microbiol 2017; 43:753-778. [PMID: 28418734 DOI: 10.1080/1040841x.2017.1307805] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bunyaviridae family is the largest and most diverse family of RNA viruses. It has more than 350 members divided into five genera: Orthobunyavirus, Phlebovirus, Nairovirus, Hantavirus, and Tospovirus. They are present in the five continents, causing recurrent epidemics, epizootics, and considerable agricultural loss. The genome of bunyaviruses is divided into three segments of negative single-stranded RNA according to their relative size: L (Large), M (Medium) and S (Small) segment. Bunyaviridae RNA-dependent RNA polymerase (RdRp) is encoded by the L segment, and is in charge of the replication and transcription of the viral RNA in the cytoplasm of the infected cell. Viral RdRps share a characteristic right hand-like structure with three subdomains: finger, palm, and thumb subdomains that define the formation of the catalytic cavity. In addition to the N-terminal endonuclease domain, eight conserved motifs (A-H) have been identified in the RdRp of Bunyaviridae. In this review, we have summarized the recent insights from the structural and functional studies of RdRp to understand the roles of different motifs shared by RdRps, the mechanism of viral RNA replication, genome segment packaging by the nucleoprotein, cap-snatching, mRNA transcription, and other RNA mechanisms of bunyaviruses.
Collapse
Affiliation(s)
- Abdennour Amroun
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | - Stéphane Priet
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | - Xavier de Lamballerie
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | - Gilles Quérat
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| |
Collapse
|
55
|
Ferron F, Weber F, de la Torre JC, Reguera J. Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Res 2017; 234:118-134. [PMID: 28137457 PMCID: PMC7114536 DOI: 10.1016/j.virusres.2017.01.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 12/15/2022]
Abstract
Bunyavirus and arenavirus are important public health threats. Bunyavirus and arenavirus molecular biology, common and differential features. Implications of LACV L protein structure for understanding viral RNA synthesis. Current state and future perspectives on bunya- and arenavirus antivirals.
Bunyaviridae and Arenaviridae virus families include an important number of highly pathogenic viruses for humans. They are enveloped viruses with negative stranded RNA genomes divided into three (bunyaviruses) or two (arenaviruses) segments. Each genome segment is coated by the viral nucleoproteins (NPs) and the polymerase (L protein) to form a functional ribonucleoprotein (RNP) complex. The viral RNP provides the necessary context on which the L protein carries out the biosynthetic processes of RNA replication and gene transcription. Decades of research have provided a good understanding of the molecular processes underlying RNA synthesis, both RNA replication and gene transcription, for these two families of viruses. In this review we will provide a global view of the common features, as well as differences, of the molecular biology of Bunyaviridae and Arenaviridae. We will also describe structures of protein and protein-RNA complexes so far determined for these viral families, mainly focusing on the L protein, and discuss their implications for understanding the mechanisms of viral RNA replication and gene transcription within the architecture of viral RNPs, also taking into account the cellular context in which these processes occur. Finally, we will discuss the implications of these structural findings for the development of antiviral drugs to treat human diseases caused by members of the Bunyaviridae and Arenaviridae families.
Collapse
Affiliation(s)
- François Ferron
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany
| | | | - Juan Reguera
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France; INSERM, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
56
|
Dietzgen RG, Mann KS, Johnson KN. Plant Virus-Insect Vector Interactions: Current and Potential Future Research Directions. Viruses 2016; 8:E303. [PMID: 27834855 PMCID: PMC5127017 DOI: 10.3390/v8110303] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022] Open
Abstract
Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus-insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.
Collapse
Affiliation(s)
- Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia QLD 4072, Australia.
| | - Krin S Mann
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada.
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|