51
|
Illuminating type collections of nectriaceous fungi in Saccardo's fungarium. Persoonia - Molecular Phylogeny and Evolution of Fungi 2021; 45:221-249. [PMID: 34456378 PMCID: PMC8375352 DOI: 10.3767/persoonia.2020.45.09] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/21/2020] [Indexed: 11/25/2022]
Abstract
Specimens of Nectria spp. and Nectriella rufofusca were obtained from the fungarium of Pier Andrea Saccardo, and investigated via a morphological and molecular approach based on MiSeq technology. ITS1 and ITS2 sequences were successfully obtained from 24 specimens identified as 'Nectria' sensu Saccardo (including 20 types) and from the type specimen of Nectriella rufofusca. For Nectria ambigua, N. radians and N. tjibodensis only the ITS1 sequence was recovered. On the basis of morphological and molecular analyses new nomenclatural combinations for Nectria albofimbriata, N. ambigua, N. ambigua var. pallens, N. granuligera, N. peziza subsp. reyesiana, N. radians, N. squamuligera, N. tjibodensis and new synonymies for N. congesta, N. flageoletiana, N. phyllostachydis, N. sordescens and N. tjibodensis var. crebrior are proposed. Furthermore, the current classification is confirmed for Nectria coronata, N. cyanostoma, N. dolichospora, N. illudens, N. leucotricha, N. mantuana, N. raripila and Nectriella rufofusca. This is the first time that these more than 100-yr-old specimens are subjected to molecular analysis, thereby providing important new DNA sequence data authentic for these names.
Collapse
|
52
|
|
53
|
Aoki T, Liyanage PNH, Konkol JL, Ploetz RC, Smith JA, Kasson MT, Freeman S, Geiser DM, O'Donnell K. Three novel Ambrosia Fusarium Clade species producing multiseptate "dolphin-shaped" conidia, and an augmented description of Fusarium kuroshium. Mycologia 2021; 113:1089-1109. [PMID: 34343445 DOI: 10.1080/00275514.2021.1923300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Ambrosia Fusarium Clade (AFC) is a monophyletic lineage within clade 3 of the Fusarium solani species complex (FSSC) that currently comprises 19 genealogically exclusive species. These fungi are known or predicted to be farmed by adult female Euwallacea ambrosia beetles as a nutritional mutualism (Coleoptera: Scolytinae; Xyleborini). To date, only eight of the 19 AFC species have been described formally with Latin binomials. We describe three AFC species, previously known as AF-8, AF-10, and AF-11, based on molecular phylogenetic analysis of multilocus DNA sequence data and comparative morphological/phenotypic studies. Fusarium duplospermum (AF-8) farmed by E. perbrevis on avocado in Florida, USA, is distinguished by forming two morphologically different types of multiseptate conidia and brownish orange colonies on potato dextrose agar (PDA). Fusarium drepaniforme (AF-10), isolated from an unknown woody host in Singapore and deposited as Herb IMI 351954 in the Royal Botanic Gardens, Kew, UK, under the name F. bugnicourtii, is diagnosed by frequent production of multiseptate sickle-shaped conidia. Fusarium papillatum (AF-11), isolated from mycangia of E. perbrevis infesting tea in Kandy, Sri Lanka, forms multiseptate clavate conidia that possess a papillate apical cell protruding toward the ventral side. Lastly, we prepared an augmented description of F. kuroshium (AF-12), previously isolated from the heads or galleries of E. kuroshio in a California sycamore tree, El Cajon, California, USA, and recently validated nomenclaturally as Fusarium. Conidia formed by F. kuroshium vary widely in size and shape, suggesting a close morphological relationship with F. floridanum, compared with all other AFC species. Maximum likelihood and maximum parsimony analyses of a multilocus data set resolve these three novel AFC species, and F. kuroshium, as phylogenetically distinct based on genealogical concordance. Given the promiscuous nature of several Euwallacea species, and the overlapping geographic range of several AFC species and Euwallacea ambrosia beetles, the potential for symbiont switching among sympatric species is discussed.
Collapse
Affiliation(s)
- Takayuki Aoki
- Genetic Resources Center, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Pradeepa N H Liyanage
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, No. 90, Cumaratunga Munidasa Mawatha, Colombo 3, Sri Lanka
| | - Joshua L Konkol
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Randy C Ploetz
- Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, Florida 33031
| | - Jason A Smith
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611
| | - Matt T Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia 26506
| | - Stanley Freeman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - David M Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, US Department of Agriculture, Agricultural Research Service, 1815 North University Street, Peoria, Illinois 60604
| |
Collapse
|
54
|
Geiser DM, Al-Hatmi AMS, Aoki T, Arie T, Balmas V, Barnes I, Bergstrom GC, Bhattacharyya MK, Blomquist CL, Bowden RL, Brankovics B, Brown DW, Burgess LW, Bushley K, Busman M, Cano-Lira JF, Carrillo JD, Chang HX, Chen CY, Chen W, Chilvers M, Chulze S, Coleman JJ, Cuomo CA, de Beer ZW, de Hoog GS, Del Castillo-Múnera J, Del Ponte EM, Diéguez-Uribeondo J, Di Pietro A, Edel-Hermann V, Elmer WH, Epstein L, Eskalen A, Esposto MC, Everts KL, Fernández-Pavía SP, da Silva GF, Foroud NA, Fourie G, Frandsen RJN, Freeman S, Freitag M, Frenkel O, Fuller KK, Gagkaeva T, Gardiner DM, Glenn AE, Gold SE, Gordon TR, Gregory NF, Gryzenhout M, Guarro J, Gugino BK, Gutierrez S, Hammond-Kosack KE, Harris LJ, Homa M, Hong CF, Hornok L, Huang JW, Ilkit M, Jacobs A, Jacobs K, Jiang C, Jiménez-Gasco MDM, Kang S, Kasson MT, Kazan K, Kennell JC, Kim HS, Kistler HC, Kuldau GA, Kulik T, Kurzai O, Laraba I, Laurence MH, Lee T, Lee YW, Lee YH, Leslie JF, Liew ECY, Lofton LW, Logrieco AF, López-Berges MS, Luque AG, Lysøe E, Ma LJ, Marra RE, Martin FN, May SR, McCormick SP, McGee C, Meis JF, Migheli Q, Mohamed Nor NMI, Monod M, Moretti A, Mostert D, Mulè G, Munaut F, Munkvold GP, Nicholson P, Nucci M, O'Donnell K, Pasquali M, Pfenning LH, Prigitano A, Proctor RH, Ranque S, Rehner SA, Rep M, Rodríguez-Alvarado G, Rose LJ, Roth MG, Ruiz-Roldán C, Saleh AA, Salleh B, Sang H, Scandiani MM, Scauflaire J, Schmale DG, Short DPG, Šišić A, Smith JA, Smyth CW, Son H, Spahr E, Stajich JE, Steenkamp E, Steinberg C, Subramaniam R, Suga H, Summerell BA, Susca A, Swett CL, Toomajian C, Torres-Cruz TJ, Tortorano AM, Urban M, Vaillancourt LJ, Vallad GE, van der Lee TAJ, Vanderpool D, van Diepeningen AD, Vaughan MM, Venter E, Vermeulen M, Verweij PE, Viljoen A, Waalwijk C, Wallace EC, Walther G, Wang J, Ward TJ, Wickes BL, Wiederhold NP, Wingfield MJ, Wood AKM, Xu JR, Yang XB, Yli-Mattila T, Yun SH, Zakaria L, Zhang H, Zhang N, Zhang SX, Zhang X. Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic Fusarium that Includes the Fusarium solani Species Complex. PHYTOPATHOLOGY 2021; 111:1064-1079. [PMID: 33200960 DOI: 10.1094/phyto-08-20-0330-le] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.
