51
|
Stochastic control of proliferation and differentiation in stem cell dynamics. J Math Biol 2014; 71:883-901. [PMID: 25319118 DOI: 10.1007/s00285-014-0835-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 10/31/2012] [Indexed: 12/24/2022]
Abstract
In self-renewing tissues, cell lineages consisting of stem cell and classes of daughter cells are the basic units which are responsible for the correct functioning of the organ. Cell proliferation and differentiation in lineages is thought to be mediated by feedback signals. In the simplest case a lineage is comprised of stem cells and differentiated cells. We create a model where stem cell proliferation and differentiation are controlled by the size of cell populations by means of a negative feedback loop. This two-dimensional Markov process allows for an analytical solution for the mean numbers and variances of stem and daughter cells. The mean values and the amounts of variation in cell numbers can be tightly regulated by the parameters of the control loop.
Collapse
|
52
|
Holmes WR, Nie Q. Interactions and tradeoffs between cell recruitment, proliferation, and differentiation affect CNS regeneration. Biophys J 2014; 106:1528-36. [PMID: 24703314 DOI: 10.1016/j.bpj.2014.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/15/2014] [Accepted: 02/06/2014] [Indexed: 12/21/2022] Open
Abstract
Regeneration of central nervous system (CNS) lesions requires movement of progenitor cells and production of their differentiated progeny. Although damage to the CNS clearly promotes these two processes, the interplay between these complex events and how it affects a response remains elusive. Here, we use spatial stochastic modeling to show that tradeoffs arise between production and recruitment during regeneration. Proper spatial control of cell cycle timing can mitigate these tradeoffs, maximizing recruitment, improving infiltration into the lesion, and reducing wasteful production outside of it. Feedback regulation of cell lineage dynamics alone however leads to spatial defects in cell recruitment, suggesting a novel, to our knowledge, hypothesis for the aggregation of cells to the periphery of a lesion in multiple sclerosis. Interestingly, stronger chemotaxis does not correct this aggregation and instead, substantial random cell motions near the site of the lesion are required to improve CNS regeneration.
Collapse
Affiliation(s)
- William R Holmes
- Center for Mathematical and Computational Biology, Center for Complex Biological Systems, Department of Mathematics, University of California, Irvine, California
| | - Qing Nie
- Center for Mathematical and Computational Biology, Center for Complex Biological Systems, Department of Mathematics, University of California, Irvine, California.
| |
Collapse
|
53
|
A mathematical-biological joint effort to investigate the tumor-initiating ability of Cancer Stem Cells. PLoS One 2014; 9:e106193. [PMID: 25184361 PMCID: PMC4153566 DOI: 10.1371/journal.pone.0106193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/29/2014] [Indexed: 01/06/2023] Open
Abstract
The involvement of Cancer Stem Cells (CSCs) in tumor progression and tumor recurrence is one of the most studied subjects in current cancer research. The CSC hypothesis states that cancer cell populations are characterized by a hierarchical structure that affects cancer progression. Due to the complex dynamics involving CSCs and the other cancer cell subpopulations, a robust theory explaining their action has not been established yet. Some indications can be obtained by combining mathematical modeling and experimental data to understand tumor dynamics and to generate new experimental hypotheses. Here, we present a model describing the initial phase of ErbB2+ mammary cancer progression, which arises from a joint effort combing mathematical modeling and cancer biology. The proposed model represents a new approach to investigate the CSC-driven tumorigenesis and to analyze the relations among crucial events involving cancer cell subpopulations. Using in vivo and in vitro data we tuned the model to reproduce the initial dynamics of cancer growth, and we used its solution to characterize observed cancer progression with respect to mutual CSC and progenitor cell variation. The model was also used to investigate which association occurs among cell phenotypes when specific cell markers are considered. Finally, we found various correlations among model parameters which cannot be directly inferred from the available biological data and these dependencies were used to characterize the dynamics of cancer subpopulations during the initial phase of ErbB2+ mammary cancer progression.
