51
|
Lee HJ, Yang SJ. Supplementation with Nicotinamide Riboside Reduces Brain Inflammation and Improves Cognitive Function in Diabetic Mice. Int J Mol Sci 2019; 20:ijms20174196. [PMID: 31461911 PMCID: PMC6747453 DOI: 10.3390/ijms20174196] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study is to investigate whether nicotinamide riboside (NR) can improve inflammation and cognitive function in diabetic mice. ICR male mice were fed for 14 weeks with either high-fat chow diet (HF, 60% kcal fat) or standard chow diet (CON, 10% kcal fat). HF, streptozotocin, and nicotinamide were used to induce hyperglycemia. NR or vehicle was delivered via stomach gavage for six weeks. Oral glucose tolerance test, Y-maze test, and nest construction test were conducted before and after the NR treatment period. NR treatment induced down-regulation of NLRP3, ASC, and caspase-1. NR reduced IL-1 expression significantly by 50% in whole brains of hyperglycemic mice. Other inflammatory markers including TNF-α and IL-6 were also attenuated by NR. Brain expression of amyloid-β precursor protein and presenilin 1 were reduced by NR. In addition, NR induced significant reduction of amyloid-β in whole brains of diabetic mice. NR treatment restored hyperglycemia-induced increases in brain karyopyknosis to the levels of controls. Nest construction test showed that NR improved hippocampus functions. Spatial recognition memory and locomotor activity were also improved by NR supplementation. These findings suggest that NR may be useful for treating cognitive impairment by inhibiting amyloidogenesis and neuroinflammation.
Collapse
Affiliation(s)
- Hee Jae Lee
- Department of Food and Nutrition, Seoul Women's University, Seoul 01797, Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women's University, Seoul 01797, Korea.
| |
Collapse
|
52
|
Turck D, Castenmiller J, de Henauw S, Hirsch-Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Engel KH, Frenzel T, Heinonen M, Marchelli R, Neuhäuser-Berthold M, Pöting A, Poulsen M, Sanz Y, Schlatter JR, van Loveren Agnès de Sesmaisons-Lecarré H, Germini A, Knutsen HK. Safety of nicotinamide riboside chloride as a novel food pursuant to Regulation (EU) 2015/2283 and bioavailability of nicotinamide from this source, in the context of Directive 2002/46/EC. EFSA J 2019; 17:e05775. [PMID: 32626405 PMCID: PMC7009190 DOI: 10.2903/j.efsa.2019.5775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Allergens (NDA) was asked to deliver an opinion on nicotinamide riboside chloride as a novel food (NF) pursuant to Regulation (EU) 2015/2283, including an evaluation of the safety of its use in food supplements as a source of niacin, and the bioavailability of nicotinamide from this source, in the context of Directive 2002/46/EC. The NF, a synthetic form of nicotinamide riboside, is proposed to be used in food supplements for the healthy adult population at levels up to 300 mg/day. The production process, composition, specifications, batch-to-batch variability and stability of the NF do not raise safety concerns. Animal and human data indicate that the NF contributes to the nicotinamide body pool. There are no concerns regarding genotoxicity. Human studies do not raise safety concerns. The proposed maximum use level corresponds to an amount of nicotinamide, which is sixfold lower than the tolerable upper intake level (UL) set for adults, excluding pregnant and lactating women. The margin of exposure (MoE) of 70 derived from repeated dose toxicity studies with rats and dogs is considered sufficient for the adult population, excluding pregnant and lactating women. Regarding these two population groups, the MoE of 76 derived from a developmental toxicity study in rats is considered insufficient in the absence of data which could justify accepting a MoE lower than 100. The Panel concludes that the NF is safe under the proposed conditions of use for the healthy adult population, excluding pregnant and lactating women, and that an intake of the NF up to 230 mg/day is safe for pregnant and lactating women. The Panel also concludes that the NF is a source from which nicotinamide, a form of niacin, is bioavailable.
Collapse
|
53
|
Hikosaka K, Yaku K, Okabe K, Nakagawa T. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutr Neurosci 2019; 24:371-383. [PMID: 31280708 DOI: 10.1080/1028415x.2019.1637504] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme that mediates various redox reactions. Particularly, mitochondrial NAD plays a critical role in energy production pathways, including the tricarboxylic acid (TCA) cycle, fatty acid oxidation, and oxidative phosphorylation. NAD also serves as a substrate for ADP-ribosylation and deacetylation by poly(ADP-ribose) polymerases (PARPs) and sirtuins, respectively. Thus, NAD regulates energy metabolism, DNA damage repair, gene expression, and stress response. Numerous studies have demonstrated the involvement of NAD metabolism in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and retinal degenerative diseases. Mitochondrial dysfunction is considered crucial pathogenesis for neurodegenerative diseases such as AD and PD. Maintaining appropriate NAD levels is important for mitochondrial function. Indeed, decreased NAD levels are observed in AD and PD, and supplementation of NAD precursors ameliorates disease phenotypes by activating mitochondrial functions. NAD metabolism also plays an important role in axonal degeneration, a characteristic feature of peripheral neuropathy and neurodegenerative diseases. In addition, dysregulated NAD metabolism is implicated in retinal degenerative diseases such as glaucoma and Leber congenital amaurosis, and NAD metabolism is considered a therapeutic target for these diseases. In this review, we summarize the involvement of NAD metabolism in axon degeneration and various neurodegenerative diseases and discuss perspectives of nutritional intervention using NAD precursors.
Collapse
Affiliation(s)
- Keisuke Hikosaka
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Okabe
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
54
|
Conze D, Brenner C, Kruger CL. Safety and Metabolism of Long-term Administration of NIAGEN (Nicotinamide Riboside Chloride) in a Randomized, Double-Blind, Placebo-controlled Clinical Trial of Healthy Overweight Adults. Sci Rep 2019; 9:9772. [PMID: 31278280 PMCID: PMC6611812 DOI: 10.1038/s41598-019-46120-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
Nicotinamide riboside (NR) is a newly discovered nicotinamide adenine dinucleotide (NAD+) precursor vitamin. A crystal form of NR chloride termed NIAGEN is generally recognized as safe (GRAS) for use in foods and the subject of two New Dietary Ingredient Notifications for use in dietary supplements. To evaluate the kinetics and dose-dependency of NR oral availability and safety in overweight, but otherwise healthy men and women, an 8-week randomized, double-blind, placebo-controlled clinical trial was conducted. Consumption of 100, 300 and 1000 mg NR dose-dependently and significantly increased whole blood NAD+ (i.e., 22%, 51% and 142%) and other NAD+ metabolites within 2 weeks. The increases were maintained throughout the remainder of the study. There were no reports of flushing and no significant differences in adverse events between the NR and placebo-treated groups or between groups at different NR doses. NR also did not elevate low density lipoprotein cholesterol or dysregulate 1-carbon metabolism. Together these data support the development of a tolerable upper intake limit for NR based on human data.