Collapse
Affiliation(s)
- David M Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | | | - Takayuki Aoki
- Genetic Resources Center, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Tsutomu Arie
- Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Virgilio Balmas
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Gary C Bergstrom
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, U.S.A
| | | | - Cheryl L Blomquist
- Plant Pest Diagnostics Branch, California Department of Food and Agriculture, Sacramento, CA 95832, U.S.A
| | - Robert L Bowden
- Hard Winter Wheat Genetics Research Unit, U.S. Department of Agriculture Agricultural Research Service (USDA-ARS), Manhattan, KS 66506, U.S.A
| | - Balázs Brankovics
- Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Daren W Brown
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Lester W Burgess
- Sydney Institute of Agriculture, Faculty of Science, University of Sydney, Sydney, Australia
| | - Kathryn Bushley
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Mark Busman
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - José F Cano-Lira
- Mycology Unit and IISPV, Universitat Rovira i Virgili Medical School, Reus, Spain
| | - Joseph D Carrillo
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, U.S.A
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chi-Yu Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, People's Republic of China
| | - Martin Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Sofia Chulze
- Research Institute on Mycology and Mycotoxicology, National Scientific and Technical Research Council, National University of Rio Cuarto, Rio Cuarto, Córdoba, Argentina
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | | | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - G Sybren de Hoog
- Department of Medical Mycology and Infectious Diseases, Center of Expertise in Mycology, Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | | | - Emerson M Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | | | - Wade H Elmer
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| | - Lynn Epstein
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Akif Eskalen
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | | | - Kathryne L Everts
- Wye Research and Education Center, University of Maryland, Queenstown, MD 21658, U.S.A
| | - Sylvia P Fernández-Pavía
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán 58880, México
| | | | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - Gerda Fourie
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Rasmus J N Frandsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Stanley Freeman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Kevin K Fuller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, U.S.A
| | - Tatiana Gagkaeva
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, St. Petersburg-Pushkin, Russia
| | | | - Anthony E Glenn
- Toxicology and Mycotoxin Research Unit, USDA-ARS, Athens, GA 30605, U.S.A
| | - Scott E Gold
- Toxicology and Mycotoxin Research Unit, USDA-ARS, Athens, GA 30605, U.S.A
| | - Thomas R Gordon
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Nancy F Gregory
- Department of Plant and Soil Sciences, University of Delaware, DE 19716, U.S.A
| | - Marieka Gryzenhout
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - Josep Guarro
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Beth K Gugino
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | | | - Kim E Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Linda J Harris
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada
| | - Mónika Homa
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - Cheng-Fang Hong
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - László Hornok
- Institute of Plant Protection, Szent István University, Gödöllő, Hungary
| | - Jenn-Wen Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, University of Çukurova, Sarıçam, Adana, Turkey
| | - Adriaana Jacobs
- Biosystematics Unit, Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - Karin Jacobs
- Department of Microbiology, Stellenbosch University, Matieland, South Africa
| | - Cong Jiang
- College of Plant Protection, Northwest Agriculture and Forestry University, Xianyang, People's Republic of China
| | - María Del Mar Jiménez-Gasco
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Matthew T Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, U.S.A
| | - Kemal Kazan
- CSIRO Agriculture and Food, St. Lucia, Australia
| | - John C Kennell
- Biology Department, St. Louis University, St. Louis, MO 63101, U.S.A
| | - Hye-Seon Kim
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - H Corby Kistler
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Gretchen A Kuldau
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Oliver Kurzai
- German National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Imane Laraba
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Matthew H Laurence
- Australian Institute of Botanical Science, Royal Botanic Garden and Domain Trust, Sydney, Australia
| | - Theresa Lee
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - John F Leslie
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Edward C Y Liew
- Australian Institute of Botanical Science, Royal Botanic Garden and Domain Trust, Sydney, Australia
| | - Lily W Lofton
- Toxicology and Mycotoxin Research Unit, USDA-ARS, Athens, GA 30605, U.S.A
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, Research National Council, Bari, Italy
| | - Manuel S López-Berges
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Alicia G Luque
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Referencia de Micología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Erik Lysøe
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien, Ås, Norway
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, U.S.A
| | - Robert E Marra
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| | - Frank N Martin
- Crop Improvement and Protection Research Unit, ARS-USDA, Salinas, CA 93905, U.S.A
| | - Sara R May
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Susan P McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Chyanna McGee
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Jacques F Meis
- Department of Medical Mycology and Infectious Diseases, Center of Expertise in Mycology, Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Quirico Migheli
- Dipartimento di Agraria and Nucleo Ricerca Desertificazione, Università degli Studi di Sassari, Sassari, Italy
| | - N M I Mohamed Nor
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Michel Monod
- Laboratoire de Mycologie, Service de Dermatologie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Antonio Moretti
- Institute of Sciences of Food Production, Research National Council, Bari, Italy
| | - Diane Mostert
- Department of Plant Pathology, Stellenbosch University, Matieland, South Africa
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, Research National Council, Bari, Italy
| | | | - Gary P Munkvold
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Marcio Nucci
- Hospital Universitário, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milano, Milan, Italy
| | - Ludwig H Pfenning
- Departamento de Fitopatologia, Universidade Federal de Lavras, Lavras, Minas Gerais State, Brazil
| | - Anna Prigitano
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Stéphane Ranque
- Institut Hospitalier Universitaire Méditerranée Infection, Aix Marseille University, Marseille, France
| | - Stephen A Rehner
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A
| | - Martijn Rep
- Swammerdam Institute for Life Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerardo Rodríguez-Alvarado
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán 58880, México
| | - Lindy Joy Rose
- Department of Plant Pathology, Stellenbosch University, Matieland, South Africa
| | - Mitchell G Roth
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Carmen Ruiz-Roldán
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Amgad A Saleh
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Baharuddin Salleh
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - María Mercedes Scandiani
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Referencia de Micología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jonathan Scauflaire
- Centre de Recherche et de Formation Agronomie, Haute Ecole Louvain en Hainaut, Montignies-sur-Sambre, Belgium
| | - David G Schmale
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A
| | | | - Adnan Šišić
- Department of Ecological Plant Protection, University of Kassel, Witzenhausen, Germany
| | - Jason A Smith
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, U.S.A
| | - Christopher W Smyth
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, U.S.A
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ellie Spahr
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, U.S.A
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Emma Steenkamp
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Christian Steinberg
- Agroécologie, AgroSup Dijon, INRAE, University of Bourgogne Franche-Comté, Dijon, France
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada
| | - Haruhisa Suga
- Life Science Research Center, Gifu University, Gifu, Japan
| | - Brett A Summerell
- Australian Institute of Botanical Science, Royal Botanic Garden and Domain Trust, Sydney, Australia
| | - Antonella Susca
- Institute of Sciences of Food Production, Research National Council, Bari, Italy
| | - Cassandra L Swett
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | | | - Terry J Torres-Cruz
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Anna M Tortorano
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
| | - Martin Urban
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Lisa J Vaillancourt
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Gary E Vallad
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, U.S.A
| | - Theo A J van der Lee
- Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Dan Vanderpool
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| | - Anne D van Diepeningen
- Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Martha M Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Eduard Venter
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, South Africa
| | - Marcele Vermeulen
- Department of Microbial Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Paul E Verweij
- Department of Medical Mycology and Infectious Diseases, Center of Expertise in Mycology, Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Altus Viljoen
- Department of Plant Pathology, Stellenbosch University, Matieland, South Africa
| | - Cees Waalwijk
- Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Emma C Wallace
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Grit Walther
- German National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Jie Wang
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94702
| | - Todd J Ward
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Brian L Wickes
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229, U.S.A
| | - Nathan P Wiederhold
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX 78229, U.S.A
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Ana K M Wood
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Jin-Rong Xu
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX 78229, U.S.A
| | - Xiao-Bing Yang
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Sung-Hwan Yun
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Republic of Korea
| | - Latiffah Zakaria
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, People's Republic of China
| | - Ning Zhang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, U.S.A
| | - Sean X Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, U.S.A
| | - Xue Zhang
- College of Plant Protection, Northwest Agriculture and Forestry University, Xianyang, People's Republic of China
| |
Collapse
|
55
|
Torbati M, Arzanlou M, da Silva Santos AC. Fungicolous Fusarium Species: Ecology, Diversity, Isolation, and Identification. Curr Microbiol 2021; 78:2850-2859. [PMID: 34184111 DOI: 10.1007/s00284-021-02584-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/18/2021] [Indexed: 11/27/2022]
Abstract
Fusarium species can have different lifestyles, including those of endophytes, parasites, or pathogens of plants, as well as pathogens or mutualists of animals. Fungicolous Fusarium species have been also reported in some studies, however, the information on the Fusarium interactions with other fungi is still unclear and the diversity of fungicolous Fusarium species is poorly known. In this study, we provide a survey of fungicolous Fusarium species and their hosts, and instructions for their isolation and identification. According to the survey, 80 fungicolous Fusarium isolates were reported associated with 36 host species and 32 fungal genera. The fungicolous isolates belong to 24 species grouped in nine species complexes (SC)-Fusarium chlamydosporum SC, Fusarium fujikuroi SC, F. heterosporum SC, F. lateritium SC, F. oxysporum SC, F. incarnatum-equiseti SC, F. sambucinum SC, F. solani SC (=Neocosmospora genus), and F. tricinctum SC. Fusarium associations with other fungi were predominantly necrotrophic. The prevalent fungal hosts for fungicolous Fusarium isolates were members of the sub-kingdom Dikarya, mostly microfungi. Other hosts belong to the sub-kingdom Mucoromyceta of the kingdom Fungi and to the phylum Oomycota (fungal-like organisms) of kingdom Straminipila. With this review, we hope to highlight the fungicolous associations of Fusarium, and to expand the understanding of the ecology and diversity of these fungi.
