51
|
Transferrin targeted liposomal 5-fluorouracil induced apoptosis via mitochondria signaling pathway in cancer cells. Life Sci 2017; 194:104-110. [PMID: 29275107 DOI: 10.1016/j.lfs.2017.12.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 01/17/2023]
Abstract
The purpose of this study was to prepare transferrin (Tf) targeted liposomal 5-Fluorouracil (5FU) to improve the safety and efficacy of the drug. Liposomes were prepared using thin layer method. Morphology of liposomes was characterized by transmission electron microscopy (TEM) and their particle size was also determined. The in vitro cytotoxicity was investigated via MTT assay on HT-29 (as cancer cell) and fibroblast (as normal cell). Moreover, cytotoxicity mechanism of targeted liposomes was determined through the production of reactive oxygen species (ROS), mitochondrial membrane potential (∆Ψm) and release of cytochrome c. Results showed that encapsulation efficiency (EE%) was 58.66±0.58 and average size of liposomes was 107nm. Also, nano-particles were spherical as shown by TEM. MTT assay on HT-29 cells revealed the higher cytotoxic activity of targeted liposomes in comparison to free drug and non-targeted liposome. In contrast, comparing with cancer cells, targeted liposomes had no cytotoxic effect on normal cells. In addition, targeted liposomes induced apoptosis through activation of mitochondrial apoptosis pathways, as evidenced by decreased mitochondrial membrane potential and release of cytochrome c. Results of the study indicated that targeted liposomes would provide a potential strategy to treat colon cancer by inducing apoptosis via mitochondria signaling pathway with reducing dose of the drug and resulting fewer side-effects.
Collapse
|
52
|
Babu A, Amreddy N, Muralidharan R, Pathuri G, Gali H, Chen A, Zhao YD, Munshi A, Ramesh R. Chemodrug delivery using integrin-targeted PLGA-Chitosan nanoparticle for lung cancer therapy. Sci Rep 2017; 7:14674. [PMID: 29116098 PMCID: PMC5676784 DOI: 10.1038/s41598-017-15012-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
In this study, we report the efficacy of RGD (arginine-glycine-aspartic acid) peptide-modified polylactic acid-co-glycolic acid (PLGA)-Chitosan nanoparticle (CSNP) for integrin αvβ3 receptor targeted paclitaxel (PTX) delivery in lung cancer cells and its impact on normal cells. RGD peptide-modified chitosan was synthesized and then coated onto PTX-PLGA nanoparticles prepared by emulsion-solvent evaporation. PTX-PLGA-CSNP-RGD displayed favorable physicochemical properties for a targeted drug delivery system. The PTX-PLGA-CSNP-RGD system showed increased uptake via integrin receptor mediated endocytosis, triggered enhanced apoptosis, and induced G2/M cell cycle arrest and more overall cytotoxicity than its non-targeted counterpart in cancer cells. PTX-PLGA-CSNP-RGD showed less toxicity in lung fibroblasts than in cancer cells, may be attributed to low drug sensitivity, nevertheless the study invited close attention to their transient overexpression of integrin αvβ3 and cautioned against corresponding uptake of toxic drugs, if any at all. Whereas, normal human bronchial epithelial (NHBE) cells with poor integrin αvβ3 expression showed negligible toxicity to PTX-PLGA-CSNP-RGD, at equivalent drug concentrations used in cancer cells. Further, the nanoparticle demonstrated its capacity in targeted delivery of Cisplatin (CDDP), a drug having physicochemical properties different to PTX. Taken together, our study demonstrates that PLGA-CSNP-RGD is a promising nanoplatform for integrin targeted chemotherapeutic delivery to lung cancer.
Collapse
Affiliation(s)
- Anish Babu
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Narsireddy Amreddy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Ranganayaki Muralidharan
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Gopal Pathuri
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Hariprasad Gali
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Allshine Chen
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Yan D Zhao
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA. .,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA. .,Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.
| |
Collapse
|
53
|
Millard M, Yakavets I, Zorin V, Kulmukhamedova A, Marchal S, Bezdetnaya L. Drug delivery to solid tumors: the predictive value of the multicellular tumor spheroid model for nanomedicine screening. Int J Nanomedicine 2017; 12:7993-8007. [PMID: 29184400 PMCID: PMC5673046 DOI: 10.2147/ijn.s146927] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The increasing number of publications on the subject shows that nanomedicine is an attractive field for investigations aiming to considerably improve anticancer chemotherapy. Based on selective tumor targeting while sparing healthy tissue, carrier-mediated drug delivery has been expected to provide significant benefits to patients. However, despite reduced systemic toxicity, most nanodrugs approved for clinical use have been less effective than previously anticipated. The gap between experimental results and clinical outcomes demonstrates the necessity to perform comprehensive drug screening by using powerful preclinical models. In this context, in vitro three-dimensional models can provide key information on drug behavior inside the tumor tissue. The multicellular tumor spheroid (MCTS) model closely mimics a small avascular tumor with the presence of proliferative cells surrounding quiescent cells and a necrotic core. Oxygen, pH and nutrient gradients are similar to those of solid tumor. Furthermore, extracellular matrix (ECM) components and stromal cells can be embedded in the most sophisticated spheroid design. All these elements together with the physicochemical properties of nanoparticles (NPs) play a key role in drug transport, and therefore, the MCTS model is appropriate to assess the ability of NP to penetrate the tumor tissue. This review presents recent developments in MCTS models for a better comprehension of the interactions between NPs and tumor components that affect tumor drug delivery. MCTS is particularly suitable for the high-throughput screening of new nanodrugs.