Collapse
Affiliation(s)
- Dietrich Conze
- Chromadex Spherix Consulting, 11821 Parklawn Drive, Suite 310, Rockville, MD, 20852, United States
| | - Charles Brenner
- Department of Biochemistry, University of Iowa, 4-403 BSB, Iowa City, IA, 52242, United States.
| | - Claire L Kruger
- Chromadex Spherix Consulting, 11821 Parklawn Drive, Suite 310, Rockville, MD, 20852, United States.
| |
Collapse
|
55
|
Csiszar A, Tarantini S, Yabluchanskiy A, Balasubramanian P, Kiss T, Farkas E, Baur JA, Ungvari Z. Role of endothelial NAD + deficiency in age-related vascular dysfunction. Am J Physiol Heart Circ Physiol 2019; 316:H1253-H1266. [PMID: 30875255 PMCID: PMC6620681 DOI: 10.1152/ajpheart.00039.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Accepted: 03/12/2019] [Indexed: 12/23/2022]
Abstract
Age-related alterations in endothelium and the resulting vascular dysfunction critically contribute to a range of pathological conditions associated with old age. To develop therapies rationally that improve vascular health and thereby increase health span and life span in older adults, it will be essential to understand the cellular and molecular mechanisms contributing to vascular aging. Preclinical studies in model organisms demonstrate that NAD+ availability decreases with age in multiple tissues and that supplemental NAD+ precursors can ameliorate many age-related cellular impairments. Here, we provide a comprehensive overview of NAD+-dependent pathways [including the NAD+-using silent information regulator-2-like enzymes and poly(ADP-ribose) polymerase enzymes] and the potential consequences of endothelial NAD+ deficiency in vascular aging. The multifaceted vasoprotective effects of treatments that reverse the age-related decline in cellular NAD+ levels, as well as their potential limitations, are discussed. The preventive and therapeutic potential of NAD+ intermediates as effective, clinically relevant interventions in older adults at risk for ischemic heart disease, vascular cognitive impairment, and other common geriatric conditions and diseases that involve vascular pathologies (e.g., sarcopenia, frailty) are critically discussed. We propose that NAD+ precursors [e.g., nicotinamide (Nam) riboside, Nam mononucleotide, niacin] should be considered as critical components of combination therapies to slow the vascular aging process and increase cardiovascular health span.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
- Theoretical Medicine Doctoral School, University of Szeged , Szeged , Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
- Theoretical Medicine Doctoral School, University of Szeged , Szeged , Hungary
- Department of Pulmonology, Semmelweis University , Budapest , Hungary
- Department of Health Promotion Sciences, Hudson College of Public Health, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| |
Collapse
|
56
|
Okabe K, Yaku K, Tobe K, Nakagawa T. Implications of altered NAD metabolism in metabolic disorders. J Biomed Sci 2019; 26:34. [PMID: 31078136 PMCID: PMC6511662 DOI: 10.1186/s12929-019-0527-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an important coenzyme that participates in various energy metabolism pathways, including glycolysis, β-oxidation, and oxidative phosphorylation. Besides, it is a required cofactor for post-translational modifications such as ADP-ribosylation and deacetylation by poly (ADP-ribose) polymerases (PARPs) and sirtuins, respectively. Thus, NAD regulates energy metabolism, DNA damage repair, gene expression, and stress response through these enzymes. Numerous studies have shown that NAD levels decrease with aging and under disturbed nutrient conditions, such as obesity. Additionally, a decline in NAD levels is closely related to the development of various metabolic disorders, including diabetes and fatty liver disease. In addition, many studies have revealed that administration of NAD precursors, such as nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), efficiently increase NAD levels in various tissues and prevent such metabolic diseases. These NAD precursors are contained in natural foods, such as cow milk, vegetables, and meats. Therefore, altered NAD metabolism can be a practical target for nutritional intervention. Recently, several human clinical trials using NAD precursors have been conducted to investigate the safety, pharmacokinetics, and efficacy against metabolic disorders such as glucose intolerance. In this review, we summarize current knowledge on the implications of NAD metabolism in metabolic diseases and discuss the outcomes of recent human clinical trials.
Collapse
Affiliation(s)
- Keisuke Okabe
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194 Japan
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, 930-0194 Japan
| | - Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194 Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, 930-0194 Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194 Japan
- Institute of Natural Medicine, University of Toyama, Toyama, 930-0194 Japan
| |
Collapse
|
57
|
Foroutan A, Guo AC, Vazquez-Fresno R, Lipfert M, Zhang L, Zheng J, Badran H, Budinski Z, Mandal R, Ametaj BN, Wishart DS. Chemical Composition of Commercial Cow's Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4897-4914. [PMID: 30994344 DOI: 10.1021/acs.jafc.9b00204] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bovine milk is a nutritionally rich, chemically complex biofluid consisting of hundreds of different components. While the chemical composition of cow's milk has been studied for decades, much of this information is fragmentary and very dated. In an effort to consolidate and update this information, we have applied modern, quantitative metabolomics techniques along with computer-aided literature mining to obtain the most comprehensive and up-to-date characterization of the chemical constituents in commercial cow's milk. Using nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography-mass spectrometry (LC-MS), and inductively coupled plasma-mass spectrometry (ICP-MS), we were able to identify and quantify 296 bovine milk metabolites or metabolite species (corresponding to 1447 unique structures) from a variety of commercial milk samples. Through our literature analysis, we also found another 676 metabolites or metabolite species (corresponding to 908 unique structures). Detailed information regarding all 2355 of the identified chemicals in bovine milk have been made freely available through a Web-accessible database called the Milk Composition Database or MCDB ( http://www.mcdb.ca/ ).
Collapse
Affiliation(s)
- Aidin Foroutan
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada T6G 2E9
- Department of Agricultural , Food and Nutritional Science , Edmonton , Alberta , Canada T6G 2P5
| | - An Chi Guo
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada T6G 2E9
| | - Rosa Vazquez-Fresno
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada T6G 2E9
| | - Matthias Lipfert
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada T6G 2E9
| | - Lun Zhang
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada T6G 2E9
| | - Jiamin Zheng
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada T6G 2E9
| | - Hasan Badran
- Department of Computing Sciences , University of Alberta , Edmonton , Alberta , Canada T6G 2E8
| | - Zachary Budinski
- Department of Computing Sciences , University of Alberta , Edmonton , Alberta , Canada T6G 2E8
| | - Rupasri Mandal
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada T6G 2E9
| | - Burim N Ametaj
- Department of Agricultural , Food and Nutritional Science , Edmonton , Alberta , Canada T6G 2P5
| | - David S Wishart
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada T6G 2E9
- Department of Computing Sciences , University of Alberta , Edmonton , Alberta , Canada T6G 2E8
| |
Collapse
|
58
|
Waltz TB, Fivenson EM, Morevati M, Li C, Becker KG, Bohr VA, Fang EF. Sarcopenia, Aging and Prospective Interventional Strategies. Curr Med Chem 2019; 25:5588-5596. [PMID: 28762310 DOI: 10.2174/0929867324666170801095850] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
Abstract
Sarcopenia, or age-related muscle decline, occurs in most organisms and burdens both human health and the healthcare system. As our population ages, additional options for treating sarcopenia are needed. Mitochondrial dysfunction is implicated in the onset of sarcopenia, so therapies directed at improving mitochondrial function in muscle should be considered. Many naturally-occurring compounds, derived from commonly consumed foods, possess anti-sarcopenic effects, such asnicotinamide riboside, tomatidine, and Urolithin A. These naturally-occurring compounds can improve mitochondrial health and efficiency by modulating mitochondrial biogenesis, cellular stress resistance, or mitophagy. Further research should assess whether compounds that improve mitochondrial health can attenuate sarcopenia in humans.