Collapse
Affiliation(s)
- Mohsen Torbati
- Plant Protection Department, Faculty of Agriculture, University of Tabriz, 5166614766, Tabriz, Iran
| | - Mahdi Arzanlou
- Plant Protection Department, Faculty of Agriculture, University of Tabriz, 5166614766, Tabriz, Iran
| | | |
Collapse
|
56
|
Song Y, Liu X, Yang Z, Meng X, Xue R, Yu J, Al-Hatmi AMS, de Hoog GS, Li R. Molecular and MALDI-ToF MS differentiation and antifungal susceptibility of prevalent clinical Fusarium species in China. Mycoses 2021; 64:1261-1271. [PMID: 34173979 DOI: 10.1111/myc.13345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Fusarium species are emerging causative agents of superficial and disseminated human infections. Early diagnosis and treatment contribute to better prognosis of severe infection. OBJECTIVES To detect the effectiveness of matrix-assisted laser desorption ionisation time of flight mass spectrometry (MALDI-ToF MS) for Fusarium identification, and evaluate the susceptibility profiles to clinical available antifungals. METHODS All 203 clinical Fusarium isolates and 25 environmental isolates were identified by using translation elongation factor 1-alpha (TEF1) and RNA polymerase subunit II (RPB2) sequencing and MALDI-ToF MS. Antifungal susceptibility testing was determined by a microdilution method following the CLSI approved standard M38-A3 document. RESULTS Correct identification rates at the species and genus levels were 89.04% (203/228) and 95.18% (217/228), respectively, using Bruker Filamentous Fungi Library 1.0 combined with the novel database. Seven species complexes with 19 Fusarium species were identified, including F. solani (59.21%, n = 135), F. verticillioides (17.54%, n = 40), F. proliferatum (6.58%, n = 15) and F. oxysporum (4.39%, n = 10). Four uncommon species complexes (F. incarnatum-equiseti SC, F. dimerum SC, F. redolens SC and F. sporotrichioides SC) were also identified. A high degree of antifungal resistance was observed. Fusarium isolates exhibited lower MICs to luliconazole and terbinafine compared with amphotericin B and voriconazole, which in turn were significantly more active than amorolfine, fluconazole and itraconazole. CONCLUSIONS MALDI-ToF MS showed good performance in Fusarium species with an adapted Bruker library and expanded database. Fusarium isolates exhibited lower MICs to luliconazole and terbinafine compared to amphotericin B and voriconazole.
Collapse
Affiliation(s)
- Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Xiao Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Zhining Yang
- Department of Clinical Laboratory, Shanxi Provincial People's Hospital, Shanxi, China
| | - Xingye Meng
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ruoning Xue
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Jin Yu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | | | - G Sybren de Hoog
- Research Center for Medical Mycology, Peking University, Beijing, China.,Natural and Medical Sciences Research Center, Nizwa, Oman.,Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| |
Collapse
|
57
|
Walther G, Zimmermann A, Theuersbacher J, Kaerger K, von Lilienfeld-Toal M, Roth M, Kampik D, Geerling G, Kurzai O. Eye Infections Caused by Filamentous Fungi: Spectrum and Antifungal Susceptibility of the Prevailing Agents in Germany. J Fungi (Basel) 2021; 7:511. [PMID: 34206899 PMCID: PMC8307352 DOI: 10.3390/jof7070511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/08/2023] Open
Abstract
Fungal eye infections can lead to loss of vision and blindness. The disease is most prevalent in the tropics, although case numbers in moderate climates are increasing as well. This study aimed to determine the dominating filamentous fungi causing eye infections in Germany and their antifungal susceptibility profiles in order to improve treatment, including cases with unidentified pathogenic fungi. As such, we studied all filamentous fungi isolated from the eye or associated materials that were sent to the NRZMyk between 2014 and 2020. All strains were molecularly identified and antifungal susceptibility testing according to the EUCAST protocol was performed for common species. In total, 242 strains of 66 species were received. Fusarium was the dominating genus, followed by Aspergillus, Purpureocillium, Alternaria, and Scedosporium. The most prevalent species in eye samples were Fusarium petroliphilum, F. keratoplasticum, and F. solani of the Fusarium solani species complex. The spectrum of species comprises less susceptible taxa for amphotericin B, natamycin, and azoles, including voriconazole. Natamycin is effective for most species but not for Aspergillus flavus or Purpureocillium spp. Some strains of F. solani show MICs higher than 16 mg/L. Our data underline the importance of species identification for correct treatment.
Collapse
Affiliation(s)
- Grit Walther
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; (K.K.); (M.v.L.-T.); (O.K.)
| | - Anna Zimmermann
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany;
| | - Johanna Theuersbacher
- Department of Ophthalmology, University Hospital Würzburg, 97080 Würzburg, Germany; (J.T.); (D.K.)
| | - Kerstin Kaerger
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; (K.K.); (M.v.L.-T.); (O.K.)
| | - Marie von Lilienfeld-Toal
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; (K.K.); (M.v.L.-T.); (O.K.)
- Department of Haematology and Medical Oncology, University Hospital Jena, 07747 Jena, Germany
| | - Mathias Roth
- Department of Ophthalmology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.R.); (G.G.)
| | - Daniel Kampik
- Department of Ophthalmology, University Hospital Würzburg, 97080 Würzburg, Germany; (J.T.); (D.K.)
| | - Gerd Geerling
- Department of Ophthalmology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.R.); (G.G.)
| | - Oliver Kurzai
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; (K.K.); (M.v.L.-T.); (O.K.)
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany;
| |
Collapse
|
58
|
Structure and Abundance of Fusarium Communities Inhabiting the Litter of Beech Forests in Central Europe. FORESTS 2021. [DOI: 10.3390/f12060811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Members of the genus Fusarium and related genera are important components of many ecosystems worldwide and are responsible for many plant diseases. However, the structure of beech litter-inhabiting Fusarium communities and their potential role in reducing the natural regeneration of European beech are not well understood. To address this issue, we examined Fusarium communities in the litter of uneven-aged, old-growth beech-dominated forests in the Carpathians (Poland) and in the Alps (Austria), and in a managed beech stand (Poland). The fungi inhabiting beech litter were investigated using beechnuts and pine seedlings as bait. The pathogenicity of the most common species was investigated by inoculating beech germinants. Fusarium spp. were identified based on morphology and DNA sequence comparisons of RPB2 and TEF1-α genes, combined with phylogenetic analyses. Twelve fungal species were identified from 402 isolates, including nine known and three currently undescribed species. The isolates resided in three species complexes within the genus Fusarium. These were the F. oxysporum (one taxon), F. sambucinum (three taxa), and F. tricinctum (six taxa) species complexes. In addition, one isolate was assigned to the genus Neocosmospora, and one isolate could be placed within the genus Fusicolla. The most frequently isolated fungi from beechnuts and beech germinants were F. avenaceum (Fr.) Sacc., F. sporotrichioides Sherb. and Fusarium sp. B. The structure and abundance of species within Fusarium communities varied by beech forest type. The species richness of Fusarium spp. was greatest in old-growth beech-dominated stands, while abundances of Fusarium spp. were higher in managed beech-dominated stands. Pathogenicity tests showed that all four Fusarium species isolated from beechnuts and beech germinants could cause germinants to rot beech, suggesting that these fungi may play a negative role in the natural beech regeneration.
Collapse
|
59
|
|
60
|
Lynn KMT, Wingfield MJ, Durán A, Oliveira LSS, de Beer ZW, Barnes I. Novel Fusarium mutualists of two Euwallacea species infesting Acacia crassicarpa in Indonesia. Mycologia 2021; 113:536-558. [PMID: 33835895 DOI: 10.1080/00275514.2021.1875708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several species in the Euwallacea fornicatus complex have emerged as important pests of woody plants globally, particularly in habitats where they are invasive aliens. These beetles live in obligate symbioses with fungi in the genus Fusarium. In this study, we identified Euwallacea spp. and their fungal mutualists that have emerged as pests of planted Acacia crassicarpa in Riau, Indonesia. Morphological identification and phylogenetic analyses of the mitochondrial cytochrome oxidase c subunit I (COI) gene confirmed that E. similis and E. perbrevis are the most abundant beetles infesting these trees. Multilocus phylogenetic analyses of their fungal mutualists revealed their nonspecific association with six Fusarium species. These included F. rekanum and five novel Fusarium mutualists within the Fusarium solani species complex (FSSC), four of which reside in the Ambrosia Fusarium Clade (AFC). These new species are described here as F. akasia, F. awan, F. mekan, F. variasi, and F. warna.