Collapse
|
54
|
Walenda T, Stiehl T, Braun H, Fröbel J, Ho AD, Schroeder T, Goecke TW, Rath B, Germing U, Marciniak-Czochra A, Wagner W. Feedback signals in myelodysplastic syndromes: increased self-renewal of the malignant clone suppresses normal hematopoiesis. PLoS Comput Biol 2014; 10:e1003599. [PMID: 24763223 PMCID: PMC3998886 DOI: 10.1371/journal.pcbi.1003599] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/18/2014] [Indexed: 12/20/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are triggered by an aberrant hematopoietic stem cell (HSC). It is, however, unclear how this clone interferes with physiologic blood formation. In this study, we followed the hypothesis that the MDS clone impinges on feedback signals for self-renewal and differentiation and thereby suppresses normal hematopoiesis. Based on the theory that the MDS clone affects feedback signals for self-renewal and differentiation and hence suppresses normal hematopoiesis, we have developed a mathematical model to simulate different modifications in MDS-initiating cells and systemic feedback signals during disease development. These simulations revealed that the disease initiating cells must have higher self-renewal rates than normal HSCs to outcompete normal hematopoiesis. We assumed that self-renewal is the default pathway of stem and progenitor cells which is down-regulated by an increasing number of primitive cells in the bone marrow niche – including the premature MDS cells. Furthermore, the proliferative signal is up-regulated by cytopenia. Overall, our model is compatible with clinically observed MDS development, even though a single mutation scenario is unlikely for real disease progression which is usually associated with complex clonal hierarchy. For experimental validation of systemic feedback signals, we analyzed the impact of MDS patient derived serum on hematopoietic progenitor cells in vitro: in fact, MDS serum slightly increased proliferation, whereas maintenance of primitive phenotype was reduced. However, MDS serum did not significantly affect colony forming unit (CFU) frequencies indicating that regulation of self-renewal may involve local signals from the niche. Taken together, we suggest that initial mutations in MDS particularly favor aberrant high self-renewal rates. Accumulation of primitive MDS cells in the bone marrow then interferes with feedback signals for normal hematopoiesis – which then results in cytopenia. Myelodysplastic syndromes are diseases which are characterized by ineffective blood formation. There is accumulating evidence that they are caused by an aberrant hematopoietic stem cell. However, it is yet unclear how this malignant clone suppresses normal hematopoiesis. To this end, we generated mathematical models under the assumption that feedback signals regulate self-renewal and proliferation of normal and diseased stem cells. The simulations demonstrate that the malignant cells must have particularly higher self-renewal rates than normal stem cells – rather than higher proliferation rates. On the other hand, down-regulation of self-renewal by the increasing number of malignant cells in the bone marrow niche can explain impairment of normal blood formation. In fact, we show that serum of patients with myelodysplastic syndrome, as compared to serum of healthy donors, stimulates proliferation and moderately impacts on maintenance of hematopoietic stem and progenitor cells in vitro. Thus, aberrant high self-renewal rates of the malignant clone seem to initiate disease development; suppression of normal blood formation is then caused by a rebound effect of feedback signals which down-regulate self-renewal of normal stem and progenitor cells as well.
Collapse
Affiliation(s)
- Thomas Walenda
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Thomas Stiehl
- Interdisciplinary Center of Scientific Computing (IWR), Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany
| | - Hanna Braun
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Julia Fröbel
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anthony D. Ho
- Department of Medicine V, Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Tamme W. Goecke
- Department of Obstetrics and Gynecology, RWTH Aachen University Medical School, Aachen, Germany
| | - Björn Rath
- Department for Orthopedics, RWTH Aachen University Medical School, Aachen, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anna Marciniak-Czochra
- Interdisciplinary Center of Scientific Computing (IWR), Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- * E-mail:
| |
Collapse
|
55
|
Stiehl T, Baran N, Ho AD, Marciniak-Czochra A. Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse. J R Soc Interface 2014; 11:20140079. [PMID: 24621818 PMCID: PMC3973374 DOI: 10.1098/rsif.2014.0079] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent experimental evidence suggests that acute myeloid leukaemias may originate from multiple clones of malignant cells. Nevertheless, it is not known how the observed clones may differ with respect to cell properties, such as proliferation and self-renewal. There are scarcely any data on how these cell properties change due to chemotherapy and relapse. We propose a new mathematical model to investigate the impact of cell properties on the multi-clonal composition of leukaemias. Model results imply that enhanced self-renewal may be a key mechanism in the clonal selection process. Simulations suggest that fast proliferating and highly self-renewing cells dominate at primary diagnosis, while relapse following therapy-induced remission is triggered mostly by highly self-renewing but slowly proliferating cells. Comparison of simulation results to patient data demonstrates that the proposed model is consistent with clinically observed dynamics based on a clonal selection process.
Collapse
Affiliation(s)
- Thomas Stiehl
- Institute of Applied Mathematics, BIOQUANT and IWR, Im Neuenheimer Feld 294, University of Heidelberg, , 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
56
|
Liu X, Johnson S, Liu S, Kanojia D, Yue W, Singh UP, Singn U, Wang Q, Wang Q, Nie Q, Chen H. Nonlinear growth kinetics of breast cancer stem cells: implications for cancer stem cell targeted therapy. Sci Rep 2014; 3:2473. [PMID: 23959163 PMCID: PMC3747506 DOI: 10.1038/srep02473] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/05/2013] [Indexed: 01/01/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and supporting experiments suggest that there exist non-linear growth kinetics of CSCs and negative feedback mechanisms to control the balance between the population of CSCs and that of non-stem cancer cells. The model predictions can help us explain a few long-standing questions in the field of cancer stem cell research, and can be potentially used to predict the efficicacy of anti-cancer therapy.