Collapse
Affiliation(s)
- Tyler B Waltz
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Elayne M Fivenson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Marya Morevati
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States.,Danish Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Chuanhao Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8276, United States
| | - Kevin G Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States.,Danish Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Evandro F Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States.,Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 , Lørenskog, Norway
| |
Collapse
|
59
|
Redeuil K, Vulcano J, Prencipe FP, Bénet S, Campos-Giménez E, Meschiari M. First quantification of nicotinamide riboside with B 3 vitamers and coenzymes secreted in human milk by liquid chromatography-tandem-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:74-80. [PMID: 30785080 DOI: 10.1016/j.jchromb.2019.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 11/21/2018] [Accepted: 01/29/2019] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Sylvie Bénet
- Nestlé Research, Nestec Ltd., Lausanne, Switzerland
| | | | | |
Collapse
|
60
|
Xie X, Gao Y, Zeng M, Wang Y, Wei TF, Lu YB, Zhang WP. Nicotinamide ribose ameliorates cognitive impairment of aged and Alzheimer's disease model mice. Metab Brain Dis 2019; 34:353-366. [PMID: 30523581 DOI: 10.1007/s11011-018-0346-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/15/2018] [Indexed: 01/09/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) supplementation to repair the disabled mitochondria is a promising strategy for the treatment of Alzheimer's disease (AD) and other dementia. Nicotinamide ribose (NR) is a safe NAD precursor with high oral bioavailability, and has beneficial effects on aging. Here, we applied NR supplied food (2.5 g/kg food) to APP/PS1 transgenic AD model mice and aged mice for 3 months. Cognitive function, locomotor activity and anxiety level were assessed by standard behavioral tests. The change of body weight, the activation of microglia and astrocytes, the accumulation of Aβ and the level of serum nicotinamide phosphoribosyltransferase (NAMPT) were determined for the evaluation of pathological processes. We found that NR supplementation improved the short-term spatial memory of aged mice, and the contextual fear memory of AD mice. Moreover, NR supplementation inhibited the activation of astrocytes and the elevation of serum NAMPT of aged mice. For AD model mice, NR supplementation inhibited the accumulation of Aβ and the migration of astrocyte to Aβ. In addition, NR supplementation inhibit the body weight gain of aged and APP/PS1 mice. Thus, NR has selective benefits for both AD and aged mice, and the oral uptake of NR can be used to prevent the progression of dementia.
Collapse
Affiliation(s)
- Xian Xie
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
- Hospital of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Gao
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Min Zeng
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Yi Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Tao-Feng Wei
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Yun-Bi Lu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Wei-Ping Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China.
- Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China.
| |
Collapse
|
61
|
Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxid Redox Signal 2019; 30:251-294. [PMID: 29634344 PMCID: PMC6277084 DOI: 10.1089/ars.2017.7269] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Significance: Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that serves as an essential cofactor and substrate for a number of critical cellular processes involved in oxidative phosphorylation and ATP production, DNA repair, epigenetically modulated gene expression, intracellular calcium signaling, and immunological functions. NAD+ depletion may occur in response to either excessive DNA damage due to free radical or ultraviolet attack, resulting in significant poly(ADP-ribose) polymerase (PARP) activation and a high turnover and subsequent depletion of NAD+, and/or chronic immune activation and inflammatory cytokine production resulting in accelerated CD38 activity and decline in NAD+ levels. Recent studies have shown that enhancing NAD+ levels can profoundly reduce oxidative cell damage in catabolic tissue, including the brain. Therefore, promotion of intracellular NAD+ anabolism represents a promising therapeutic strategy for age-associated degenerative diseases in general, and is essential to the effective realization of multiple benefits of healthy sirtuin activity. The kynurenine pathway represents the de novo NAD+ synthesis pathway in mammalian cells. NAD+ can also be produced by the NAD+ salvage pathway. Recent Advances: In this review, we describe and discuss recent insights regarding the efficacy and benefits of the NAD+ precursors, nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN), in attenuating NAD+ decline in degenerative disease states and physiological aging. Critical Issues: Results obtained in recent years have shown that NAD+ precursors can play important protective roles in several diseases. However, in some cases, these precursors may vary in their ability to enhance NAD+ synthesis via their location in the NAD+ anabolic pathway. Increased synthesis of NAD+ promotes protective cell responses, further demonstrating that NAD+ is a regulatory molecule associated with several biochemical pathways. Future Directions: In the next few years, the refinement of personalized therapy for the use of NAD+ precursors and improved detection methodologies allowing the administration of specific NAD+ precursors in the context of patients' NAD+ levels will lead to a better understanding of the therapeutic role of NAD+ precursors in human diseases.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Jade Berg
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
| | | | - Fatemeh Khorshidi
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
62
|
Zhang N, Sauve AA. Regulatory Effects of NAD + Metabolic Pathways on Sirtuin Activity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 154:71-104. [PMID: 29413178 DOI: 10.1016/bs.pmbts.2017.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NAD+ acts as a crucial regulator of cell physiology and as an integral participant in cellular metabolism. By virtue of a variety of signaling activities this central metabolite can exert profound effects on organism health status. Thus, while it serves as a well-known metabolic cofactor functioning as a redox-active substrate, it can also function as a substrate for signaling enzymes, such as sirtuins, poly (ADP-ribosyl) polymerases, mono (ADP-ribosyl) transferases, and CD38. Sirtuins function as NAD+-dependent protein deacetylases (deacylases) and catalyze the reaction of NAD+ with acyllysine groups to remove the acyl modification from substrate proteins. This deacetylation provides a regulatory function and integrates cellular NAD+ metabolism into a large spectrum of cellular processes and outcomes, such as cell metabolism, cell survival, cell cycle, apoptosis, DNA repair, mitochondrial homeostasis and mitochondrial biogenesis, and even lifespan. Increased attention to how regulated and pharmacologic changes in NAD+ concentrations can impact sirtuin activities has motivated openings of new areas of research, including investigations of how NAD+ levels are regulated at the subcellular level, and searches for more potent NAD+ precursors typified by nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). This review describes current results and thinking of how NAD+ metabolic pathways regulate sirtuin activities and how regulated NAD+ levels can impact cell physiology. In addition, NAD+ precursors are discussed, with attention to how these might be harnessed to generate novel therapeutic options to treat the diseases of aging.