Collapse
Affiliation(s)
- Kira M T Lynn
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Alvaro Durán
- Plant Health Program, Research and Development, Asia Pacific Resources International Holdings Ltd., Pangkalan Kerinci 28300, Riau, Indonesia
| | - Leonardo S S Oliveira
- Plant Health Program, Research and Development, Asia Pacific Resources International Holdings Ltd., Pangkalan Kerinci 28300, Riau, Indonesia
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
61
|
Badali H, Cañete-Gibas C, Patterson H, Sanders C, Mermella B, Garcia V, Mele J, Fan H, Wiederhold NP. In vitro activity of olorofim against clinical isolates of the Fusarium oxysporum and Fusarium solani species complexes. Mycoses 2021; 64:748-752. [PMID: 33755988 DOI: 10.1111/myc.13273] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Invasive fusariosis is associated with marked morbidity and mortality in immunocompromised hosts, and clinical outcomes are poor with conventional therapy. Olorofim (F901318) is an investigational antifungal in the orotomide class that selectively targets fungal dihydroorotate dehydrogenase (DHODH) causing inhibition of pyrimidine biosynthesis. OBJECTIVE We evaluated the in vitro activity of olorofim against 61 clinical isolates of the Fusarium oxysporum and F solani species complexes (FOSC and FSSC, respectively), the most prevalent causes of invasive fusariosis. METHODS Clinical isolates of FOSC (n = 45) and FSSC (n = 16) were identified using DNA sequence analysis of the translation elongation factor 1-alpha (TEF1α) and RNA polymerase II second largest subunit (RPB2). Antifungal susceptibility testing was performed by CLSI M38 broth microdilution for olorofim, amphotericin B, isavuconazole, posaconazole, voriconazole and micafungin. RESULTS Olorofim demonstrated good in vitro activity against both FOSC and FSSC. Against the 45 FOSC isolates, olorofim MICs ranged between 0.03-0.5 mg/L and 0.06->4 mg/L at the 50% and 100% inhibition endpoints, respectively. Against FSSC isolates, olorofim MIC ranged between 0.25-1 mg/L and 1->4 mg/L at 50% and 100% inhibition, respectively. While amphotericin B also demonstrated similar in vitro activity (MIC ranges 1-4 and 0.25-4 mg/L against FOSC and FSSC, respectively), neither the triazoles nor micafungin demonstrated consistent in vitro activity against Fusarium isolates at clinically relevant concentrations. CONCLUSIONS The investigational agent olorofim demonstrated good in vitro activity against FOSC and FSSC clinical isolates. Further studies are warranted to determine how well this in vitro activity translates into in vivo efficacy.
Collapse
Affiliation(s)
- Hamid Badali
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Connie Cañete-Gibas
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hoja Patterson
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carmita Sanders
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Barbara Mermella
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Victor Garcia
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - James Mele
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hongxin Fan
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nathan P Wiederhold
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
62
|
Crous P, Lombard L, Sandoval-Denis M, Seifert K, Schroers HJ, Chaverri P, Gené J, Guarro J, Hirooka Y, Bensch K, Kema G, Lamprecht S, Cai L, Rossman A, Stadler M, Summerbell R, Taylor J, Ploch S, Visagie C, Yilmaz N, Frisvad J, Abdel-Azeem A, Abdollahzadeh J, Abdolrasouli A, Akulov A, Alberts J, Araújo J, Ariyawansa H, Bakhshi M, Bendiksby M, Ben Hadj Amor A, Bezerra J, Boekhout T, Câmara M, Carbia M, Cardinali G, Castañeda-Ruiz R, Celis A, Chaturvedi V, Collemare J, Croll D, Damm U, Decock C, de Vries R, Ezekiel C, Fan X, Fernández N, Gaya E, González C, Gramaje D, Groenewald J, Grube M, Guevara-Suarez M, Gupta V, Guarnaccia V, Haddaji A, Hagen F, Haelewaters D, Hansen K, Hashimoto A, Hernández-Restrepo M, Houbraken J, Hubka V, Hyde K, Iturriaga T, Jeewon R, Johnston P, Jurjević Ž, Karalti İ, Korsten L, Kuramae E, Kušan I, Labuda R, Lawrence D, Lee H, Lechat C, Li H, Litovka Y, Maharachchikumbura S, Marin-Felix Y, Matio Kemkuignou B, Matočec N, McTaggart A, Mlčoch P, Mugnai L, Nakashima C, Nilsson R, Noumeur S, Pavlov I, Peralta M, Phillips A, Pitt J, Polizzi G, Quaedvlieg W, Rajeshkumar K, Restrepo S, Rhaiem A, Robert J, Robert V, Rodrigues A, Salgado-Salazar C, Samson R, Santos A, Shivas R, Souza-Motta C, Sun G, Swart W, Szoke S, Tan Y, Taylor J, Taylor P, Tiago P, Váczy K, van de Wiele N, van der Merwe N, Verkley G, Vieira W, Vizzini A, Weir B, Wijayawardene N, Xia J, Yáñez-Morales M, Yurkov A, Zamora J, Zare R, Zhang C, Thines M. Fusarium: more than a node or a foot-shaped basal cell. Stud Mycol 2021; 98:100116. [PMID: 34466168 PMCID: PMC8379525 DOI: 10.1016/j.simyco.2021.100116] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).
Collapse
Key Words
- Apiognomonia platani (Lév.) L. Lombard
- Atractium ciliatum Link
- Atractium pallidum Bonord.
- Calloria tremelloides (Grev.) L. Lombard
- Cephalosporium sacchari E.J. Butler
- Cosmosporella cavisperma (Corda) Sand.-Den., L. Lombard & Crous
- Cylindrodendrum orthosporum (Sacc. & P. Syd.) L. Lombard
- Dialonectria volutella (Ellis & Everh.) L. Lombard & Sand.-Den.
- Fusarium aeruginosum Delacr.
- Fusarium agaricorum Sarrazin
- Fusarium albidoviolaceum Dasz.
- Fusarium aleyrodis Petch
- Fusarium amentorum Lacroix
- Fusarium annuum Leonian
- Fusarium arcuatum Berk. & M.A. Curtis
- Fusarium aridum O.A. Pratt
- Fusarium armeniacum (G.A. Forbes et al.) L.W. Burgess & Summerell
- Fusarium arthrosporioides Sherb.
- Fusarium asparagi Delacr.
- Fusarium batatas Wollenw.
- Fusarium biforme Sherb.
- Fusarium buharicum Jacz. ex Babajan & Teterevn.-Babajan
- Fusarium cactacearum Pasin. & Buzz.-Trav.
- Fusarium cacti-maxonii Pasin. & Buzz.-Trav.
- Fusarium caudatum Wollenw.
- Fusarium cavispermum Corda
- Fusarium cepae Hanzawa
- Fusarium cesatii Rabenh.
- Fusarium citriforme Jamal.
- Fusarium citrinum Wollenw.
- Fusarium citrulli Taubenh.
- Fusarium clavatum Sherb.
- Fusarium coccinellum Kalchbr.
- Fusarium cromyophthoron Sideris
- Fusarium cucurbitae Taubenh.
- Fusarium cuneiforme Sherb.
- Fusarium delacroixii Sacc.
- Fusarium dimerum var. nectrioides Wollenw.
- Fusarium echinatum Sand.-Den. & G.J. Marais
- Fusarium epicoccum McAlpine
- Fusarium eucheliae Sartory, R. Sartory & J. Mey.
- Fusarium fissum Peyl
- Fusarium flocciferum Corda
- Fusarium gemmiperda Aderh.
- Fusarium genevense Dasz.
- Fusarium graminearum Schwabe
- Fusarium graminum Corda
- Fusarium heterosporioides Fautrey
- Fusarium heterosporum Nees & T. Nees
- Fusarium idahoanum O.A. Pratt
- Fusarium juruanum Henn.
- Fusarium lanceolatum O.A. Pratt
- Fusarium lateritium Nees
- Fusarium loncheceras Sideris
- Fusarium longipes Wollenw. & Reinking
- Fusarium lyarnte J.L. Walsh, Sangal., L.W. Burgess, E.C.Y. Liew & Summerell
- Fusarium malvacearum Taubenh.
- Fusarium martii f. phaseoli Burkh.
- Fusarium muentzii Delacr.
- Fusarium nigrum O.A. Pratt
- Fusarium oxysporum var. asclerotium Sherb.
- Fusarium palczewskii Jacz.
- Fusarium palustre W.H. Elmer & Marra
- Fusarium polymorphum Matr.
- Fusarium poolense Taubenh.
- Fusarium prieskaense G.J. Marais & Sand.-Den.
- Fusarium prunorum McAlpine
- Fusarium pusillum Wollenw.
- Fusarium putrefaciens Osterw.
- Fusarium redolens Wollenw.
- Fusarium reticulatum Mont.
- Fusarium rhizochromatistes Sideris
- Fusarium rhizophilum Corda
- Fusarium rhodellum McAlpine
- Fusarium roesleri Thüm.
- Fusarium rostratum Appel & Wollenw.
- Fusarium rubiginosum Appel & Wollenw.
- Fusarium rubrum Parav.
- Fusarium samoense Gehrm.
- Fusarium scirpi Lambotte & Fautrey
- Fusarium secalis Jacz.
- Fusarium spinaciae Hungerf.
- Fusarium sporotrichioides Sherb.
- Fusarium stercoris Fuckel
- Fusarium stilboides Wollenw.
- Fusarium stillatum De Not. ex Sacc.
- Fusarium sublunatum Reinking
- Fusarium succisae Schröt. ex Sacc.
- Fusarium tabacivorum Delacr.
- Fusarium trichothecioides Wollenw.
- Fusarium tritici Liebman
- Fusarium tuberivorum Wilcox & G.K. Link
- Fusarium tumidum var. humi Reinking
- Fusarium ustilaginis Kellerm. & Swingle
- Fusarium viticola Thüm.
- Fusarium werrikimbe J.L. Walsh, L.W. Burgess, E.C.Y. Liew & B.A. Summerell
- Fusarium willkommii Lindau
- Fusarium xylarioides Steyaert
- Fusarium zygopetali Delacr.