Collapse
Affiliation(s)
- Xinfeng Liu
- Department of Mathematics, University of South Carolina, Columbia, SC. 29208
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation. Proc Natl Acad Sci U S A 2014; 111:E880-7. [PMID: 24501127 DOI: 10.1073/pnas.1324267111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Adult stem cells, which exist throughout the body, multiply by cell division to replenish dying cells or to promote regeneration to repair damaged tissues. To perform these functions during the lifetime of organs or tissues, stem cells need to maintain their populations in a faithful distribution of their epigenetic states, which are susceptible to stochastic fluctuations during each cell division, unexpected injury, and potential genetic mutations that occur during many cell divisions. However, it remains unclear how the three processes of differentiation, proliferation, and apoptosis in regulating stem cells collectively manage these challenging tasks. Here, without considering molecular details, we propose a genetic optimal control model for adult stem cell regeneration that includes the three fundamental processes, along with cell division and adaptation based on differential fitnesses of phenotypes. In the model, stem cells with a distribution of epigenetic states are required to maximize expected performance after each cell division. We show that heterogeneous proliferation that depends on the epigenetic states of stem cells can improve the maintenance of stem cell distributions to create balanced populations. A control strategy during each cell division leads to a feedback mechanism involving heterogeneous proliferation that can accelerate regeneration with less fluctuation in the stem cell population. When mutation is allowed, apoptosis evolves to maximize the performance during homeostasis after multiple cell divisions. The overall results highlight the importance of cross-talk between genetic and epigenetic regulation and the performance objectives during homeostasis in shaping a desirable heterogeneous distribution of stem cells in epigenetic states.
Collapse
|
58
|
Tissue architecture, feedback regulation, and resilience to viral infection. J Theor Biol 2014; 340:131-8. [PMID: 24056215 DOI: 10.1016/j.jtbi.2013.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 08/24/2013] [Accepted: 09/11/2013] [Indexed: 11/20/2022]
Abstract
Tissue homeostasis is one of the central requirements for the existence of multicellular organisms, and is maintained by complex feedback regulatory processes. Homeostasis can be disturbed by diseases such as viruses and tumors. Here, we use mathematical models to investigate how tissue architecture influences the ability to maintain tissue homeostasis during viral infections. In particular, two different tissue designs are considered. In the first scenario, stem cells secrete negative feedback factors that influence the balance between stem cell self-renewal and differentiation. In the second scenario, those feedback factors are not produced by stem cells but by differentiated cells. The model shows a tradeoff. If feedback factors are produced by stem cells, then a viral infection will lead to a significant reduction in the number of differentiated cells leading to tissue pathology, but the number of stem cells is not affected at equilibrium. In contrast, if the feedback factors are produced by differentiated cells, a viral infection never reduces the number of tissue cells at equilibrium because the feedback mechanism compensates for virus-induced cells death. The number of stem cells, however, becomes elevated, which could increase the chance of these stem cells to accumulate mutations that can drive cancer. Interestingly, if the virus interferes with feedback factor production by cells, uncontrolled growth can occur in the presence of the virus even in the absence of genetic lesions in cells. Hence, the optimal design would be to produce feedback factors by both stem and differentiated cells in quantities that strike a balance between protecting against tissue destruction and stem cell elevation during infection.
Collapse
|
59
|
Kimmel M. Stochasticity and determinism in models of hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 844:119-52. [PMID: 25480640 DOI: 10.1007/978-1-4939-2095-2_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This chapter represents a novel view of modeling in hematopoiesis, synthesizing both deterministic and stochastic approaches. Whereas the stochastic models work in situations where chance dominates, for example when the number of cells is small, or under random mutations, the deterministic models are more important for large-scale, normal hematopoiesis. New types of models are on the horizon. These models attempt to account for distributed environments such as hematopoietic niches and their impact on dynamics. Mixed effects of such structures and chance events are largely unknown and constitute both a challenge and promise for modeling. Our discussion is presented under the separate headings of deterministic and stochastic modeling; however, the connections between both are frequently mentioned. Four case studies are included to elucidate important examples. We also include a primer of deterministic and stochastic dynamics for the reader's use.