Collapse
Affiliation(s)
- Marie Millard
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine.,Research Department, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Ilya Yakavets
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine.,Research Department, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France.,Laboratory of Biophysics and Biotechnology
| | - Vladimir Zorin
- Laboratory of Biophysics and Biotechnology.,International Sakharov Environmental Institute, Belarusian State University, Minsk, Belarus
| | - Aigul Kulmukhamedova
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine.,Research Department, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Radiology, Medical Company Sunkar, Almaty, Kazakhstan
| | - Sophie Marchal
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine.,Research Department, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine.,Research Department, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
54
|
Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems. Pharmaceutics 2017; 9:E46. [PMID: 29036899 PMCID: PMC5750652 DOI: 10.3390/pharmaceutics9040046] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/01/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer cells have characteristics of acquired and intrinsic resistances to chemotherapy treatment-due to the hostile tumor microenvironment-that create a significant challenge for effective therapeutic regimens. Multidrug resistance, collateral toxicity to normal cells, and detrimental systemic side effects present significant obstacles, necessitating alternative and safer treatment strategies. Traditional administration of chemotherapeutics has demonstrated minimal success due to the non-specificity of action, uptake and rapid clearance by the immune system, and subsequent metabolic alteration and poor tumor penetration. Nanomedicine can provide a more effective approach to targeting cancer by focusing on the vascular, tissue, and cellular characteristics that are unique to solid tumors. Targeted methods of treatment using nanoparticles can decrease the likelihood of resistant clonal populations of cancerous cells. Dual encapsulation of chemotherapeutic drug allows simultaneous targeting of more than one characteristic of the tumor. Several first-generation, non-targeted nanomedicines have received clinical approval starting with Doxil® in 1995. However, more than two decades later, second-generation or targeted nanomedicines have yet to be approved for treatment despite promising results in pre-clinical studies. This review highlights recent studies using targeted nanoparticles for cancer treatment focusing on approaches that target either the tumor vasculature (referred to as 'vascular targeting'), the tumor microenvironment ('tissue targeting') or the individual cancer cells ('cellular targeting'). Recent studies combining these different targeting methods are also discussed in this review. Finally, this review summarizes some of the reasons for the lack of clinical success in the field of targeted nanomedicines.
Collapse
Affiliation(s)
- Janel Kydd
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
| | - Rahul Jadia
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
| | - Praveena Velpurisiva
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
| | - Aniket Gad
- Confocal Imaging Core, Beth Israel Deaconess Medical Center, 330 Brookline Avenue Boston, MA 02215, USA.
| | - Shailee Paliwal
- Department of Chemical Engineering, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
| | - Prakash Rai
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
- Department of Chemical Engineering, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
55
|
Dabbagh A, Abu Kasim NH, Yeong CH, Wong TW, Abdul Rahman N. Critical Parameters for Particle-Based Pulmonary Delivery of Chemotherapeutics. J Aerosol Med Pulm Drug Deliv 2017; 31:139-154. [PMID: 29022837 DOI: 10.1089/jamp.2017.1382] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Targeted delivery of chemotherapeutics through the respiratory system is a potential approach to improve drug accumulation in the lung tumor, while decreasing their negative side effects. However, elimination by the pulmonary clearance mechanisms, including the mucociliary transport system, and ingestion by the alveolar macrophages, rapid absorption into the blood, enzymatic degradation, and low control over the deposition rate and location remain the main complications for achieving an effective pulmonary drug delivery. Therefore, particle-based delivery systems have emerged to minimize pulmonary clearance mechanisms, enhance drug therapeutic efficacy, and control the release behavior. A successful implementation of a particle-based delivery system requires understanding the influential parameters in terms of drug carrier, inhalation technology, and health status of the patient's respiratory system. This review aims at investigating the parameters that significantly drive the clinical outcomes of various particle-based pulmonary delivery systems. This should aid clinicians in appropriate selection of a delivery system according to their clinical setting. It will also guide researchers in addressing the remaining challenges that need to be overcome to enhance the efficiency of current pulmonary delivery systems for aerosols.