- Fusicolla meniscoidea L. Lombard & Sand.-Den.
- Fusicolla quarantenae J.D.P. Bezerra, Sand.-Den., Crous & Souza-Motta
- Fusicolla sporellula Sand.-Den. & L. Lombard
- Fusisporium andropogonis Cooke ex Thüm.
- Fusisporium anthophilum A. Braun
- Fusisporium arundinis Corda
- Fusisporium avenaceum Fr.
- Fusisporium clypeaster Corda
- Fusisporium culmorum Wm.G. Sm.
- Fusisporium didymum Harting
- Fusisporium elasticae Thüm.
- Fusisporium episphaericum Cooke & Ellis
- Fusisporium flavidum Bonord.
- Fusisporium hordei Wm.G. Sm.
- Fusisporium incarnatum Roberge ex Desm.
- Fusisporium lolii Wm.G. Sm.
- Fusisporium pandani Corda
- Gibberella phyllostachydicola W. Yamam.
- Hymenella aurea (Corda) L. Lombard
- Hymenella spermogoniopsis (Jul. Müll.) L. Lombard & Sand.-Den.
- Luteonectria Sand.-Den., L. Lombard, Schroers & Rossman
- Luteonectria albida (Rossman) Sand.-Den. & L. Lombard
- Luteonectria nematophila (Nirenberg & Hagedorn) Sand.-Den. & L. Lombard
- Macroconia bulbipes Crous & Sand.-Den.
- Macroconia phlogioides Sand.-Den. & Crous
- Menispora penicillata Harz
- Multi-gene phylogeny
- Mycotoxins
- Nectriaceae
- Neocosmospora
- Neocosmospora epipeda Quaedvl. & Sand.-Den.
- Neocosmospora floridana (T. Aoki et al.) L. Lombard & Sand.-Den.
- Neocosmospora merkxiana Quaedvl. & Sand.-Den.
- Neocosmospora neerlandica Crous & Sand.-Den.
- Neocosmospora nelsonii Crous & Sand.-Den.
- Neocosmospora obliquiseptata (T. Aoki et al.) L. Lombard & Sand.-Den.
- Neocosmospora pseudopisi Sand.-Den. & L. Lombard
- Neocosmospora rekana (Lynn & Marinc.) L. Lombard & Sand.-Den.
- Neocosmospora tuaranensis (T. Aoki et al.) L. Lombard & Sand.-Den.
- Nothofusarium Crous, Sand.-Den. & L. Lombard
- Nothofusarium devonianum L. Lombard, Crous & Sand.-Den.
- Novel taxa
- Pathogen
- Scolecofusarium L. Lombard, Sand.-Den. & Crous
- Scolecofusarium ciliatum (Link) L. Lombard, Sand.-Den. & Crous
- Selenosporium equiseti Corda
- Selenosporium hippocastani Corda
- Selenosporium sarcochroum Desm
- Selenosporium urticearum Corda.
- Setofusarium (Nirenberg & Samuels) Crous & Sand.-Den.
- Setofusarium setosum (Samuels & Nirenberg) Sand.-Den. & Crous.
- Sphaeria sanguinea var. cicatricum Berk.
- Sporotrichum poae Peck.
- Stylonectria corniculata Gräfenhan, Crous & Sand.-Den.
- Stylonectria hetmanica Akulov, Crous & Sand.-Den.
- Taxonomy
Collapse
Affiliation(s)
- P.W. Crous
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - L. Lombard
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - K.A. Seifert
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - H.-J. Schroers
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000, Ljubljana, Slovenia
| | - P. Chaverri
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Escuela de Biología and Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San Pedro, Costa Rica
| | - J. Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut i Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201, Reus, Spain
| | - J. Guarro
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut i Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201, Reus, Spain
| | - Y. Hirooka
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, 184-8584, Japan
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - G.H.J. Kema
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - S.C. Lamprecht
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, Western Cape, South Africa
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - A.Y. Rossman
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, 97330, USA
| | - M. Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - J.W. Taylor
- Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA, 94720-3102, USA
| | - S. Ploch
- Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - A.M. Abdel-Azeem
- Systematic Mycology Lab., Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - J. Abdollahzadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - A. Abdolrasouli
- Department of Medical Microbiology, King's College Hospital, London, UK
- Department of Infectious Diseases, Imperial College London, London, UK
| | - A. Akulov
- Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022, Kharkiv, Ukraine
| | - J.F. Alberts
- Department of Food Science and Technology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535, South Africa
| | - J.P.M. Araújo
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - H.A. Ariyawansa
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - M. Bakhshi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
| | - M. Bendiksby
- Natural History Museum, University of Oslo, Norway
- Department of Natural History, NTNU University Museum, Trondheim, Norway
| | - A. Ben Hadj Amor
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - J.D.P. Bezerra
- Setor de Micologia/Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Rua 235 - s/n – Setor Universitário - CEP: 74605-050, Universidade Federal de Goiás/Federal University of Goiás, Goiânia, Brazil
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - M.P.S. Câmara
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, 52171-900, PE, Brazil
| | - M. Carbia
- Departamento de Parasitología y Micología, Instituto de Higiene, Facultad de Medicina – Universidad de la República, Av. A. Navarro 3051, Montevideo, Uruguay
| | - G. Cardinali
- Department of Pharmaceutical Science, University of Perugia, Via Borgo 20 Giugno, 74 Perugia, Italy
| | - R.F. Castañeda-Ruiz
- Instituto de Investigaciones Fundamentales en Agricultura Tropical Alejandro de Humboldt (INIFAT), Académico Titular de la Academia de Ciencias de, Cuba
| | - A. Celis
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, 111711, Colombia
| | - V. Chaturvedi
- Mycology Laboratory, New York State Department of Health Wadsworth Center, Albany, NY, USA
| | - J. Collemare
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - D. Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, CH-2000, Neuchatel, Switzerland
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806, Görlitz, Germany
| | - C.A. Decock
- Mycothèque de l'Université catholique de Louvain (MUCL, BCCMTM), Earth and Life Institute – ELIM – Mycology, Université catholique de Louvain, Croix du Sud 2 bte L7.05.06, B-1348, Louvain-la-Neuve, Belgium
| | - R.P. de Vries
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - C.N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - N.B. Fernández
- Laboratorio de Micología Clínica, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - E. Gaya
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - C.D. González
- Laboratorio de Salud de Bosques y Ecosistemas, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, casilla 567, Valdivia, Chile
| | - D. Gramaje
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC)-University of La Rioja-Government of La Rioja, Logroño, 26007, Spain
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - M. Grube
- Institut für Biologie, Karl-Franzens-Universität Graz, Holteigasse 6, 8010, Graz, Austria
| | - M. Guevara-Suarez
- Applied genomics research group, Universidad de los Andes, Cr 1 # 18 a 12, Bogotá, Colombia
| | - V.K. Gupta
- Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - V. Guarnaccia
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Torino, Largo P. Braccini 2, 10095, Grugliasco, TO, Italy
| | | | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - D. Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, 35 K.L. Ledeganckstraat, 9000, Ghent, Belgium
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - K. Hansen
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05, Stockholm, Sweden
| | - A. Hashimoto
- Microbe Division/Japan Collection of Microorganisms RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | | | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - K.D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chaing Rai, 57100, Thailand
| | - T. Iturriaga
- Cornell University, 334 Plant Science Building, Ithaca, NY, 14850, USA
| | - R. Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - P.R. Johnston
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142, New Zealand
| | - Ž. Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ, 08077, USA
| | - İ. Karalti
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Yeditepe University, Turkey
| | - L. Korsten
- Department of Plant and Soil Sciences, University of Pretoria, P. Bag X20 Hatfield, Pretoria, 0002, South Africa
| | - E.E. Kuramae
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
- Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - I. Kušan
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - R. Labuda
- University of Veterinary Medicine, Vienna (VetMed), Institute of Food Safety, Food Technology and Veterinary Public Health, Veterinaerplatz 1, 1210 Vienna and BiMM – Bioactive Microbial Metabolites group, 3430 Tulln a.d. Donau, Austria
| | - D.P. Lawrence
- University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - H.B. Lee
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Yongbong-Dong 300, Buk-Gu, Gwangju, 61186, South Korea
| | - C. Lechat
- Ascofrance, 64 route de Chizé, 79360, Villiers-en-Bois, France
| | - H.Y. Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Y.A. Litovka
- V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russia
- Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russia
| | - S.S.N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Y. Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - B. Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - N. Matočec
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - A.R. McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, G.P.O. Box 267, Brisbane, 4001, Australia
| | - P. Mlčoch
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - L. Mugnai
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology section, University of Florence, P.le delle Cascine 28, 50144, Firenze, Italy
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - R.H. Nilsson
- Gothenburg Global Biodiversity Center at the Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden
| | - S.R. Noumeur
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, Batna, 05000, Algeria
| | - I.N. Pavlov
- V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russia
- Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russia
| | - M.P. Peralta
- Laboratorio de Micodiversidad y Micoprospección, PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Argentina
| | - A.J.L. Phillips
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016, Lisbon, Portugal
| | - J.I. Pitt
- Microbial Screening Technologies, 28 Percival Rd, Smithfield, NSW, 2164, Australia