Collapse
Affiliation(s)
- Ning Zhang
- Weill Cornell Medical College, New York, NY, United States
| | | |
Collapse
|
63
|
Affiliation(s)
- Lindsay E Wu
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - David A Sinclair
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
64
|
Lee HJ, Yang SJ. Nicotinamide riboside regulates inflammation and mitochondrial markers in AML12 hepatocytes. Nutr Res Pract 2018; 13:3-10. [PMID: 30788050 PMCID: PMC6369115 DOI: 10.4162/nrp.2019.13.1.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/06/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/OBJECTIVES The NAD+ precursor nicotinamide riboside (NR) is a type of vitamin B3 found in cow's milk and yeast-containing food products such as beer. Recent studies suggested that NR prevents hearing loss, high-fat diet-induced obesity, Alzheimer's disease, and mitochondrial myopathy. The objective of this study was to investigate the effects of NR on inflammation and mitochondrial biogenesis in AML12 mouse hepatocytes. MATERIALS/METHODS A subset of hepatocytes was treated with palmitic acid (PA; 250 µM) for 48 h to induce hepatocyte steatosis. The hepatocytes were treated with NR (10 µM and 10 mM) for 24 h with and without PA. The cell viability and the levels of sirtuins, inflammatory markers, and mitochondrial markers were analyzed. RESULTS Cytotoxicity of NR was examined by PrestoBlue assay. Exposure to NR had no effect on cell viability or morphology. Gene expression of sirtuin 1 (Sirt1) and Sirt3 was significantly upregulated by NR in PA-treated hepatocytes. However, Sirt1 activities were increased in hepatocytes treated with low-dose NR. Hepatic pro-inflammatory markers including tumor necrosis factor-alpha and interleukin-6 were decreased in NR-treated cells. NR upregulated anti-inflammatory molecule adiponectin, and, tended to down-regulate hepatokine fetuin-A in PA-treated hepatocytes, suggesting its inverse regulation on these cytokines. NR increased levels of mitochondrial markers including peroxisome proliferator-activated receptor γ coactivator-1α, carnitine palmitoyltransferase 1, uncoupling protein 2, transcription factor A, mitochondrial and mitochondrial DNA in PA-treated hepatocytes. CONCLUSIONS These data demonstrated that NR attenuated hepatic inflammation and increased levels of mitochondrial markers in hepatocytes.
Collapse
Affiliation(s)
- Hee Jae Lee
- Department of Food and Nutrition, Seoul Women's University, 621 Hwarangro, Nowon-Gu, Seoul 01797, Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women's University, 621 Hwarangro, Nowon-Gu, Seoul 01797, Korea
| |
Collapse
|
65
|
The chemistry of the vitamin B3 metabolome. Biochem Soc Trans 2018; 47:131-147. [PMID: 30559273 DOI: 10.1042/bst20180420] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023]
Abstract
The functional cofactors derived from vitamin B3 are nicotinamide adenine dinucleotide (NAD+), its phosphorylated form, nicotinamide adenine dinucleotide phosphate (NADP+) and their reduced forms (NAD(P)H). These cofactors, together referred as the NAD(P)(H) pool, are intimately implicated in all essential bioenergetics, anabolic and catabolic pathways in all forms of life. This pool also contributes to post-translational protein modifications and second messenger generation. Since NAD+ seats at the cross-road between cell metabolism and cell signaling, manipulation of NAD+ bioavailability through vitamin B3 supplementation has become a valuable nutritional and therapeutic avenue. Yet, much remains unexplored regarding vitamin B3 metabolism. The present review highlights the chemical diversity of the vitamin B3-derived anabolites and catabolites of NAD+ and offers a chemical perspective on the approaches adopted to identify, modulate and measure the contribution of various precursors to the NAD(P)(H) pool.
Collapse
|
66
|
Yaku K, Okabe K, Nakagawa T. NAD metabolism: Implications in aging and longevity. Ageing Res Rev 2018; 47:1-17. [PMID: 29883761 DOI: 10.1016/j.arr.2018.05.006] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an important co-factor involved in numerous physiological processes, including metabolism, post-translational protein modification, and DNA repair. In living organisms, a careful balance between NAD production and degradation serves to regulate NAD levels. Recently, a number of studies have demonstrated that NAD levels decrease with age, and the deterioration of NAD metabolism promotes several aging-associated diseases, including metabolic and neurodegenerative diseases and various cancers. Conversely, the upregulation of NAD metabolism, including dietary supplementation with NAD precursors, has been shown to prevent the decline of NAD and exhibits beneficial effects against aging and aging-associated diseases. In addition, many studies have demonstrated that genetic and/or nutritional activation of NAD metabolism can extend the lifespan of diverse organisms. Collectively, it is clear that NAD metabolism plays important roles in aging and longevity. In this review, we summarize the basic functions of the enzymes involved in NAD synthesis and degradation, as well as the outcomes of their dysregulation in various aging processes. In addition, a particular focus is given on the role of NAD metabolism in the longevity of various organisms, with a discussion of the remaining obstacles in this research field.
Collapse
|
67
|
Błaszczyk JW. The Emerging Role of Energy Metabolism and Neuroprotective Strategies in Parkinson's Disease. Front Aging Neurosci 2018; 10:301. [PMID: 30344487 PMCID: PMC6182092 DOI: 10.3389/fnagi.2018.00301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/13/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Janusz W. Błaszczyk
- Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Human Behavior, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| |
Collapse
|
68
|
Crisol BM, Veiga CB, Lenhare L, Braga RR, Silva VR, da Silva AS, Cintra DE, Moura LP, Pauli JR, Ropelle ER. Nicotinamide riboside induces a thermogenic response in lean mice. Life Sci 2018; 211:1-7. [DOI: 10.1016/j.lfs.2018.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022]
|
69
|
Fan R, Cui J, Ren F, Wang Q, Huang Y, Zhao B, Wei L, Qian X, Xiong X. Overexpression of NRK1 ameliorates diet- and age-induced hepatic steatosis and insulin resistance. Biochem Biophys Res Commun 2018; 500:476-483. [PMID: 29678570 DOI: 10.1016/j.bbrc.2018.04.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/18/2023]
Abstract
NAD+ is a co-enzyme in redox reactions and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Dietary supplementation of NAD+ precursors nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR) protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we sought to identify the roles of nicotinamide riboside kinase 1 (NRK1) plays in regulating hepatic NAD+ biosynthesis and lipid metabolism. Using adenovirus mediated gene transduction to overexpress or knockdown NRK1 in mouse liver, we have demonstrated that NRK1 is critical for maintaining hepatic NAD+ levels and triglyceride content. We have further shown that the hepatic expression of Nmrk1 mRNA is significantly decreased either in mice treated with high-fat diet or in aged mice. However, adenoviral delivery of NRK1 in these diet- and age-induced mice elevates hepatic NAD+ levels, reduces hepatic steatosis, and improves glucose tolerance and insulin sensitivity. Our results provide important insights in targeting NRK1 for treating hepatic steatosis.