Collapse
Affiliation(s)
- Ali Dabbagh
- 1 Wellness Research Cluster, Institute of Research Management and Services, University of Malaya , Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- 1 Wellness Research Cluster, Institute of Research Management and Services, University of Malaya , Kuala Lumpur, Malaysia
| | - Chai Hong Yeong
- 2 Department of Biomedical Imaging, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- 3 Department of Pharmaceutics and Pharmaceutical Biotechnology, Faculty of Pharmacy, Universiti Teknologi MARA , Puncak Alam, Malaysia
| | - Noorsaadah Abdul Rahman
- 4 Department of Chemistry, Faculty of Science, University of Malaya , Kuala Lumpur, Malaysia .,5 Drug Design and Development Research Group (DDDRG), University of Malaya , Kuala Lumpur, Malaysia
| |
Collapse
|
56
|
Yu M, Amengual J, Menon A, Kamaly N, Zhou F, Xu X, Saw PE, Lee SJ, Si K, Ortega CA, Choi WI, Lee IH, Bdour Y, Shi J, Mahmoudi M, Jon S, Fisher EA, Farokhzad OC. Targeted Nanotherapeutics Encapsulating Liver X Receptor Agonist GW3965 Enhance Antiatherogenic Effects without Adverse Effects on Hepatic Lipid Metabolism in Ldlr -/- Mice. Adv Healthc Mater 2017; 6:10.1002/adhm.201700313. [PMID: 28730752 PMCID: PMC5656530 DOI: 10.1002/adhm.201700313] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/27/2017] [Indexed: 11/11/2022]
Abstract
The pharmacological manipulation of liver X receptors (LXRs) has been an attractive therapeutic strategy for atherosclerosis treatment as they control reverse cholesterol transport and inflammatory response. This study presents the development and efficacy of nanoparticles (NPs) incorporating the synthetic LXR agonist GW3965 (GW) in targeting atherosclerotic lesions. Collagen IV (Col IV) targeting ligands are employed to functionalize the NPs to improve targeting to the atherosclerotic plaque, and formulation parameters such as the length of the polyethylene glycol (PEG) coating molecules are systematically optimized. In vitro studies indicate that the GW-encapsulated NPs upregulate the LXR target genes and downregulate proinflammatory mediator in macrophages. The Col IV-targeted NPs encapsulating GW (Col IV-GW-NPs) successfully reaches atherosclerotic lesions when administered for 5 weeks to mice with preexisting lesions, substantially reducing macrophage content (≈30%) compared to the PBS group, which is with greater efficacy versus nontargeting NPs encapsulating GW (GW-NPs) (≈18%). In addition, mice administered the Col IV-GW-NPs do not demonstrate increased hepatic lipid biosynthesis or hyperlipidemia during the treatment period, unlike mice injected with the free GW. These findings suggest a new form of LXR-based therapeutics capable of enhanced delivery of the LXR agonist to atherosclerotic lesions without altering hepatic lipid metabolism.
Collapse
Affiliation(s)
- Mikyung Yu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jaume Amengual
- Division of Cardiology, Department of Medicine, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Arjun Menon
- Division of Cardiology, Department of Medicine, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Nazila Kamaly
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Micro and Nanotechnology, Technical University of Denmark, DTU Nanotech, 2800 Kgs. Lyngby, Denmark
| | - Felix Zhou
- Division of Cardiology, Department of Medicine, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Xiaoding Xu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Phei Er Saw
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Seung-Joo Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Kevin Si
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Carleena Angelica Ortega
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Won Il Choi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-guCheongju, Chungbuk, 28160, Republic of Korea
| | - In-Hyun Lee
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yazan Bdour
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Morteza Mahmoudi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sangyong Jon
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- College of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
57
|
Tahir N, Madni A, Balasubramanian V, Rehman M, Correia A, Kashif PM, Mäkilä E, Salonen J, Santos HA. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int J Pharm 2017; 533:156-168. [PMID: 28963013 DOI: 10.1016/j.ijpharm.2017.09.061] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022]
Abstract
Lipid-polymer hybrid nanoparticles (LPHNPs) are emerging platforms for drug delivery applications. In the present study, methotrexate loaded LPHNPs consisted of PLGA and Lipoid S100 were fabricated by employing a single-step modified nanoprecipitation method combined with self-assembly. A three factor, three level Box Behnken design using Design-Expert® software was employed to access the influence of three independent variables on the particle size, drug entrapment and percent drug release. The optimized formulation was selected through numeric optimization approach. The results were supported with the ANOVA analysis, regression equations and response surface plots. Transmission electron microscope images indicated the nanosized and spherical shape of the LPHNPs with fair size distribution. The nanoparticles ranged from 176 to 308nm, which increased with increased polymer concentration. The increase in polymer and lipid concentration also increased the drug entrapment efficiency. The in vitro drug release was in range 70.34-91.95% and the release mechanism follow the Higuchi model (R2=0.9888) and Fickian diffusion (n<0.5). The in vitro cytotoxicity assay and confocal microscopy of the optimized formulation demonstrate the good safety and better internalization of the LPHNPs. The cell antiproliferation showed the spatial and controlled action of the nanoformulation as compared to the plain drug solution. The results suggest that LPHNPs can be a promising delivery system envisioned to safe, stable and potentially controlled delivery of methotrexate to the cancer cells to achieve better therapeutic outcomes.