| | - G. Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - W. Quaedvlieg
- Phytopathology, Van Zanten Breeding B.V., Lavendelweg 15, 1435 EW, Rijsenhout, the Netherlands
| | - K.C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Group, Agharkar Research Institute, Pune, Maharashtra, 411 004, India
| | - S. Restrepo
- Laboratory of Mycology and Phytopathology – (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, Cr 1 # 18 a 12, Bogotá, Colombia
| | - A. Rhaiem
- Plant Pathology and Population Genetics, Laboratory of Microorganisms, National Gene Bank, Tunisia
| | | | - V. Robert
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - C. Salgado-Salazar
- USDA-ARS Mycology & Nematology Genetic Diversity & Biology Laboratory, Bldg. 010A, Rm. 212, BARC-West, 10300 Baltimore Ave, Beltsville, MD, 20705, USA
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - A.C.S. Santos
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociências, Cidade Universitária, Av. Prof. Moraes Rego, s/n, Recife, PE, CEP: 50670-901, Brazil
| | - R.G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, 4350, Queensland, Australia
| | - C.M. Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociências, Cidade Universitária, Av. Prof. Moraes Rego, s/n, Recife, PE, CEP: 50670-901, Brazil
| | - G.Y. Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - W.J. Swart
- Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | | | - Y.P. Tan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, 4350, Queensland, Australia
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, Queensland, 4102, Australia
| | - J.E. Taylor
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, United Kingdom
| | - P.W.J. Taylor
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - P.V. Tiago
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociências, Cidade Universitária, Av. Prof. Moraes Rego, s/n, Recife, PE, CEP: 50670-901, Brazil
| | - K.Z. Váczy
- Food and Wine Research Institute, Eszterházy Károly University, 6 Leányka Street, H-3300, Eger, Hungary
| | | | - N.A. van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - G.J.M. Verkley
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - W.A.S. Vieira
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, 52171-900, PE, Brazil
| | - A. Vizzini
- Department of Life Sciences and Systems Biology, University of Torino and Institute for Sustainable Plant Protection (IPSP-SS Turin), C.N.R, Viale P.A. Mattioli, 25, I-10125, Torino, Italy
| | - B.S. Weir
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142, New Zealand
| | - N.N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - J.W. Xia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
| | - M.J. Yáñez-Morales
- Fitosanidad, Colegio de Postgraduados-Campus Montecillo, Montecillo-Texcoco, 56230 Edo. de Mexico, Mexico
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - J.C. Zamora
- Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36, Uppsala, Sweden
| | - R. Zare
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
| | - C.L. Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
- Goethe-University Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue Str. 13, D-60438, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| |
Collapse
|
63
|
Hill R, Llewellyn T, Downes E, Oddy J, MacIntosh C, Kallow S, Panis B, Dickie JB, Gaya E. Seed Banks as Incidental Fungi Banks: Fungal Endophyte Diversity in Stored Seeds of Banana Wild Relatives. Front Microbiol 2021; 12:643731. [PMID: 33841366 PMCID: PMC8024981 DOI: 10.3389/fmicb.2021.643731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/19/2021] [Indexed: 01/19/2023] Open
Abstract
Seed banks were first established to conserve crop genetic diversity, but seed banking has more recently been extended to wild plants, particularly crop wild relatives (CWRs) (e.g., by the Millennium Seed Bank (MSB), Royal Botanic Gardens Kew). CWRs have been recognised as potential reservoirs of beneficial traits for our domesticated crops, and with mounting evidence of the importance of the microbiome to organismal health, it follows that the microbial communities of wild relatives could also be a valuable resource for crop resilience to environmental and pathogenic threats. Endophytic fungi reside asymptomatically inside all plant tissues and have been found to confer advantages to their plant host. Preserving the natural microbial diversity of plants could therefore represent an important secondary conservation role of seed banks. At the same time, species that are reported as endophytes may also be latent pathogens. We explored the potential of the MSB as an incidental fungal endophyte bank by assessing diversity of fungi inside stored seeds. Using banana CWRs in the genus Musa as a case-study, we sequenced an extended ITS-LSU fragment in order to delimit operational taxonomic units (OTUs) and used a similarity and phylogenetics approach for classification. Fungi were successfully detected inside just under one third of the seeds, with a few genera accounting for most of the OTUs-primarily Lasiodiplodia, Fusarium, and Aspergillus-while a large variety of rare OTUs from across the Ascomycota were isolated only once. Fusarium species were notably abundant-of significance in light of Fusarium wilt, a disease threatening global banana crops-and so were targeted for additional sequencing with the marker EF1α in order to delimit species and place them in a phylogeny of the genus. Endophyte community composition, diversity and abundance was significantly different across habitats, and we explored the relationship between community differences and seed germination/viability. Our results show that there is a previously neglected invisible fungal dimension to seed banking that could well have implications for the seed collection and storage procedures, and that collections such as the MSB are indeed a novel source of potentially useful fungal strains.
Collapse
Affiliation(s)
- Rowena Hill
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
- School of Biological and Chemical Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Theo Llewellyn
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Elizabeth Downes
- Department for Environment, Food and Rural Affairs, London, United Kingdom
| | - Joseph Oddy
- Department of Plant Science, Rothamsted Research, Harpenden, United Kingdom
| | - Catriona MacIntosh
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
- School of Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simon Kallow
- Collections Department, Royal Botanic Gardens, Kew, Millennium Seed Bank, Ardingly, United Kingdom
- Division of Crop Biotechnics, Department of Biosystems, Faculty of Bioscience Engineering, University of Leuven, Leuven, Belgium
| | - Bart Panis
- Bioversity International, Montpellier, France
| | - John B. Dickie
- Collections Department, Royal Botanic Gardens, Kew, Millennium Seed Bank, Ardingly, United Kingdom
| | - Ester Gaya
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| |
Collapse
|
64
|
Hsu LH, Su CY, Sun PL, Chen YL. Fusarium solani species complex infection in elasmobranchs: A case report for rough-tail stingray with valid antifungal therapy. Med Mycol Case Rep 2021; 32:34-38. [PMID: 33732609 PMCID: PMC7941026 DOI: 10.1016/j.mmcr.2021.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 10/26/2022] Open
Abstract
Fusarium species are common plant and animal pathogens. For humans, there are two dominant species complexes, F. solani species complex (FSSC) and F. oxysporum species complex (FOSC), which both infect immunocompromised individuals. However, there are few reports related to elasmobranchs infected by Fusarium species. In this study, we report a case of a rough-tail stingray from an ocean park infected by FSSC diagnosed using histopathology and microscopic observation, with morphological characteristics and molecular techniques used to identify the pathogen. Histopathology showed fungal hyphae invading stingray tissues, while micro/macroconidia were found under the microscope. We identified this pathogen as FSSC 12 through phylogenetic analysis using internal transcribed spacer (ITS) and elongation factor 1-alpha (EF1-α) sequences. Furthermore, we report that application of voriconazole (orally) and terbinafine (topically) constituted an effective therapy, curing the stingray.
Collapse
Affiliation(s)
- Li-Hang Hsu
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chen-Yi Su
- Farglory Ocean Park, No. 189, Fude Road, Hualien 97449, Taiwan.,Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Pei-Lun Sun
- Department of Dermatology and Research Laboratory of Medical Mycology, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fushin St., Taoyuan 33305, Taiwan.,College of Medicine, Chang Gung University, No.259, Wenhua 1st Rd., Taoyuan, 33302, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
65
|
Karunarathna SC, Dong Y, Karasaki S, Tibpromma S, Hyde KD, Lumyong S, Xu J, Sheng J, Mortimer PE. Discovery of novel fungal species and pathogens on bat carcasses in a cave in Yunnan Province, China. Emerg Microbes Infect 2021; 9:1554-1566. [PMID: 32573334 PMCID: PMC7473127 DOI: 10.1080/22221751.2020.1785333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Virulent infectious fungal diseases, in natural and managed landscapes, are increasing. Fungal diseases in humans, animals and plants have caused die-off and extinction events and have become a threat to food security. A caving expedition in Yunnan Province, China, revealed two bat carcasses covered in fungal mycelia. Eleven fungal isolates were obtained from these bat carcasses, and morphological observations and multigene phylogenetic analyses revealed they were Fusarium incarnatum, Mucor hiemalis and Trichoderma harzianum and four new species, Mortierella rhinolophicola, M. multispora, M. yunnanensis and Neocosmospora pallidimors. One of the more alarming findings is that a number of infections related to Neocosmospora, previously associated with human and animal mycotoxicoses, are reported to be increasing, and here we present a new species from this genus, isolated from dead bats. Due to the ecosystem services provided by bats, and the close relationship between bats and humans, future research should focus on the impacts and significance of N. pallidimors to human and animal health, examining its pathogenicity and secondary metabolites. Taxonomic descriptions, color images of the habitat, in situ samples, microstructures and cultures are presented. SEM photographs of microstructures and phylogenetic trees showing the placement of new and known species are also provided.