Collapse
Affiliation(s)
- Rui Fan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jing Cui
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Feng Ren
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qingzhi Wang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Laboratory of Molecular Metabolism, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanmei Huang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bin Zhao
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Laboratory of Molecular Metabolism, Xinxiang Medical University, Xinxiang, Henan, China
| | - Lai Wei
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Laboratory of Molecular Metabolism, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinlai Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Laboratory of Molecular Metabolism, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
70
|
Chen W, Yi C, Jin L. The Role of Nicotinamide Adenine Dinucleotide in the Pathogenesis of Rheumatoid Arthritis: Potential Implications for Treatment. EUROPEAN MEDICAL JOURNAL 2018. [DOI: 10.33590/emj/10312205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, inflammatory, autoimmune disease characterised by small joint swelling, deformity, and dysfunction. Its exact aetiology is unclear. Current treatment approaches do not control harmful autoimmune attacks or prevent irreversible damage without considerable side effects. Nicotinamide adenine dinucleotide (NAD+), an important hydrogen carrier in mitochondrial respiration and oxidative phosphorylation, is the major determinant of redox state in the cell. NAD+ metabolites act as degradation substrates for a wide range of enzymes, such as sirtuins, poly-ADP-ribose polymerases, ADP-ribosyltransferases, and CD38. The roles of NAD+ have expanded beyond its role as a coenzyme, linking cellular metabolism to inflammation signalling and immune response. The aim of this review is to illustrate the role of NAD+-related enzymes in the pathogenesis of RA and highlight the potential therapeutic role of NAD+ in RA.
Collapse
Affiliation(s)
- Weiqian Chen
- Department of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Caihong Yi
- Department of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Jin
- Department of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
71
|
|
72
|
Dollerup OL, Christensen B, Svart M, Schmidt MS, Sulek K, Ringgaard S, Stødkilde-Jørgensen H, Møller N, Brenner C, Treebak JT, Jessen N. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am J Clin Nutr 2018; 108:343-353. [PMID: 29992272 DOI: 10.1093/ajcn/nqy132] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/17/2018] [Indexed: 12/13/2022] Open
Abstract
Background Animal studies suggest a positive role for nicotinamide riboside (NR) on insulin sensitivity and hepatic steatosis in models of obesity and type 2 diabetes. NR, an NAD+ precursor, is a member of the vitamin B-3 family now available as an over-the-counter supplement. Although data from preclinical trials appear consistent, potential effects and safety need to be evaluated in human clinical trials. Objective The aim of this study was to test the safety of dietary NR supplementation over a 12-wk period and potential to improve insulin sensitivity and other metabolic parameters in obese, insulin-resistant men. Design In an investigator-initiated randomized, placebo-controlled, double-blinded, and parallel-group designed clinical trial, forty healthy, sedentary men with a body mass index (BMI) > 30 kg/m2, age-range 40-70 y were randomly assigned to 12 wk of NR (1000 mg twice daily) or placebo. We determined the effects of NR supplementation on insulin sensitivity by a hyperinsulinemic euglycemic clamp and substrate metabolism by indirect calorimetry and labeled substrates of tritiated glucose and palmitate. Body composition and fat mass distribution were determined by whole-body dual-energy X-ray absorptiometry (DXA) and MRI scans, and measurements of intrahepatic lipid content were obtained by MR spectroscopy. Results Insulin sensitivity, endogenous glucose production, and glucose disposal and oxidation were not improved by NR supplementation. Similarly, NR supplementation had no effect on resting energy expenditure, lipolysis, oxidation of lipids, or body composition. No serious adverse events due to NR supplementation were observed and safety blood tests were normal. Conclusion 12 wk of NR supplementation in doses of 2000 mg/d appears safe, but does not improve insulin sensitivity and whole-body glucose metabolism in obese, insulin-resistant men. This trial was registered at clinicaltrials.gov as NCT02303483.
Collapse
Affiliation(s)
- Ole L Dollerup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Medical Research Laboratory, Department of Clinical Medicine
| | - Britt Christensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Medical Research Laboratory, Department of Clinical Medicine
| | - Mads Svart
- Medical Research Laboratory, Department of Clinical Medicine
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Niels Møller
- Medical Research Laboratory, Department of Clinical Medicine.,Department of Endocrinology
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Jessen
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
73
|
Martens CR, Denman BA, Mazzo MR, Armstrong ML, Reisdorph N, McQueen MB, Chonchol M, Seals DR. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD + in healthy middle-aged and older adults. Nat Commun 2018; 9:1286. [PMID: 29599478 PMCID: PMC5876407 DOI: 10.1038/s41467-018-03421-7] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) has emerged as a critical co-substrate for enzymes involved in the beneficial effects of regular calorie restriction on healthspan. As such, the use of NAD+ precursors to augment NAD+ bioavailability has been proposed as a strategy for improving cardiovascular and other physiological functions with aging in humans. Here we provide the evidence in a 2 × 6-week randomized, double-blind, placebo-controlled, crossover clinical trial that chronic supplementation with the NAD+ precursor vitamin, nicotinamide riboside (NR), is well tolerated and effectively stimulates NAD+ metabolism in healthy middle-aged and older adults. Our results also provide initial insight into the effects of chronic NR supplementation on physiological function in humans, and suggest that, in particular, future clinical trials should further assess the potential benefits of NR for reducing blood pressure and arterial stiffness in this group.
Collapse
Affiliation(s)
- Christopher R Martens
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
| | - Blair A Denman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Melissa R Mazzo
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Michael L Armstrong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Matthew B McQueen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
74
|
Röderer P, Klatt L, John F, Theis V, Winklhofer KF, Theiss C, Matschke V. Increased ROS Level in Spinal Cord of Wobbler Mice due to Nmnat2 Downregulation. Mol Neurobiol 2018; 55:8414-8424. [PMID: 29549647 DOI: 10.1007/s12035-018-0999-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/07/2018] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis is a devastating motor neuron disease and to this day not curable. While 5-10% of patients inherit the disease (familiar ALS), up to 95% of patients are diagnosed with the sporadic form (sALS). ALS is characterized by the degeneration of upper motor neurons in the cerebral cortex and of lower motor neurons in the brainstem and spinal cord. The wobbler mouse resembles almost all phenotypical hallmarks of human sALS patients and is therefore an excellent motor neuron disease model. The motor neuron disease of the wobbler mouse develops over a time course of around 40 days and can be divided into three phases: p0, presymptomatic; p20, early clinical; and p40, stable clinical phase. Recent findings suggest an essential implication of the NAD+-producing enzyme Nmnat2 in neurodegeneration as well as maintenance of healthy axons. Here, we were able to show a significant downregulation of both gene and protein expression of Nmnat2 in the spinal cord of the wobbler mice at the stable clinical phase. The product of the enzyme NAD+ is also significantly reduced, and the values of the reactive oxygen species are significantly increased in the spinal cord of the wobbler mouse at p40. Thus, the deregulated expression of Nmnat2 appears to have a great influence on the cellular stress in the spinal cord of wobbler mice.