Collapse
Affiliation(s)
- Nayab Tahir
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan.
| | - Vimalkumar Balasubramanian
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mubashar Rehman
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Prince Muhammad Kashif
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics, University of Turku, FI-20014 Turku, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics, University of Turku, FI-20014 Turku, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
58
|
Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 2017; 190:64-83. [PMID: 28760499 DOI: 10.1016/j.imlet.2017.07.015] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
Surgery, chemotherapy, radiotherapy, and hormone therapy are the main common anti-tumor therapeutic approaches. However, the non-specific targeting of cancer cells has made these approaches non-effective in the significant number of patients. Non-specific targeting of malignant cells also makes indispensable the application of the higher doses of drugs to reach the tumor region. Therefore, there are two main barriers in the way to reach the tumor area with maximum efficacy. The first, inhibition of drug delivery to healthy non-cancer cells and the second, the direct conduction of drugs into tumor site. Nanoparticles (NPs) are the new identified tools by which we can deliver drugs into tumor cells with minimum drug leakage into normal cells. Conjugation of NPs with ligands of cancer specific tumor biomarkers is a potent therapeutic approach to treat cancer diseases with the high efficacy. It has been shown that conjugation of nanocarriers with molecules such as antibodies and their variable fragments, peptides, nucleic aptamers, vitamins, and carbohydrates can lead to effective targeted drug delivery to cancer cells and thereby cancer attenuation. In this review, we will discuss on the efficacy of the different targeting approaches used for targeted drug delivery to malignant cells by NPs.
Collapse
|
59
|
Bewersdorff T, Vonnemann J, Kanik A, Haag R, Haase A. The influence of surface charge on serum protein interaction and cellular uptake: studies with dendritic polyglycerols and dendritic polyglycerol-coated gold nanoparticles. Int J Nanomedicine 2017; 12:2001-2019. [PMID: 28352171 PMCID: PMC5358989 DOI: 10.2147/ijn.s124295] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nanoparticles (NPs) have gained huge interest in the medical field, in particular for drug delivery purposes. However, binding of proteins often leads to fast NP uptake and rapid clearance, thereby hampering medical applications. Thus, it is essential to determine and control the bio-nano interface. This study investigated the serum protein interactions of dendritic polyglycerols (dPGs), which are promising drug delivery candidates by means of two dimensional gel electrophoresis (2DE) in combination with mass spectrometry. In order to investigate the influence of surface charge, sulfated (sulfated dendritic polyglycerol [dPGS]) and non-sulfated (dPGOH) surfaces were applied, which were synthesized on a gold core allowing for easier separation from unbound biomolecules through centrifugation. Furthermore, two different sizes for dPGS were included. Although size had only a minor influence, considerable differences were detected in protein affinity for dPGS versus dPGOH surfaces, with dPGOH binding much less proteins. Cellular uptake into human CD14+ monocytes was analyzed by flow cytometry, and dPGOH was taken up to a much lower extent compared to dPGS. By using a pull-down approach, possible cellular interaction partners of serum pre-incubated dPGS-Au20 NPs from the membrane fraction of THP-1 cells could be identified such as for instance the transferrin receptor or an integrin. Clathrin-mediated endocytosis was further investigated using chlorpromazine as an inhibitor, which resulted in a 50% decrease of the cellular uptake of dPGS. This study could confirm the influence of surface charge on protein interactions and cellular uptake of dPGS. Furthermore, the approach allowed for the identification of possible uptake receptors and insights into the uptake mechanism.
Collapse
Affiliation(s)
- Tony Bewersdorff
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jonathan Vonnemann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Asiye Kanik
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
60
|
Madni A, Batool A, Noreen S, Maqbool I, Rehman F, Kashif PM, Tahir N, Raza A. Novel nanoparticulate systems for lung cancer therapy: an updated review. J Drug Target 2017; 25:499-512. [PMID: 28151021 DOI: 10.1080/1061186x.2017.1289540] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths in the world. Conventional therapy for lung cancer is associated with lack of specificity and access to the normal cells resulting in cytotoxicity, reduced cellular uptake, drug resistance and rapid drug clearance from the body. The emergence of nanotechnology has revolutionized the treatment of lung cancer. The focus of nanotechnology is to target tumor cells with improved bioavailability and reduced toxicity. In the recent years, nanoparticulate systems have extensively been exploited in order to overcome the obstacles in treatment of lung cancer. Nanoparticulate systems have shown much potential for lung cancer therapy by gaining selective access to the tumor cells due to surface modifiability and smaller size. In this review, various novel nanoparticles (NPs) based formulations have been discussed in the treatment of lung cancer. Nanotechnology is expected to grow fast in future, and it will provide new avenues for the improved treatment of lung cancer. This review article also highlights the characteristics, recent advances in the designing of NPs and therapeutic outcomes.