Collapse
Affiliation(s)
- Marek Kimmel
- Department of Statistics and Bioengineering, Rice University, 2102 Duncan Hall, 6100 Main St., 77005, Houston, TX, USA,
| |
Collapse
|
60
|
Global dynamics of two-compartment models for cell production systems with regulatory mechanisms. Math Biosci 2013; 245:258-68. [DOI: 10.1016/j.mbs.2013.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/17/2023]
|
61
|
Abstract
Identifying the exact regulatory circuits that can stably maintain tissue homeostasis is critical for our basic understanding of multicellular organisms, and equally critical for identifying how tumors circumvent this regulation, thus providing targets for treatment. Despite great strides in the understanding of the molecular components of stem-cell regulation, the overall mechanisms orchestrating tissue homeostasis are still far from being understood. Typically, tissue contains the stem cells, transit amplifying cells, and terminally differentiated cells. Each of these cell types can potentially secrete regulatory factors and/or respond to factors secreted by other types. The feedback can be positive or negative in nature. This gives rise to a bewildering array of possible mechanisms that drive tissue regulation. In this paper, we propose a novel method of studying stem cell lineage regulation, and identify possible numbers, types, and directions of control loops that are compatible with stability, keep the variance low, and possess a certain degree of robustness. For example, there are exactly two minimal (two-loop) control networks that can regulate two-compartment (stem and differentiated cell) tissues, and 20 such networks in three-compartment tissues. If division and differentiation decisions are coupled, then there must be a negative control loop regulating divisions of stem cells (e.g. by means of contact inhibition). While this mechanism is associated with the highest robustness, there could be systems that maintain stability by means of positive divisions control, coupled with specific types of differentiation control. Some of the control mechanisms that we find have been proposed before, but most of them are new, and we describe evidence for their existence in data that have been previously published. By specifying the types of feedback interactions that can maintain homeostasis, our mathematical analysis can be used as a guide to experimentally zero in on the exact molecular mechanisms in specific tissues.
Collapse
Affiliation(s)
- Natalia L. Komarova
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
62
|
Rodriguez-Brenes IA, Wodarz D, Komarova NL. Stem cell control, oscillations, and tissue regeneration in spatial and non-spatial models. Front Oncol 2013; 3:82. [PMID: 23596567 PMCID: PMC3625858 DOI: 10.3389/fonc.2013.00082] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/29/2013] [Indexed: 12/17/2022] Open
Abstract
Normal human tissue is organized into cell lineages, in which the highly differentiated mature cells that perform tissue functions are the end product of an orderly tissue-specific sequence of divisions that start with stem cells or progenitor cells. Tissue homeostasis and effective regeneration after injuries requires tight regulation of these cell lineages and feedback loops play a fundamental role in this regard. In particular, signals secreted from differentiated cells that inhibit stem cell division and stem cell self-renewal are important in establishing control. In this article we study in detail the cell dynamics that arise from this control mechanism. These dynamics are fundamental to our understanding of cancer, given that tumor initiation requires an escape from tissue regulation. Knowledge on the processes of cellular control can provide insights into the pathways that lead to deregulation and consequently cancer development.
Collapse
|
63
|
Manesso E, Teles J, Bryder D, Peterson C. Dynamical modelling of haematopoiesis: an integrated view over the system in homeostasis and under perturbation. J R Soc Interface 2013; 10:20120817. [PMID: 23256190 DOI: 10.1098/rsif.2012.0817] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A very high number of different types of blood cells must be generated daily through a process called haematopoiesis in order to meet the physiological requirements of the organism. All blood cells originate from a population of relatively few haematopoietic stem cells residing in the bone marrow, which give rise to specific progenitors through different lineages. Steady-state dynamics are governed by cell division and commitment rates as well as by population sizes, while feedback components guarantee the restoration of steady-state conditions. In this study, all parameters governing these processes were estimated in a computational model to describe the haematopoietic hierarchy in adult mice. The model consisted of ordinary differential equations and included negative feedback regulation. A combination of literature data, a novel divide et impera approach for steady-state calculations and stochastic optimization allowed one to reduce possible configurations of the system. The model was able to recapitulate the fundamental steady-state features of haematopoiesis and simulate the re-establishment of steady-state conditions after haemorrhage and bone marrow transplantation. This computational approach to the haematopoietic system is novel and provides insight into the dynamics and the nature of possible solutions, with potential applications in both fundamental and clinical research.
Collapse
Affiliation(s)
- Erica Manesso
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
64
|
Ovadia J, Nie Q. Stem cell niche structure as an inherent cause of undulating epithelial morphologies. Biophys J 2013; 104:237-46. [PMID: 23332076 PMCID: PMC3540249 DOI: 10.1016/j.bpj.2012.11.3807] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 11/21/2012] [Accepted: 11/27/2012] [Indexed: 01/07/2023] Open
Abstract
The spatial organization of stem cells into a niche is a key factor for growth and continual tissue renewal during development, sustenance, and regeneration. Stratified epithelia serve as a great context to study the spatial aspects of the stem cell niche and cell lineages by organizing into layers of different cell types. Several types of stratified epithelia develop morphologies with advantageous, protruding structures where stem cells reside, such as rete pegs and palisades of Vogt. Here, multistage, spatial cell lineage models for epithelial stratification are used to study how the stem cell niche influences epithelial morphologies. When the stem cell niche forms along a rigid basal lamina, relatively regular morphologies are maintained. In contrast, stem cell niche formation along a free-moving basal lamina may prompt distorted epithelial morphologies with stem cells accumulating at the tips of fingerlike structures that form. The correspondence between our simulated morphologies and developmental stages of the human epidermis is also explored. Overall, our work provides an understanding of how stratified epithelia may attain distorted morphologies and sheds light on the importance of the spatial aspects of the stem cell niche.