Collapse
Affiliation(s)
- Pascal Röderer
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Lara Klatt
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Felix John
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Verena Theis
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Konstanze F Winklhofer
- Institute of Biochemistry and Pathobiochemistry, Department of Molecular Cell Biology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Veronika Matschke
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany. .,Institute of Anatomy, Department of Cytology, Ruhr University Bochum, Universitätsstr. 150, Building MA 5/52, 44780, Bochum, Germany.
| |
Collapse
|
75
|
Abstract
Nicotinamide adenine dinucleotide (NAD), the cell's hydrogen carrier for redox enzymes, is well known for its role in redox reactions. More recently, it has emerged as a signaling molecule. By modulating NAD+-sensing enzymes, NAD+ controls hundreds of key processes from energy metabolism to cell survival, rising and falling depending on food intake, exercise, and the time of day. NAD+ levels steadily decline with age, resulting in altered metabolism and increased disease susceptibility. Restoration of NAD+ levels in old or diseased animals can promote health and extend lifespan, prompting a search for safe and efficacious NAD-boosting molecules that hold the promise of increasing the body's resilience, not just to one disease, but to many, thereby extending healthy human lifespan.
Collapse
Affiliation(s)
- Luis Rajman
- Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Karolina Chwalek
- Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David A Sinclair
- Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Laboratory for Ageing Research, Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
76
|
Abstract
SIGNIFICANCE The nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) and NADP+/reduced NADP+ (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD+-consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. CRITICAL ISSUES The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. FUTURE DIRECTIONS Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD+ precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Rui-Sheng Wang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Diane E Handy
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
77
|
Abstract
SIGNIFICANCE Pyridine dinucleotides, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), were discovered more than 100 years ago as necessary cofactors for fermentation in yeast extracts. Since that time, these molecules have been recognized as fundamental players in a variety of cellular processes, including energy metabolism, redox homeostasis, cellular signaling, and gene transcription, among many others. Given their critical role as mediators of cellular responses to metabolic perturbations, it is unsurprising that dysregulation of NAD and NADP metabolism has been associated with the pathobiology of many chronic human diseases. Recent Advances: A biochemistry renaissance in biomedical research, with its increasing focus on the metabolic pathobiology of human disease, has reignited interest in pyridine dinucleotides, which has led to new insights into the cell biology of NAD(P) metabolism, including its cellular pharmacokinetics, biosynthesis, subcellular localization, and regulation. This review highlights these advances to illustrate the importance of NAD(P) metabolism in the molecular pathogenesis of disease. CRITICAL ISSUES Perturbations of NAD(H) and NADP(H) are a prominent feature of human disease; however, fundamental questions regarding the regulation of the absolute levels of these cofactors and the key determinants of their redox ratios remain. Moreover, an integrated topological model of NAD(P) biology that combines the metabolic and other roles remains elusive. FUTURE DIRECTIONS As the complex regulatory network of NAD(P) metabolism becomes illuminated, sophisticated new approaches to manipulating these pathways in specific organs, cells, or organelles will be developed to target the underlying pathogenic mechanisms of disease, opening doors for the next generation of redox-based, metabolism-targeted therapies. Antioxid. Redox Signal. 28, 180-212.
Collapse
Affiliation(s)
- Joshua P Fessel
- 1 Department of Medicine, Vanderbilt University , Nashville, Tennessee
| | - William M Oldham
- 2 Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts.,3 Department of Medicine, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
78
|
Zhang N, Sauve AA. Synthesis of β-Nicotinamide Riboside Using an Efficient Two-Step Methodology. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2017; 71:14.14.1-14.14.9. [PMID: 29275540 PMCID: PMC5965287 DOI: 10.1002/cpnc.43] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A two-step chemical method for the synthesis of β-nicotinamide riboside (NR) is described. NR has achieved wide use as an NAD+ precursor (vitamin B3) and can significantly increase central metabolite NAD+ concentrations in mammalian cells. β-NR can be prepared with an efficient two-step procedure. The synthesis is initiated via coupling of commercially available 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose with ethyl nicotinate in the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf). 1 H NMR showed that the product was formed with complete stereoselectivity to produce only the β-isomer in high yield (>90% versus starting sugar). The clean stereochemical result suggests that the coupling proceeds via a cationic cis-1,2-acyloxonium-sugar intermediate, which controls addition by nucleophiles to generate predominantly β-stereochemistry. The subsequent deprotection of esters in methanolic ammonia generates the desired product in 85% overall yield versus sugar. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Anthony A. Sauve
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
79
|
Vaur P, Brugg B, Mericskay M, Li Z, Schmidt MS, Vivien D, Orset C, Jacotot E, Brenner C, Duplus E. Nicotinamide riboside, a form of vitamin B 3, protects against excitotoxicity-induced axonal degeneration. FASEB J 2017; 31:5440-5452. [PMID: 28842432 DOI: 10.1096/fj.201700221rr] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/31/2017] [Indexed: 11/11/2022]
Abstract
NAD+ depletion is a common phenomenon in neurodegenerative pathologies. Excitotoxicity occurs in multiple neurologic disorders and NAD+ was shown to prevent neuronal degeneration in this process through mechanisms that remained to be determined. The activity of nicotinamide riboside (NR) in neuroprotective models and the recent description of extracellular conversion of NAD+ to NR prompted us to probe the effects of NAD+ and NR in protection against excitotoxicity. Here, we show that intracortical administration of NR but not NAD+ reduces brain damage induced by NMDA injection. Using cortical neurons, we found that provision of extracellular NR delays NMDA-induced axonal degeneration (AxD) much more strongly than extracellular NAD+ Moreover, the stronger effect of NR compared to NAD+ depends of axonal stress since in AxD induced by pharmacological inhibition of nicotinamide salvage, both NAD+ and NR prevent neuronal death and AxD in a manner that depends on internalization of NR. Taken together, our findings demonstrate that NR is a better neuroprotective agent than NAD+ in excitotoxicity-induced AxD and that axonal protection involves defending intracellular NAD+ homeostasis.-Vaur, P., Brugg, B., Mericskay, M., Li, Z., Schmidt, M. S., Vivien, D., Orset, C., Jacotot, E., Brenner, C., Duplus, E. Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration.
Collapse
Affiliation(s)
- Pauline Vaur
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| | - Bernard Brugg
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| | - Mathias Mericskay
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France.,Unité Signalisation et Physiopathologie Cardiovasculaire, INSERM, Université Paris-Saclay, Université Paris Sud, Châtenay-Malabry, France
| | - Zhenlin Li
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France.,Equipe de Recherche Labellisée (ERL) U1164, INSERM, Université Paris-Saclay, Université Paris Sud, Châtenay-Malabry, France
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Denis Vivien
- Unité INSERM 1237, GIP Cycéron, Centre Hospitalier Universitaire de Caen, Université Caen Normandie, Caen, France
| | - Cyrille Orset
- Unité INSERM 1237, GIP Cycéron, Centre Hospitalier Universitaire de Caen, Université Caen Normandie, Caen, France
| | - Etienne Jacotot
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Eric Duplus
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France;
| |
Collapse
|
80
|
Garrido A, Djouder N. NAD + Deficits in Age-Related Diseases and Cancer. Trends Cancer 2017; 3:593-610. [PMID: 28780936 DOI: 10.1016/j.trecan.2017.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/08/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
Abstract
The phenomenon of aging has gained widespread attention in recent times. Although significant advances have been made to better understand aging and its related pathologies including cancer, there is not yet a clear mechanism explaining why diseases and cancer are inherent parts of the aging process. Finding a unifying equation that could bridge aging and its related diseases would allow therapeutic development and solve an immense human health problem to live longer and better. In this review, we discuss NAD+ reduction as the central mechanism that may connect aging to its related pathologies and cancer. NAD+ boosters would ensure and ameliorate health quality during aging.