Collapse
Affiliation(s)
- Asadullah Madni
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Amna Batool
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Sobia Noreen
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Irsah Maqbool
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Faizza Rehman
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Prince Muhammad Kashif
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Nayab Tahir
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ahmad Raza
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| |
Collapse
|
61
|
Zhu B, Zhang H, Yu L. Novel transferrin modified and doxorubicin loaded Pluronic 85/lipid-polymeric nanoparticles for the treatment of leukemia: In vitro and in vivo therapeutic effect evaluation. Biomed Pharmacother 2016; 86:547-554. [PMID: 28024291 DOI: 10.1016/j.biopha.2016.11.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/01/2016] [Accepted: 11/27/2016] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Childhood leukemia is a common malignant disease in children. Doxorubicin (DOX) was widely used for the treatment of leukemia. However, severe toxic side effects and drug resistance are the major limitations of DOX. Nanocarriers offer the opportunity to overcome these drawbacks, there are many attempts to enhance the activity of DOX against drug resistance. This study aimed to develop a novel transferrin (Tf) modified and doxorubicin (DOX) loaded Pluronic 85/lipid-polymeric nanoparticles for the treatment of leukemia. METHODS In this study, a novel targeted ligand: transferrin-polyethylene glycol-oleic acid (Tf-PEG-OA) was synthesized. Tf modified and DOX loaded Pluronic 85/lipid-polymeric nanoparticles (Tf-DOX P85/LPNs) were prepared via the self-assembly of PLGA, P85, stearic acid and Tf-PEG-OA using the nanoprecipitation method. The physicochemical properties of LPNs were characterized. In vitro and in vivo anti-tumor efficacy of LPNs was evaluated in human promyelocytic leukemia cell line (HL-60 cells) and DOX resistance HL-60 cell line (HL-60/DOX cells) including the relevant animal models. RESULTS Tf-DOX P85/LPNs displayed strong anti-tumor ability on both HL-60 cells and HL-60/DOX cells than other formulations used as contrast. Also, in HL-60/DOX bearing animal models, Tf-DOX P85/LPNs exhibited the highest efficiency as well as the lowest systemic toxicity. CONCLUSION The results indicated that Tf P85/LPNs is a promising platform to enhance efficacy, reduce toxicity and overcome drug resistance of DOX for the treatment of leukemia.
Collapse
Affiliation(s)
- Baomin Zhu
- Department of Blood Transfusion, Linyi People's Hospital, Linyi, Shandong, PR China
| | - Huanying Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Shandong Medical College, Linyi, Shandong, PR China
| | - Lianling Yu
- Department of Blood Transfusion, Linyi People's Hospital, Linyi, Shandong, PR China.
| |
Collapse
|
62
|
Choi JS, Park JS. Development of docetaxel nanocrystals surface modified with transferrin for tumor targeting. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 11:17-26. [PMID: 28031702 PMCID: PMC5179213 DOI: 10.2147/dddt.s122984] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to develop the surface modification of docetaxel nanocrystals (DTX-NCs) with apo-Transferrin human (Tf) for improving the cellular uptake and cytotoxicity of DTX. DTX-NCs were prepared by a nanoprecipitation method, and the surface modified with Tf by an adsorption method (Tf-DTX-NCs). The morphology and particle size of DTX-NCs and Tf-DTX-NCs were characterized using a field emission scanning electron microscope and zetasizer. An in vitro drug release study was performed in phosphate-buffered saline containing 0.5% (w/v) Tween 80 for 24 hours. Cellular uptake was studied at 0.5, 1, and 2 hours. A cytotoxicity study was performed using the A549 (human lung cancer) cell line after 24-, 48-, and 72-hour treatments. The mean sizes were 295±97 and 398±102 nm for DTX-NCs and Tf-DTX-NCs, respectively. Tf-DTX-NCs and DTX-NCs exhibited rapid drug release, whereas DTX (pure) was slowly released. Tf-DTX-NCs showed higher cellular uptake than DTX-NCs in confocal microscopic and quantitative studies. Moreover, at DTX concentration of 100 µg/mL, Tf-DTX-NCs (82.6%±0.8%) showed higher cytotoxicity than DTX-NCs (77.4%±4.1%) and DTX (pure; 20.1%±4.6%) for 72-hour treatment. In conclusion, Tf-DTX-NCs significantly improved the cellular uptake and cytotoxicity of DTX in the A549 cell line.