Collapse
Affiliation(s)
| | - Qing Nie
- Center for Mathematical and Computational Biology, Center for Complex Biological Systems, Department of Mathematics, University of California, Irvine, California
| |
Collapse
|
65
|
Sun Z, Komarova NL. Stochastic modeling of stem-cell dynamics with control. Math Biosci 2012; 240:231-40. [PMID: 22960597 PMCID: PMC3921979 DOI: 10.1016/j.mbs.2012.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/14/2012] [Accepted: 08/20/2012] [Indexed: 12/12/2022]
Abstract
Tissue development and homeostasis are thought to be regulated endogenously by control loops that ensure that the numbers of stem cells and daughter cells are maintained at desired levels, and that the cell dynamics are robust to perturbations. In this paper we consider several classes of stochastic models that describe stem/daughter cell dynamics in a population of constant size, which are generalizations of the Moran process that include negative control loops that affect differentiation probabilities for stem cells. We present analytical solutions for the steady-state expectations and variances of the numbers of stem and daughter cells; these results remain valid for non-constant cell populations. We show that in the absence of differentiation/proliferation control, the number of stem cells is subject to extinction or overflow. In the presence of linear control, a steady state may be maintained but no tunable parameters are available to control the mean and the spread of the cell population sizes. Two types of nonlinear control considered here incorporate tunable parameters that allow specification of the expected number of stem cells and also provide control over the size of the standard deviation. We show that under a hyperbolic control law, there is a trade-off between minimizing standard deviations and maintaining the system robustness against external perturbations. For the Hill-type control, the standard deviation is inversely proportional to the Hill coefficient of the control loop. Biologically this means that ultrasensitive response that is observed in a number of regulatory loops may have evolved in order to reduce fluctuations while maintaining the desired population levels.
Collapse
Affiliation(s)
- Zheng Sun
- Department of Mathematics, University of California Irvine, Irvine, CA 92617
| | - Natalia L. Komarova
- Department of Mathematics, University of California Irvine, Irvine, CA 92617
| |
Collapse
|
66
|
Youssefpour H, Li X, Lander AD, Lowengrub JS. Multispecies model of cell lineages and feedback control in solid tumors. J Theor Biol 2012; 304:39-59. [PMID: 22554945 PMCID: PMC3436435 DOI: 10.1016/j.jtbi.2012.02.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 02/15/2012] [Accepted: 02/29/2012] [Indexed: 12/18/2022]
Abstract
We develop a multispecies continuum model to simulate the spatiotemporal dynamics of cell lineages in solid tumors. The model accounts for protein signaling factors produced by cells in lineages, and nutrients supplied by the microenvironment. Together, these regulate the rates of proliferation, self-renewal and differentiation of cells within the lineages, and control cell population sizes and distributions. Terminally differentiated cells release proteins (e.g., from the TGFβ superfamily) that feedback upon less differentiated cells in the lineage both to promote differentiation and decrease rates of proliferation (and self-renewal). Stem cells release a short-range factor that promotes self-renewal (e.g., representative of Wnt signaling factors), as well as a long-range inhibitor of this factor (e.g., representative of Wnt inhibitors such as Dkk and SFRPs). We find that the progression of the tumors and their response to treatment is controlled by the spatiotemporal dynamics of the signaling processes. The model predicts the development of spatiotemporal heterogeneous distributions of the feedback factors (Wnt, Dkk and TGFβ) and tumor cell populations with clusters of stem cells appearing at the tumor boundary, consistent with recent experiments. The nonlinear coupling between the heterogeneous expressions of growth factors and the heterogeneous distributions of cell populations at different lineage stages tends to create asymmetry in tumor shape that may sufficiently alter otherwise homeostatic feedback so as to favor escape from growth control. This occurs in a setting of invasive fingering, and enhanced aggressiveness after standard therapeutic interventions. We find, however, that combination therapy involving differentiation promoters and radiotherapy is very effective in eradicating such a tumor.
Collapse
Affiliation(s)
- H Youssefpour
- Department of Chemical Engineering and Materials Science, University of California, Irvine, USA
| | | | | | | |
Collapse
|
67
|
Howk CL, Levine HA, Smiley MW, Mallapragada SK, Nilsen-Hamilton M, Oh J, Sakaguchi DS. A mathematical model for selective differentiation of neural progenitor cells on micropatterned polymer substrates. Math Biosci 2012; 238:65-79. [PMID: 22569338 DOI: 10.1016/j.mbs.2012.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 02/20/2012] [Accepted: 04/02/2012] [Indexed: 01/25/2023]
Abstract
The biological hypothesis that the astrocyte-secreted cytokine, interleukin-6 (IL6), stimulates differentiation of adult rat hippocampal progenitor cells (AHPCs) is considered from a mathematical perspective. The proposed mathematical model includes two different mechanisms for stimulation and is based on mass-action kinetics. Both biological mechanisms involve sequential binding, with one pathway solely utilizing surface receptors while the other pathway also involves soluble receptors. Choosing biologically-reasonable values for parameters, simulations of the mathematical model show good agreement with experimental results. A global sensitivity analysis is also conducted to determine both the most influential and non-influential parameters on cellular differentiation, providing additional insights into the biological mechanisms.