Collapse
Affiliation(s)
- Amanda Garrido
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Spanish National Cancer Research Centre, CNIO, Madrid, Spain
| | - Nabil Djouder
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Spanish National Cancer Research Centre, CNIO, Madrid, Spain.
| |
Collapse
|
81
|
Elhassan YS, Philp AA, Lavery GG. Targeting NAD+ in Metabolic Disease: New Insights Into an Old Molecule. J Endocr Soc 2017; 1:816-835. [PMID: 29264533 PMCID: PMC5686634 DOI: 10.1210/js.2017-00092] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an established cofactor for enzymes serving cellular metabolic reactions. More recent research identified NAD+ as a signaling molecule and substrate for sirtuins and poly-adenosine 5'-diphosphate polymerases; enzymes that regulate protein deacetylation and DNA repair, and translate changes in energy status into metabolic adaptations. Deranged NAD+ homeostasis and concurrent alterations in mitochondrial function are intrinsic in metabolic disorders, such as type 2 diabetes, nonalcoholic fatty liver, and age-related diseases. Contemporary NAD+ precursors show promise as nutraceuticals to restore target tissue NAD+ and have demonstrated the ability to improve mitochondrial function and sirtuin-dependent signaling. This review discusses the accumulating evidence for targeting NAD+ metabolism in metabolic disease, maps the different strategies for NAD+ boosting, and addresses the challenges and open questions in the field. The health potential of targeting NAD+ homeostasis will inform clinical study design to identify nutraceutical approaches for combating metabolic disease and the unwanted effects of aging.
Collapse
Affiliation(s)
- Yasir S. Elhassan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, United Kingdom
| | - Andrew A. Philp
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Gareth G. Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
82
|
Fletcher RS, Ratajczak J, Doig CL, Oakey LA, Callingham R, Da Silva Xavier G, Garten A, Elhassan YS, Redpath P, Migaud ME, Philp A, Brenner C, Canto C, Lavery GG. Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells. Mol Metab 2017; 6:819-832. [PMID: 28752046 PMCID: PMC5518663 DOI: 10.1016/j.molmet.2017.05.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2022] Open
Abstract
Objective Augmenting nicotinamide adenine dinucleotide (NAD+) availability may protect skeletal muscle from age-related metabolic decline. Dietary supplementation of NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) appear efficacious in elevating muscle NAD+. Here we sought to identify the pathways skeletal muscle cells utilize to synthesize NAD+ from NMN and NR and provide insight into mechanisms of muscle metabolic homeostasis. Methods We exploited expression profiling of muscle NAD+ biosynthetic pathways, single and double nicotinamide riboside kinase 1/2 (NRK1/2) loss-of-function mice, and pharmacological inhibition of muscle NAD+ recycling to evaluate NMN and NR utilization. Results Skeletal muscle cells primarily rely on nicotinamide phosphoribosyltransferase (NAMPT), NRK1, and NRK2 for salvage biosynthesis of NAD+. NAMPT inhibition depletes muscle NAD+ availability and can be rescued by NR and NMN as the preferred precursors for elevating muscle cell NAD+ in a pathway that depends on NRK1 and NRK2. Nrk2 knockout mice develop normally and show subtle alterations to their NAD+ metabolome and expression of related genes. NRK1, NRK2, and double KO myotubes revealed redundancy in the NRK dependent metabolism of NR to NAD+. Significantly, these models revealed that NMN supplementation is also dependent upon NRK activity to enhance NAD+ availability. Conclusions These results identify skeletal muscle cells as requiring NAMPT to maintain NAD+ availability and reveal that NRK1 and 2 display overlapping function in salvage of exogenous NR and NMN to augment intracellular NAD+ availability. NRK1 and NRK2 are expressed in skeletal muscle and display redundancy in converting NR and NMN to NAD+. NRK1 and NRK2 are dispensable for maintaining basal skeletal muscle cell NAD+. Exogenous NMN salvage to NAD+ is NRK dependent.
Collapse
Affiliation(s)
- Rachel S Fletcher
- Institute of Metabolism and Systems Research, 2nd Floor IBR Tower, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK
| | - Joanna Ratajczak
- Nestlé Institute of Health Sciences (NIHS), Lausanne, CH-1015, Switzerland; Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Craig L Doig
- Institute of Metabolism and Systems Research, 2nd Floor IBR Tower, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK
| | - Lucy A Oakey
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK
| | - Rebecca Callingham
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Gabriella Da Silva Xavier
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Antje Garten
- Institute of Metabolism and Systems Research, 2nd Floor IBR Tower, University of Birmingham, Birmingham, B15 2TT, UK; Leipzig University, Hospital for Children and Adolescents, Center for Pediatric Research, Liebigstrasse 19-21, 04103, Leipzig, Germany
| | - Yasir S Elhassan
- Institute of Metabolism and Systems Research, 2nd Floor IBR Tower, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK
| | - Philip Redpath
- Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Andrew Philp
- School of Sport Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Carles Canto
- Nestlé Institute of Health Sciences (NIHS), Lausanne, CH-1015, Switzerland; Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, 2nd Floor IBR Tower, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK.
| |
Collapse
|
83
|
Hamity MV, White SR, Walder RY, Schmidt MS, Brenner C, Hammond DL. Nicotinamide riboside, a form of vitamin B3 and NAD+ precursor, relieves the nociceptive and aversive dimensions of paclitaxel-induced peripheral neuropathy in female rats. Pain 2017; 158:962-972. [PMID: 28346814 DOI: 10.1097/j.pain.0000000000000862] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Injury to sensory afferents may contribute to the peripheral neuropathies that develop after administration of chemotherapeutic agents. Manipulations that increase levels of nicotinamide adenine dinucleotide (NAD) can protect against neuronal injury. This study examined whether nicotinamide riboside (NR), a third form of vitamin B3 and precursor of NAD, diminishes tactile hypersensitivity and place escape-avoidance behaviors in a rodent model of paclitaxel-induced peripheral neuropathy. Female Sprague-Dawley rats received 3 intravenous injections of 6.6 mg/kg paclitaxel over 5 days. Daily oral administration of 200 mg/kg NR beginning 7 days before paclitaxel treatment and continuing for another 24 days prevented the development of tactile hypersensitivity and blunted place escape-avoidance behaviors. These effects were sustained after a 2-week washout period. This dose of NR increased blood levels of NAD by 50%, did not interfere with the myelosuppressive effects of paclitaxel, and did not produce adverse locomotor effects. Treatment with 200 mg/kg NR for 3 weeks after paclitaxel reversed the well-established tactile hypersensitivity in a subset of rats and blunted escape-avoidance behaviors. Pretreatment with 100 mg/kg oral acetyl-L-carnitine (ALCAR) did not prevent paclitaxel-induced tactile hypersensitivity or blunt escape-avoidance behaviors. ALCAR by itself produced tactile hypersensitivity. These findings suggest that agents that increase NAD, a critical cofactor for mitochondrial oxidative phosphorylation systems and cellular redox systems involved with fuel utilization and energy metabolism, represent a novel therapeutic approach for relief of chemotherapy-induced peripheral neuropathies. Because NR is a vitamin B3 precursor of NAD and a nutritional supplement, clinical tests of this hypothesis may be accelerated.