Collapse
Affiliation(s)
- Jin-Seok Choi
- College of Pharmacy, Institute of Drug Research and Development, Chungnam National University, Yuseong-gu, Daejeon, South Korea
| | - Jeong-Sook Park
- College of Pharmacy, Institute of Drug Research and Development, Chungnam National University, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
63
|
Xia T, He Q, Shi K, Wang Y, Yu Q, Zhang L, Zhang Q, Gao H, Ma L, Liu J. Losartan loaded liposomes improve the antitumor efficacy of liposomal paclitaxel modified with pH sensitive peptides by inhibition of collagen in breast cancer. Pharm Dev Technol 2016; 23:13-21. [PMID: 27884084 DOI: 10.1080/10837450.2016.1265553] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The dense collagen network in tumors restricts the penetration of drugs into tumors. Free losartan could inhibit collagen, but it would cause hypotension at the dosage of 10 mg/kg/d. In this study, losartan was encapsulated in liposomes (LST-Lip) and the collagen inhibition ability of LST-Lip was investigated. Our results showed the blood pressure was not affected by LST-Lip at the dosage of 2.5 mg/kg every other day. The amount of Evans Blue in tumor in LST-Lip group was 1.98 times of that in control group. Confocal laser scanning microscopy images showed that prior injection of LST-Lip could inhibit collagen and further improve the tumorous accumulation of liposomes modified with TH peptides (AGYLLGHINLHHLAHL(Aib)HHIL-NH2) (TH-Lip) in 4T1 tumors. Compared with control group, the tumor inhibition rate of combined strategy of LST-Lip and paclitaxel loaded TH-Lip (PTX-TH-Lip) was 41.73%, while that of group only treated with PTX-TH-Lip was 14.94%. Masson's trichrome staining confirmed that collagen was inhibited in LST-Lip group. Thus, the administration of LST-Lip in advance could inhibit the collagen in tumors effectively and did not affect the blood pressure, then PTX-TH-Lip injected subsequently could exert enhanced antitumor efficacy. In conclusion, this combined strategy might be promising for breast cancer therapy.
Collapse
Affiliation(s)
- Tai Xia
- a School of Chemical Engineering , Sichuan University , Chengdu , People's Republic of China
| | - Qin He
- b Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , Chengdu , People's Republic of China
| | - Kairong Shi
- b Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , Chengdu , People's Republic of China
| | - Yang Wang
- b Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , Chengdu , People's Republic of China
| | - Qianwen Yu
- b Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , Chengdu , People's Republic of China
| | - Li Zhang
- b Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , Chengdu , People's Republic of China
| | - Qianyu Zhang
- b Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , Chengdu , People's Republic of China
| | - Huile Gao
- b Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , Chengdu , People's Republic of China
| | - Lifang Ma
- a School of Chemical Engineering , Sichuan University , Chengdu , People's Republic of China
| | - Ji Liu
- c West China School of Preclinical and Forensic Medicine , Sichuan University , Chengdu , People's Republic of China
| |
Collapse
|
64
|
Arranja AG, Pathak V, Lammers T, Shi Y. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res 2016; 115:87-95. [PMID: 27865762 DOI: 10.1016/j.phrs.2016.11.014] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/25/2016] [Accepted: 11/15/2016] [Indexed: 11/26/2022]
Abstract
Chemotherapeutic drugs have multiple drawbacks, including severe side effects and suboptimal therapeutic efficacy. Nanomedicines assist in improving the biodistribution and target accumulation of chemotherapeutic drugs, and are therefore able to enhance the balance between efficacy and toxicity. Multiple types of nanomedicines have been evaluated over the years, including liposomes, polymer-drug conjugates and polymeric micelles, which rely on strategies such as passive targeting, active targeting and triggered release for improved tumor-directed drug delivery. Based on the notion that tumors and metastases are highly heterogeneous, it is important to integrate imaging properties in nanomedicine formulations in order to enable non-invasive and quantitative assessment of targeting efficiency. By allowing for patient pre-selection, such next generation nanotheranostics are useful for facilitating clinical translation and personalizing nanomedicine treatments.
Collapse
Affiliation(s)
- Alexandra G Arranja
- Department of Chemical Engineering, Delft University of Technology, 2628BL Delft, The Netherlands
| | - Vertika Pathak
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany.,Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE Enschede, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Yang Shi
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| |
Collapse
|
65
|
Digesu CS, Hofferberth SC, Grinstaff MW, Colson YL. From Diagnosis to Treatment: Clinical Applications of Nanotechnology in Thoracic Surgery. Thorac Surg Clin 2016; 26:215-28. [PMID: 27112260 PMCID: PMC4851727 DOI: 10.1016/j.thorsurg.2015.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanotechnology is an emerging field with potential as an adjunct to cancer therapy, particularly thoracic surgery. Therapy can be delivered to tumors in a more targeted fashion, with less systemic toxicity. Nanoparticles may aid in diagnosis, preoperative characterization, and intraoperative localization of thoracic tumors and their lymphatics. Focused research into nanotechnology's ability to deliver both diagnostics and therapeutics has led to the development of nanotheranostics, which promises to improve the treatment of thoracic malignancies through enhanced tumor targeting, controlled drug delivery, and therapeutic monitoring. This article reviews nanoplatforms, their unique properties, and the potential for clinical application in thoracic surgery.