Collapse
Affiliation(s)
- Samantha Chandranath Karunarathna
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, People's Republic of China.,World Agroforestry Centre, Kunming, Yunnan, People's Republic of China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, People's Republic of China
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, People's Republic of China
| | - Seigi Karasaki
- Energy and Resources Group, University of California, Berkeley, CA, USA
| | - Saowaluck Tibpromma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, People's Republic of China.,World Agroforestry Centre, Kunming, Yunnan, People's Republic of China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, People's Republic of China
| | - Kevin David Hyde
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, People's Republic of China.,World Agroforestry Centre, Kunming, Yunnan, People's Republic of China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, People's Republic of China.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chinag Rai, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Jianchu Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, People's Republic of China.,World Agroforestry Centre, Kunming, Yunnan, People's Republic of China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, People's Republic of China
| | - Jun Sheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, People's Republic of China.,Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Peter Edward Mortimer
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, People's Republic of China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
66
|
Brizuela AM, De la Lastra E, Marín-Guirao JI, Gálvez L, de Cara-García M, Capote N, Palmero D. Fusarium Consortium Populations Associated with Asparagus Crop in Spain and Their Role on Field Decline Syndrome. J Fungi (Basel) 2020; 6:E336. [PMID: 33291584 PMCID: PMC7761792 DOI: 10.3390/jof6040336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 01/03/2023] Open
Abstract
Asparagus Decline Syndrome (ADS) is one of the main phytosanitary problems of asparagus crop worldwide. Diseased plants and soil samples from 41 fields from three main production areas of Spain were surveyed. Eight Fusarium species belonging to seven species complexes were identified in soils: F. oxysporum, F. proliferatum, F. redolens, F. solanisensu stricto, F. equiseti, F. culmorum, F. compactum and F. acuminatum. Fusarium oxysporum was the most prevalent species. Statistical correlation (R2 = 88%) was established between F. oxysporum inoculum density and the average temperature of the warmest month. A relationship was also established between three crop factors (average temperature, crop age and F. oxysporum inoculum density) and field disease indices. Significant differences were observed between the distribution of F. oxysporum propagules in white and green asparagus fields. Thirteen Fusarium species belonging to seven species complexes were identified from roots of diseased plants, being F. oxysporum the most prevalent. F. proliferatum, F. oxysporum and F. redolens showed pathogenicity to asparagus and were the main species associated to ADS. Fusarium oxysporum was the species with the highest genetic diversity displaying 14 sequence-based haplotypes with no geographic differentiation. This work contributes to understanding the Fusarium complex associated to ADS for developing accurate integrated disease management strategies.
Collapse
Affiliation(s)
- Alexandri María Brizuela
- Department of Agricultural Production, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (A.M.B.); (L.G.)
| | - Eduardo De la Lastra
- Institute for Research and Training in Agriculture and Fisheries, IFAPA Las Torres. Ctra. Sevilla, Cazalla, Km. 12,2, Alcalá del Río, 41200 Sevilla, Spain;
| | - José Ignacio Marín-Guirao
- Institute for Research and Training in Agriculture and Fisheries, IFAPA La Mojonera, Camino San Nicolás, 1. La Mojonera, 04745 Almería, Spain; (J.I.M.-G.); (M.d.C.-G.)
| | - Laura Gálvez
- Department of Agricultural Production, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (A.M.B.); (L.G.)
| | - Miguel de Cara-García
- Institute for Research and Training in Agriculture and Fisheries, IFAPA La Mojonera, Camino San Nicolás, 1. La Mojonera, 04745 Almería, Spain; (J.I.M.-G.); (M.d.C.-G.)
| | - Nieves Capote
- Institute for Research and Training in Agriculture and Fisheries, IFAPA Las Torres. Ctra. Sevilla, Cazalla, Km. 12,2, Alcalá del Río, 41200 Sevilla, Spain;
| | - Daniel Palmero
- Department of Agricultural Production, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (A.M.B.); (L.G.)
| |
Collapse
|
67
|
Liu QL, Li JQ, Wingfield MJ, Duong TA, Wingfield BD, Crous PW, Chen SF. Reconsideration of species boundaries and proposed DNA barcodes for Calonectria. Stud Mycol 2020; 97:100106. [PMID: 34322181 PMCID: PMC8295567 DOI: 10.1016/j.simyco.2020.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Calonectria represents a genus of phytopathogenic ascomycetous fungi with a worldwide distribution. In recent years, there has been an increase in the number of taxonomic studies on these fungi. Currently, there are 169 described species of Calonectria based on comparisons of DNA sequence data, combined with morphological characteristics. However, for some of these species, the sequence data utilised at the time of their description were relatively limited. This has justified an urgent need to reconsider the species boundaries for Calonectria based on robust genus-wide phylogenetic analyses. In this study, we utilised 240 available isolates including the ex-types of 128 Calonectria species, and re-sequenced eight gene regions (act, cmdA, his3, ITS, LSU, rpb2, tef1 and tub2) for them. Sequences for 44 Calonectria species, for which cultures could not be obtained, were downloaded from GenBank. DNA sequence data of all the 169 Calonectria species were then used to determine their phylogenetic relationships. As a consequence, 51 species were reduced to synonymy, two new species were identified, and the name Ca. lauri was validated. This resulted in the acceptance of 120 clearly defined Calonectria spp. The overall data revealed that the genus includes 11 species complexes, distributed across the Prolate and Sphaero-Naviculate Groups known to divide Calonectria. The results also made it possible to develop a robust set of DNA barcodes for Calonectria spp. To accomplish this goal, we evaluated the outcomes of each of the eight candidate DNA barcodes for the genus, as well as for each of the 11 species complexes. No single gene region provided a clear identity for all Calonectria species. Sequences of the tef1 and tub2 genes were the most reliable markers; those for the cmdA, his3, rpb2 and act gene regions also provided a relatively effective resolution for Calonectria spp., while the ITS and LSU failed to produce useful barcodes for species discrimination. At the species complex level, results showed that the most informative barcodes were inconsistent, but that a combination of six candidate barcodes (tef1, tub2, cmdA, his3, rpb2 and act) provided stable and reliable resolution for all 11 species complexes. A six-gene combined phylogeny resolved all 120 Calonectria species, and revealed that tef1, tub2, cmdA, his3, rpb2 and act gene regions are effective DNA barcodes for Calonectria.
Collapse
Affiliation(s)
- Q L Liu
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022, GuangDong Province, China.,State Key Laboratory of Tree Genetics and Breeding (SKLTGB), Chinese Academy of Forestry (CAF), Haidian District, 100091, Beijing, China.,Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - J Q Li
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022, GuangDong Province, China.,State Key Laboratory of Tree Genetics and Breeding (SKLTGB), Chinese Academy of Forestry (CAF), Haidian District, 100091, Beijing, China.,Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - M J Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - T A Duong
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - B D Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - P W Crous
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa.,Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT Utrecht, the Netherlands
| | - S F Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022, GuangDong Province, China.,State Key Laboratory of Tree Genetics and Breeding (SKLTGB), Chinese Academy of Forestry (CAF), Haidian District, 100091, Beijing, China
| |
Collapse
|
68
|
No to Neocosmospora: Phylogenomic and Practical Reasons for Continued Inclusion of the Fusarium solani Species Complex in the Genus Fusarium. mSphere 2020; 5:5/5/e00810-20. [PMID: 32938701 PMCID: PMC7494836 DOI: 10.1128/msphere.00810-20] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This article is to alert medical mycologists and infectious disease specialists of recent name changes of medically important species of the filamentous mold Fusarium Fusarium species can cause localized and life-threating infections in humans. Of the 70 Fusarium species that have been reported to cause infections, close to one-third are members of the Fusarium solani species complex (FSSC), and they collectively account for approximately two-thirds of all reported Fusarium infections. Many of these species were recently given scientific names for the first time by a research group in the Netherlands, but they were misplaced in the genus Neocosmospora In this paper, we present genetic arguments that strongly support inclusion of the FSSC in Fusarium There are potentially serious consequences associated with using the name Neocosmospora for Fusarium species because clinicians need to be aware that fusaria are broadly resistant to the spectrum of antifungals that are currently available.