Collapse
Affiliation(s)
- Cory L Howk
- Department of Mathematics, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | | | |
Collapse
|
68
|
Lander AD, Kimble J, Clevers H, Fuchs E, Montarras D, Buckingham M, Calof AL, Trumpp A, Oskarsson T. What does the concept of the stem cell niche really mean today? BMC Biol 2012; 10:19. [PMID: 22405133 PMCID: PMC3298504 DOI: 10.1186/1741-7007-10-19] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/09/2012] [Indexed: 12/12/2022] Open
|
69
|
Cao Y, Liang C, Naveed H, Li Y, Chen M, Nie Q. Modeling spatial population dynamics of stem cell lineage in tissue growth. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2012:5502-5. [PMID: 23367175 PMCID: PMC3790666 DOI: 10.1109/embc.2012.6347240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Understanding the dynamics of cell population allows insight into the control mechanism of the growth and development of mammalian tissues. It is well known that the proliferation and differentiation among stem cells (SCs), intermediate progenitor cells (IPCs), and fully differentiated cells (FDCs) are under different activation and inhibition controls. Secreted factors in negative feedback loops have already been identified as major elements in regulating the numbers of different cell types and in maintaining the equilibrium of cell populations. We have developed a novel spatial dynamic model of cells. We can characterize not only overall cell population dynamics, but also details of temporal-spatial relationship of individual cells within a tissue. In our model, the shape, growth, and division of each cell are modeled using a realistic geometric model. Furthermore, the inhibited growth rate, proliferation and differentiation probabilities of individual cells are modeled through feedback loops controlled by secreted factors of neighboring cells within a proper diffusion radius. With specific proliferation and differentiation probabilities, the actual division type that each cell will take is chosen by a Monte Carlo sampling process. With simulations we found that with proper strengths of inhibitions to growth and stem cell divisions, the whole tissue is capable of achieving a homeostatic size control. We discuss our findings on control mechanisms of the stability of the tissue development. Our model can be applied to study broad issues on tissue development and pattern formation in stem cell and cancer research.
Collapse
Affiliation(s)
- Youfang Cao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Claire Liang
- Illinois Math and Science Academy, Aurora, IL, USA
| | - Hammad Naveed
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yingzi Li
- Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China and Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Meng Chen
- Center for Mathematical and Computational Biology, Center for Complex Biological Systems, and Department of Mathematics, University of California at Irvine, Irvine, CA, USA
| | - Qing Nie
- Center for Mathematical and Computational Biology, Center for Complex Biological Systems, and Department of Mathematics, University of California at Irvine, Irvine, CA, USA
| |
Collapse
|
70
|
van Ooyen A. Using theoretical models to analyse neural development. Nat Rev Neurosci 2011; 12:311-26. [DOI: 10.1038/nrn3031] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
71
|
Abstract
Systems biology seeks not only to discover the machinery of life but to understand how such machinery is used for control, i.e., for regulation that achieves or maintains a desired, useful end. This sort of goal-directed, engineering-centered approach also has deep historical roots in developmental biology. Not surprisingly, developmental biology is currently enjoying an influx of ideas and methods from systems biology. This Review highlights current efforts to elucidate design principles underlying the engineering objectives of robustness, precision, and scaling as they relate to the developmental control of growth and pattern formation. Examples from vertebrate and invertebrate development are used to illustrate general lessons, including the value of integral feedback in achieving set-point control; the usefulness of self-organizing behavior; the importance of recognizing and appropriately handling noise; and the absence of "free lunch." By illuminating such principles, systems biology is helping to create a functional framework within which to make sense of the mechanistic complexity of organismal development.
Collapse
Affiliation(s)
- Arthur D Lander
- Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697-2300, USA.