Collapse
Affiliation(s)
- Christopher S Digesu
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, 15 Francis St, Boston, MA 02115, USA
| | - Sophie C Hofferberth
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, 15 Francis St, Boston, MA 02115, USA
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Metcalf Science Center, Boston University, SCI 518, 590 Commonwealth Avenue, Boston, MA 02215, USA; Department of Chemistry, Metcalf Science Center, Boston University, SCI 518, 590 Commonwealth Avenue, Boston, MA 02215, USA; Department of Medicine, Metcalf Science Center, Boston University, SCI 518, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, 15 Francis St, Boston, MA 02115, USA; Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, 15 Francis St, Boston, MA 02155, USA.
| |
Collapse
|
66
|
Bhushan B, Kumar SU, Gopinath P. Multifunctional carbon dots as efficient fluorescent nanotags for tracking cells through successive generations. J Mater Chem B 2016; 4:4862-4871. [DOI: 10.1039/c6tb01178k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work biocompatible multicolour fluorescent CDs have been synthesised from casein, which labels cells and also efficiently tracks them through successive generations. Apart from this, it also exhibits inherent ability to selectively labelE. coli.
Collapse
Affiliation(s)
- Bharat Bhushan
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Roorkee
- India
| | - S. Uday Kumar
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Roorkee
- India
| | - P. Gopinath
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Roorkee
- India
- Department of Biotechnology
| |
Collapse
|
67
|
Núñez-Lozano R, Cano M, Pimentel B, de la Cueva-Méndez G. ‘Smartening’ anticancer therapeutic nanosystems using biomolecules. Curr Opin Biotechnol 2015; 35:135-40. [DOI: 10.1016/j.copbio.2015.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/17/2015] [Indexed: 12/13/2022]
|
68
|
Bölükbas DA, Meiners S. Lung cancer nanomedicine: potentials and pitfalls. Nanomedicine (Lond) 2015; 10:3203-12. [PMID: 26472521 DOI: 10.2217/nnm.15.155] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is by far the most common cause of cancer-related deaths in the world. Nanoparticle-based therapies enable targeted drug delivery for lung cancer treatment with increased therapeutic efficiency and reduced systemic toxicity. At the same time, nanomedicine has the potential for multimodal treatment of lung cancer that may involve 'all-in-one' targeting of several tumor-associated cell types in a timely and spatially controlled manner. Therapeutic approaches, however, are hampered by a translational gap between basic scientists, clinicians and pharma industry due to suboptimal animal models and difficulties in scale-up production of nanoagents. This calls for a disease-centered approach with interdisciplinary basic and clinical research teams with the support of pharma industries.
Collapse
Affiliation(s)
- Deniz Ali Bölükbas
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
69
|
Liu L, Wei Y, Zhai S, Chen Q, Xing D. Dihydroartemisinin and transferrin dual-dressed nano-graphene oxide for a pH-triggered chemotherapy. Biomaterials 2015; 62:35-46. [DOI: 10.1016/j.biomaterials.2015.05.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023]
|
70
|
Cao Y, Zhou Y, Zhuang Q, Cui L, Xu X, Xu R, He X. Anti-tumor effect of RGD modified PTX loaded liposome on prostatic cancer. Int J Clin Exp Med 2015; 8:12182-12191. [PMID: 26550128 PMCID: PMC4612813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/02/2015] [Indexed: 06/05/2023]
Abstract
In this study, we report an active targeting liposomal formulation directed by a novel peptide (RGD) that specifically binds to the integrins receptors overexpressed on prostatic cancer cells. The objectives of this study were to evaluate the in vitro and in vivo tumor drug targeting delivery of RGD modified liposomes on PC-3 cells and DU145 cells. The uptake efficiency of RGD-LP was 5.2 times higher than that of LP on PC-3 cells. The uptake efficiency of RGD-LP was 3.2 times higher than that of LP on DU145 cells. The anti-proliferative activity of RGD-LP-PTX against PC-3 cells and DU145 cells were much stronger compared to that of LP-PTX and free PTX, respectively. The tumor spheroids experiment revealed that RGD-LP-PTX was more efficaciously internalized into tumor spheroids than LP in both PC-3 cells and DU145 cells. Compared to LP-PTX and free PTX, RGD-LP-PTX showed the greatest tumor growth inhibitory effect in vivo. In brief, the RGD-LP may be an efficient targeting drug delivery system for prostatic cancer.