Collapse
|
69
|
Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Öpik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL. Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020; 11:14. [PMID: 32714773 PMCID: PMC7353689 DOI: 10.1186/s43008-020-00033-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
True fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
| | - M. Catherine Aime
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| | - Andrew N. Miller
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820-6970 USA
| | - Hiran A. Ariyawansa
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipe City, Taiwan
| | - Takayuki Aoki
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Agriculture and Food Research Organization, Genetic Resources Center, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Gianluigi Cardinali
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
| | - Pedro W. Crous
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Irina S. Druzhinina
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - David M. Geiser
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802 USA
| | - David L. Hawksworth
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS UK
- Geography and Environment, University of Southampton, Southampton, SO17 1BJ UK
- Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Kevin D. Hyde
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- World Agroforestry Centre, East and Central Asia, Kunming, 650201 Yunnan China
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Rai, 50150 Thailand
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Peter R. Johnston
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Manaaki Whenua – Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand
| | | | - Elaine Malosso
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Micologia, Laboratório de Hifomicetos de Folhedo, Avenida da Engenharia, s/n Cidade Universitária, Recife, PE 50.740-600 Brazil
| | - Tom W. May
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Victoria 3004 Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Maarja Öpik
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- University of Tartu, 40 Lai Street, 51 005 Tartu, Estonia
| | - Vincent Robert
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marc Stadler
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marco Thines
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 9, 60439 Frankfurt (Main); Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Andrey M. Yurkov
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ning Zhang
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| | - Conrad L. Schoch
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|
70
|
Najafzadeh MJ, Dolatabadi S, de Hoog S, Esfahani MK, Haghani I, Aghili SR, Ghazvini RD, Rezaei-Matehkolaei A, Abastabar M, Al-Hatmi AMS. Phylogenetic Analysis of Clinically Relevant Fusarium Species in Iran. Mycopathologia 2020; 185:515-525. [PMID: 32506392 DOI: 10.1007/s11046-020-00460-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/22/2020] [Indexed: 10/20/2022]
Abstract
Fungi of the genus Fusarium are well known as major plant pathogens but also cause a broad spectrum of human infections. Sixty-three clinical isolates, collected during 2014-2017, were identified using a part of the TEF1 gene as barcoding marker. Fusarium fujikuroi species complex (FFSC, n = 41, 65%) showed to be the dominant etiological agent, followed by F. solani species complex (FSSC, n = 14, 22%) and F. oxysporum species complex (FOSC, n = 7, 11%). There was one strain belonging to F. lateritium species complex (FLSC, n = 1, 1.5%). For final identification, a phylogenetic tree was constructed including the type strains of each species complex. Most cases of fusariosis were due to nail infection (n = 38, 60.3%), followed by keratitis (n = 22, 34%). Fusarium infections are difficult to be treated due to their intrinsic resistance to different azoles; however, accurate and fast identification of etiological agents may enhance management of the infection. We present the first phylogenetic study on clinical Fusarium spp. from Iran.
Collapse
Affiliation(s)
- Mohammad Javad Najafzadeh
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Dolatabadi
- Faculty of Engineering, Sabzevar University of New Technology, Sabzevar, Iran
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Foundation Atlas of Clinical Fungi, Hilversum, The Netherlands
| | - Mahmoud Karimizadeh Esfahani
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Haghani
- Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Reza Aghili
- Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roshanak Daei Ghazvini
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rezaei-Matehkolaei
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Abdullah M S Al-Hatmi
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands. .,Foundation Atlas of Clinical Fungi, Hilversum, The Netherlands. .,Ministry of Health, Directorate General of Health Services, Ibri, Oman.
| |
Collapse
|
71
|
Pérez-Hernández A, Rocha LO, Porcel-Rodríguez E, Summerell BA, Liew ECY, Gómez-Vázquez JM. Pathogenic, Morphological, and Phylogenetic Characterization of Fusarium solani f. sp. cucurbitae Isolates From Cucurbits in Almería Province, Spain. PLANT DISEASE 2020; 104:1465-1476. [PMID: 32191160 DOI: 10.1094/pdis-09-19-1954-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fusarium solani f. sp. cucurbitae (syn. Neocosmosporum cucurbitae) is one of the most devastating soilborne pathogens affecting the production of cucurbits worldwide. Since its first detection in Almería Province in Spain in the spring of 2007, it has become one of the main soilborne pathogens affecting zucchini production. It has also been reported on melon, watermelon, and squash rootstocks in Spain, representing a high risk of dissemination in the area. The objectives of this study were to investigate the incidence and distribution of this disease in southeastern Spain and characterize isolates collected over 5 years. These strains were characterized on the basis of greenhouse aggressiveness assays on a range of cucurbit hosts, morphological characteristics, and elongation factor 1-α and RNA polymerase II second largest subunit phylogenies. All pathogenic isolates were highly aggressive on zucchini plants, causing a high mortality rate a few weeks after inoculation. The rest of the cucurbit hosts showed differential susceptibility to the pathogen, with cucumber being the least susceptible. Plants belonging to other families remained asymptomatic. Morphological characterization revealed the formation of verticilate monophialides and chlamydospores forming long chains, characteristics not described for this forma specialis. Phylogenetic studies of both the individual loci and combined datasets revealed that all pathogenic isolates clustered together with strong monophyletic support, nested within clade 3 in the F. solani species complex.
Collapse
Affiliation(s)
| | - Liliana O Rocha
- Departamento de Ciencia de los Alimentos, Universidade Estadual de Campinas, Campinas, SP 13.083-862, Brazil
| | | | - Brett A Summerell
- The Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia
| | - Edward C Y Liew
- The Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia
| | | |
Collapse
|
72
|
Santos ACDS, Diniz AG, Tiago PV, Oliveira NTD. Entomopathogenic Fusarium species: a review of their potential for the biological control of insects, implications and prospects. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2019.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
73
|
Bragard C, Dehnen‐Schmutz K, Di Serio F, Gonthier P, Jacques M, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Reignault PL, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Chatzivassiliou E, Debode J, Manceau C, de la Peña E, Gardi C, Mosbach‐Schulz O, Preti S, Potting R. Commodity risk assessment of Robinia pseudoacacia plants from Israel. EFSA J 2020; 18:e06039. [PMID: 32874255 PMCID: PMC7448033 DOI: 10.2903/j.efsa.2020.6039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The EFSA Panel on Plant Health was requested to prepare and deliver risk assessments for commodities listed in the relevant Implementing Acts as 'High risk plants, plant products and other objects' [Commission Implementing Regulation (EU) 2018/2019 establishing a provisional list of high risk plants, plant products or other objects, within the meaning of Article 42 of Regulation (EU) 2016/2031]. The current Scientific Opinion covers all plant health risks posed by bare rooted plants for planting of Robinia pseudoacacia (1 year old with a stem diameter of less than 2.5 cm) imported from Israel, taking into account the available scientific information, including the technical information provided by Israel by 26 December 2019. The relevance of an EU-quarantine pest for this opinion was based on evidence that: (i) the pest is present in Israel; (ii) R. pseudoacacia is a host of the pest, and (iii) the pest can be associated with the commodity. The relevance of this opinion for other non EU-regulated pests was based on evidence that: (i) the pest is present in Israel (ii) the pest is absent in the EU; (iii) R. pseudoacacia is a host of the pest; (iv) the pest can be associated with the commodity and (v) the pest may have an impact and can pose a potential risk for the EU territory. Two pests (one insect and one fungus, Euwallacea fornicatus and Fusarium euwallaceae) that fulfilled all criteria were selected for further evaluation. For the two selected pests, the risk mitigation measures proposed in the technical dossier from Israel were evaluated. Limiting factors in the effectiveness of the measures were documented. For the selected pests an expert judgement is given on the likelihood of pest freedom taking into consideration the risk mitigation measures acting on the pest, including uncertainties associated with the assessment, therefore the Panel is 95% sure that 9,950 or more plants per 10,000 will be free from these two pests.
Collapse
|
74
|
Lynn KMT, Wingfield MJ, Durán A, Marincowitz S, Oliveira LSS, de Beer ZW, Barnes I. Euwallacea perbrevis (Coleoptera: Curculionidae: Scolytinae), a confirmed pest on Acacia crassicarpa in Riau, Indonesia, and a new fungal symbiont; Fusarium rekanum sp. nov. Antonie van Leeuwenhoek 2020; 113:803-823. [DOI: 10.1007/s10482-020-01392-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/04/2020] [Indexed: 01/05/2023]
|
75
|
Gleason FH, Allerstorfer M, Lilje O. Newly emerging diseases of marine turtles, especially sea turtle egg fusariosis (SEFT), caused by species in the Fusarium solani complex (FSSC). Mycology 2020; 11:184-194. [PMID: 33062381 PMCID: PMC7534349 DOI: 10.1080/21501203.2019.1710303] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sea turtles are presently considered severely endangered species that are historically threatened by many environmental factors. Recently, additional threats to sea turtles from two pathogenic species of fungi in the Fusarium solani species complex (F. falciforme and F. keratoplasticum) have been identified. These species infect marine turtle eggs, causing sea turtle egg fusariosis, and kill their embryos, with recent reports of hatch-failure in seven globally distributed species of endangered sea turtles (Caretta caretta, Chelonia mydas, Dermochelys coriaceae, Eretmochelys imbricata, Lepidochelys olivacea, Lepidochelys kempi and Natator depressus). Mycelia and spores of pathogenic species of Fusarium are produced in disturbed terrestrial soils and are transported to the ocean in coastal run off. We propose that these fungi grow on floating particles of plant tissues (leaves and wood), animal tissues, silt and plastics, which are carried by wind and currents and the turtles themselves to the beaches where the turtles lay their eggs.
Collapse
Affiliation(s)
- Frank H Gleason
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Monika Allerstorfer
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Osu Lilje
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|