| |
Collapse
|
72
|
Chou CS, Lo WC, Gokoffski KK, Zhang YT, Wan FYM, Lander AD, Calof AL, Nie Q. Spatial dynamics of multistage cell lineages in tissue stratification. Biophys J 2011; 99:3145-54. [PMID: 21081061 DOI: 10.1016/j.bpj.2010.09.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/12/2010] [Accepted: 09/13/2010] [Indexed: 01/06/2023] Open
Abstract
In developing and self-renewing tissues, terminally differentiated (TD) cell types are typically specified through the actions of multistage cell lineages. Such lineages commonly include a stem cell and multiple progenitor (transit-amplifying) cell stages, which ultimately give rise to TD cells. As the tissue reaches a tightly controlled steady-state size, cells at different lineage stages assume distinct spatial locations within the tissue. Although tissue stratification appears to be genetically specified, the underlying mechanisms that direct tissue lamination are not yet completely understood. Herein, we use modeling and simulations to explore several potential mechanisms that can be utilized to create stratification during developmental or regenerative growth in general systems and in the model system, the olfactory epithelium of mouse. Our results show that tissue stratification can be generated and maintained through controlling spatial distribution of diffusive signaling molecules that regulate the proliferation of each cell type within the lineage. The ability of feedback molecules to stratify a tissue is dependent on a low TD death rate: high death rates decrease tissue lamination. Regulation of the cell cycle lengths of stem cells by feedback signals can lead to transient accumulation of stem cells near the base and apex of tissue.
Collapse
Affiliation(s)
- Ching-Shan Chou
- Department of Mathematics, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
On the proportion of cancer stem cells in a tumour. J Theor Biol 2010; 266:708-11. [DOI: 10.1016/j.jtbi.2010.07.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/13/2010] [Accepted: 07/24/2010] [Indexed: 01/02/2023]
|
74
|
MacMillan HR, McConnell MJ. Seeing beyond the average cell: branching process models of cell proliferation, differentiation, and death during mouse brain development. Theory Biosci 2010; 130:31-43. [PMID: 20824512 DOI: 10.1007/s12064-010-0107-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 07/04/2010] [Indexed: 01/14/2023]
Abstract
We develop a family of branching process models to study cerebral cortical development at the level of individual neural stem and progenitor cells (NS/PCs) and the neurons they produce. Population-level data about "the average NS/PC" is incorporated as constraints for exploring (i) heterogeneity in the proliferative neural cell types and (ii) variability in daughter cell fate decision making. Preliminary studies demonstrate this variability, generate testable hypotheses about heterogeneity, and motivate new experiments moving forward.
Collapse
Affiliation(s)
- Hugh R MacMillan
- Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975, USA.
| | | |
Collapse
|
75
|
Di Garbo A, Johnston MD, Chapman SJ, Maini PK. Variable renewal rate and growth properties of cell populations in colon crypts. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:061909. [PMID: 20866442 DOI: 10.1103/physreve.81.061909] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 03/05/2010] [Indexed: 05/29/2023]
Abstract
A nonlinear mathematical model is used to investigate the time evolution of the cell populations in colon crypts (stem, semidifferentiated and fully differentiated cells). To mimic pathological alteration of the biochemical pathways leading to abnormal proliferative activity of the population of semidifferentiated cells their renewal rate is assumed to be dependent on the population size. Then, the effects of such perturbation on the population dynamics are investigated theoretically. Using both theoretical methods and numerical simulations it is shown that the increase in the renewal rate of semidifferentiated cells strongly impacts the dynamical behavior of the cell populations.
Collapse
Affiliation(s)
- A Di Garbo
- Istituto di Biofisica CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
| | | | | | | |
Collapse
|
76
|
Cerveny KL, Cavodeassi F, Turner KJ, de Jong-Curtain TA, Heath JK, Wilson SW. The zebrafish flotte lotte mutant reveals that the local retinal environment promotes the differentiation of proliferating precursors emerging from their stem cell niche. Development 2010; 137:2107-15. [PMID: 20504962 DOI: 10.1242/dev.047753] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is currently unclear how intrinsic and extrinsic mechanisms cooperate to control the progression from self-renewing to neurogenic divisions in retinal precursor cells. Here, we use the zebrafish flotte lotte (flo) mutant, which carries a mutation in the elys (ahctf1) gene, to study the relationship between cell cycle progression and neuronal differentiation by investigating how proliferating progenitor cells transition towards differentiation in a retinal stem cell niche termed the ciliary marginal zone (CMZ). In zebrafish embryos without Elys, CMZ cells retain the capacity to proliferate but lose the ability to enter their final neurogenic divisions to differentiate as neurons. However, mosaic retinae composed of wild-type and flo cells show that despite inherent cell cycle defects, flo mutant cells progress from proliferation to differentiation when in the vicinity of wild-type retinal neurons. We propose that the differentiated retinal environment limits the proliferation of precursors emerging from the CMZ in a manner that explains the spatial organisation of cells in the CMZ and ensures that proliferative retinal progenitors are driven towards differentiation.
Collapse
Affiliation(s)
- Kara L Cerveny
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E6BT, UK
| | | | | | | | | | | |
Collapse
|
77
|
Abstract
Developmental biology, regenerative medicine and cancer biology are increasingly occupied with the molecular characterization of stem cells. Yet recent work adds to a growing body of literature suggesting that 'stemness' cannot be reduced to the molecular features of cell types, and is instead an emergent property of cell lineages under feedback control.