Collapse
Affiliation(s)
- Yunjie Cao
- Department of Urology, Third Affiliated Hospital of Soochow University Changzhou 213003, China
| | - Yaojun Zhou
- Department of Urology, Third Affiliated Hospital of Soochow University Changzhou 213003, China
| | - Qianfeng Zhuang
- Department of Urology, Third Affiliated Hospital of Soochow University Changzhou 213003, China
| | - Li Cui
- Department of Urology, Third Affiliated Hospital of Soochow University Changzhou 213003, China
| | - Xianlin Xu
- Department of Urology, Third Affiliated Hospital of Soochow University Changzhou 213003, China
| | - Renfang Xu
- Department of Urology, Third Affiliated Hospital of Soochow University Changzhou 213003, China
| | - Xiaozhou He
- Department of Urology, Third Affiliated Hospital of Soochow University Changzhou 213003, China
| |
Collapse
|
71
|
Chen L, Liu Y, Wang W, Liu K. Effect of integrin receptor-targeted liposomal paclitaxel for hepatocellular carcinoma targeting and therapy. Oncol Lett 2015; 10:77-84. [PMID: 26170980 DOI: 10.3892/ol.2015.3242] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/26/2015] [Indexed: 02/05/2023] Open
Abstract
The major aim of the present study was to develop an integrin receptor-targeted liposomal paclitaxel (PTX) to enhance the targeting specificity and therapeutic effect of PTX on hepatocellular carcinoma (HCC) cells. The specific Arg-Gly-Asp (RGD) ligand was conjugated to 1,2-distearoylphosphatidylethanolamine-polyethylene glycol 2000 to prepare the RGD-modified liposomes (RGD-LP). Furthermore, physicochemical characteristics of RGD-LP, including particle size, ζ potential, encapsulation efficiency and in vitro PTX release, were evaluated. RGD-modified liposomes were selected as the carrier for the present study, as they exhibit good biocompatibility and are easy to modify using RGD. The cellular uptake efficacy of RGD-LP by HepG2 cells was 3.3-fold higher than that of liposomes without RGD, indicating that RGD-LP may specifically target HepG2 cells by overexpressing integrin αvβ3 receptors. The RGD modification appeared to enhance the anti-proliferative activity of LP-PTX against HepG2 cells, with the extent of anti-proliferative activity dependent on the concentration of PTX and the incubation time. Additionally, evaluation of the homing specificity and anticancer efficacy of RGD-LP on the tumor spheroids indicated that solid tumor penetration was enhanced by the modification of RGD. In agreement with these in vitro findings, in vivo investigations demonstrated that RGD-LP-PTX exhibited a greater inhibitory effect on tumor growth in HepG2-bearing mice than LP-PTX or free PTX. Thus, RGD-LPs may represent an efficient targeted PTX delivery system for the treatment of patients with HCC.
Collapse
Affiliation(s)
- Liyu Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanbin Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Kai Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
72
|
Liu Q, Li J, Pu G, Zhang F, Liu H, Zhang Y. Co-delivery of baicalein and doxorubicin by hyaluronic acid decorated nanostructured lipid carriers for breast cancer therapy. Drug Deliv 2015; 23:1364-8. [DOI: 10.3109/10717544.2015.1031295] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, People’s Republic of China,
- Shandong Fine Breeding Engineering Research Center of Chinese Medicinal Materials, Ji'nan, Shandong, People’s Republic of China, and
- Key Laboratory of Resources Science of Chinese Medicinal Materials in University of Shandong, Ji'nan, Shandong, People’s Republic of China
| | - Jia Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, People’s Republic of China,
- Shandong Fine Breeding Engineering Research Center of Chinese Medicinal Materials, Ji'nan, Shandong, People’s Republic of China, and
- Key Laboratory of Resources Science of Chinese Medicinal Materials in University of Shandong, Ji'nan, Shandong, People’s Republic of China
| | - Gaobin Pu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, People’s Republic of China,
- Shandong Fine Breeding Engineering Research Center of Chinese Medicinal Materials, Ji'nan, Shandong, People’s Republic of China, and
- Key Laboratory of Resources Science of Chinese Medicinal Materials in University of Shandong, Ji'nan, Shandong, People’s Republic of China
| | - Fang Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, People’s Republic of China,
- Shandong Fine Breeding Engineering Research Center of Chinese Medicinal Materials, Ji'nan, Shandong, People’s Republic of China, and
- Key Laboratory of Resources Science of Chinese Medicinal Materials in University of Shandong, Ji'nan, Shandong, People’s Republic of China
| | - Hongyan Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, People’s Republic of China,
- Shandong Fine Breeding Engineering Research Center of Chinese Medicinal Materials, Ji'nan, Shandong, People’s Republic of China, and
- Key Laboratory of Resources Science of Chinese Medicinal Materials in University of Shandong, Ji'nan, Shandong, People’s Republic of China
| | - Yongqing Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, People’s Republic of China,
- Shandong Fine Breeding Engineering Research Center of Chinese Medicinal Materials, Ji'nan, Shandong, People’s Republic of China, and
- Key Laboratory of Resources Science of Chinese Medicinal Materials in University of Shandong, Ji'nan, Shandong, People’s Republic of China
| |
Collapse
|
73
|
Paramjot, Khan NM, Kapahi H, Kumar S, Bhardwaj TR, Arora S, Mishra N. Role of polymer–drug conjugates in organ-specific delivery systems. J Drug Target 2015; 23:387-416. [DOI: 10.3109/1061186x.2015.1016436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|