Collapse
Affiliation(s)
- Arthur D Lander
- Center for Complex Biological Systems, Department of Developmental and Cell Biology, and Department of Biomedical Engineering, University of California at Irvine, Irvine, CA 92697-2300, USA.
| |
Collapse
|
78
|
Wells J, Lee B, Cai AQ, Karapetyan A, Lee WJ, Rugg E, Sinha S, Nie Q, Dai X. Ovol2 suppresses cell cycling and terminal differentiation of keratinocytes by directly repressing c-Myc and Notch1. J Biol Chem 2009; 284:29125-35. [PMID: 19700410 DOI: 10.1074/jbc.m109.008847] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ovol2 belongs to the Ovo family of evolutionarily conserved zinc finger transcription factors that act downstream of key developmental signaling pathways including Wg/Wnt and BMP/TGF-beta. We previously reported Ovol2 expression in the basal layer of epidermis, where epidermal stem/progenitor cells reside. In this work, we use HaCaT human keratinocytes to investigate the cellular and molecular functions of Ovol2. We show that depletion of Ovol2 leads to transient cell expansion but a loss of cells with long term proliferation potential. Mathematical modeling and experimental findings suggest that both faster cycling and precocious withdrawal from the cell cycle underlie this phenotype. Ovol2 depletion also accelerates extracellular signal-induced terminal differentiation in two- and three-dimensional culture models. By chromatin immunoprecipitation, luciferase reporter, and functional rescue assays, we demonstrate that Ovol2 directly represses two critical downstream targets, c-Myc and Notch1, thereby suppressing keratinocyte transient proliferation and terminal differentiation, respectively. These findings shed light on how an epidermal cell maintains a proliferation-competent and differentiation-resistant state.
Collapse
Affiliation(s)
- Julie Wells
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Cai AQ, Peng Y, Wells J, Dai X, Nie Q. Multi-scale Modelling for Threshold Dependent Differentiation. MATHEMATICAL MODELLING OF NATURAL PHENOMENA 2009; 4:103-117. [PMID: 20622931 PMCID: PMC2900806 DOI: 10.1051/mmnp/20094403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The maintenance of a stable stem cell population in the epidermis is important for robust regeneration of the stratified epithelium. The population size is usually regulated by cell secreted extracellular signalling molecules as well as intracellular molecules. In this paper, a simple model incorporating both levels of regulation is developed to examine the balance between growth and differentiation for the stem cell population. In particular, the dynamics of a known differentiation regulator c-Myc, its threshold dependent differentiation, and feedback regulation on maintaining a stable stem cell population are investigated.
Collapse
Affiliation(s)
- A. Q. Cai
- Department of Mathematics, University of California, Irvine, USA
- Center for Mathematical and Computational Biology, University of California, Irvine, USA
| | - Y. Peng
- Department of Mathematics, University of California, Irvine, USA
- Center for Mathematical and Computational Biology, University of California, Irvine, USA
| | - J. Wells
- Department of Biological Chemistry, University of California, Irvine, USA
| | - X. Dai
- Department of Biological Chemistry, University of California, Irvine, USA
| | - Q. Nie
- Department of Mathematics, University of California, Irvine, USA
- Center for Mathematical and Computational Biology, University of California, Irvine, USA
| |
Collapse
|
80
|
Lander AD, Gokoffski KK, Wan FYM, Nie Q, Calof AL. Cell lineages and the logic of proliferative control. PLoS Biol 2009; 7:e15. [PMID: 19166268 PMCID: PMC2628408 DOI: 10.1371/journal.pbio.1000015] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 12/06/2008] [Indexed: 12/03/2022] Open
Abstract
It is widely accepted that the growth and regeneration of tissues and organs is tightly controlled. Although experimental studies are beginning to reveal molecular mechanisms underlying such control, there is still very little known about the control strategies themselves. Here, we consider how secreted negative feedback factors ("chalones") may be used to control the output of multistage cell lineages, as exemplified by the actions of GDF11 and activin in a self-renewing neural tissue, the mammalian olfactory epithelium (OE). We begin by specifying performance objectives-what, precisely, is being controlled, and to what degree-and go on to calculate how well different types of feedback configurations, feedback sensitivities, and tissue architectures achieve control. Ultimately, we show that many features of the OE-the number of feedback loops, the cellular processes targeted by feedback, even the location of progenitor cells within the tissue-fit with expectations for the best possible control. In so doing, we also show that certain distinctions that are commonly drawn among cells and molecules-such as whether a cell is a stem cell or transit-amplifying cell, or whether a molecule is a growth inhibitor or stimulator-may be the consequences of control, and not a reflection of intrinsic differences in cellular or molecular character.
Collapse
Affiliation(s)
- Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Kimberly K Gokoffski
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Anatomy and Neurobiology, University of California, Irvine, Irvine, California, United States of America
- Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Frederic Y. M Wan
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Qing Nie
- Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Anne L Calof
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Anatomy and Neurobiology, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|