Collapse
Affiliation(s)
| | | | | | | | | | - Donna L Hammond
- Departments of Anesthesia.,Pharmacology, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
84
|
NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat Commun 2016; 7:13103. [PMID: 27725675 PMCID: PMC5476803 DOI: 10.1038/ncomms13103] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022] Open
Abstract
NAD+ is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we show that nicotinamide riboside kinase 1 (NRK1) is necessary and rate-limiting for the use of exogenous NR and NMN for NAD+ synthesis. Using genetic gain- and loss-of-function models, we further demonstrate that the role of NRK1 in driving NAD+ synthesis from other NAD+ precursors, such as nicotinamide or nicotinic acid, is dispensable. Using stable isotope-labelled compounds, we confirm NMN is metabolized extracellularly to NR that is then taken up by the cell and converted into NAD+. Our results indicate that mammalian cells require conversion of extracellular NMN to NR for cellular uptake and NAD+ synthesis, explaining the overlapping metabolic effects observed with the two compounds. Raising cellular levels of the metabolic cofactor NAD+ reverses key indicators of aging. Here, Ratajczak et al. show that cellular levels of NAD+ depend on the extracellular catalytic activity of NRK1, which processes two NAD+ precursors, nicotinamide mononucleotide and nicotinamide riboside, in mice.
Collapse
|
85
|
Ummarino S, Mozzon M, Zamporlini F, Amici A, Mazzola F, Orsomando G, Ruggieri S, Raffaelli N. Simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide in milk by a novel enzyme-coupled assay. Food Chem 2016; 221:161-168. [PMID: 27979136 DOI: 10.1016/j.foodchem.2016.10.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 11/29/2022]
Abstract
Nicotinamide riboside, the most recently discovered form of vitamin B3, and its phosphorylated form nicotinamide mononucleotide, have been shown to be potent supplements boosting intracellular nicotinamide adenine dinucleotide (NAD) levels, thus preventing or ameliorating metabolic and mitochondrial diseases in mouse models. Here we report for the first time on the simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and NAD in milk by means of a fluorometric, enzyme-coupled assay. Application of this assay to milk from different species revealed that the three vitamers were present in human and donkey milk, while being selectively distributed in the other milks. Human milk was the richest source of nicotinamide mononucleotide. Overall, the three vitamers accounted for a significant fraction of total vitamin B3 content. Pasteurization did not affect the bovine milk content of nicotinamide riboside, whereas UHT processing fully destroyed the vitamin. In human milk, NAD levels were significantly affected by the lactation time.
Collapse
Affiliation(s)
- Simone Ummarino
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| | - Massimo Mozzon
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| | - Federica Zamporlini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| | - Adolfo Amici
- Department of Clinical Sciences, Section of Biochemistry, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| | - Francesca Mazzola
- Department of Clinical Sciences, Section of Biochemistry, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| | - Giuseppe Orsomando
- Department of Clinical Sciences, Section of Biochemistry, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| | - Silverio Ruggieri
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| |
Collapse
|
86
|
Trammell SAJ, Schmidt MS, Weidemann BJ, Redpath P, Jaksch F, Dellinger RW, Li Z, Abel ED, Migaud ME, Brenner C. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun 2016; 7:12948. [PMID: 27721479 PMCID: PMC5062546 DOI: 10.1038/ncomms12948] [Citation(s) in RCA: 488] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 08/12/2016] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide riboside (NR) is in wide use as an NAD+ precursor vitamin. Here we determine the time and dose-dependent effects of NR on blood NAD+ metabolism in humans. We report that human blood NAD+ can rise as much as 2.7-fold with a single oral dose of NR in a pilot study of one individual, and that oral NR elevates mouse hepatic NAD+ with distinct and superior pharmacokinetics to those of nicotinic acid and nicotinamide. We further show that single doses of 100, 300 and 1,000 mg of NR produce dose-dependent increases in the blood NAD+ metabolome in the first clinical trial of NR pharmacokinetics in humans. We also report that nicotinic acid adenine dinucleotide (NAAD), which was not thought to be en route for the conversion of NR to NAD+, is formed from NR and discover that the rise in NAAD is a highly sensitive biomarker of effective NAD+ repletion.
Collapse
Affiliation(s)
- Samuel A. J. Trammell
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Mark S. Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Benjamin J. Weidemann
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Philip Redpath
- John King Laboratory, School of Pharmacy, Queens University Belfast, Belfast BT7 1NN, UK
| | - Frank Jaksch
- ChromaDex, Inc., 10005 Muirlands Blvd, Suite G, Irvine, California 92618, USA
| | - Ryan W. Dellinger
- ChromaDex, Inc., 10005 Muirlands Blvd, Suite G, Irvine, California 92618, USA
| | - Zhonggang Li
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - E. Dale Abel
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Marie E. Migaud
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
- John King Laboratory, School of Pharmacy, Queens University Belfast, Belfast BT7 1NN, UK
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
87
|
Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice. Sci Rep 2016; 6:26933. [PMID: 27230286 PMCID: PMC4882590 DOI: 10.1038/srep26933] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023] Open
Abstract
Male C57BL/6J mice raised on high fat diet (HFD) become prediabetic and develop insulin resistance and sensory neuropathy. The same mice given low doses of streptozotocin are a model of type 2 diabetes (T2D), developing hyperglycemia, severe insulin resistance and diabetic peripheral neuropathy involving sensory and motor neurons. Because of suggestions that increased NAD+ metabolism might address glycemic control and be neuroprotective, we treated prediabetic and T2D mice with nicotinamide riboside (NR) added to HFD. NR improved glucose tolerance, reduced weight gain, liver damage and the development of hepatic steatosis in prediabetic mice while protecting against sensory neuropathy. In T2D mice, NR greatly reduced non-fasting and fasting blood glucose, weight gain and hepatic steatosis while protecting against diabetic neuropathy. The neuroprotective effect of NR could not be explained by glycemic control alone. Corneal confocal microscopy was the most sensitive measure of neurodegeneration. This assay allowed detection of the protective effect of NR on small nerve structures in living mice. Quantitative metabolomics established that hepatic NADP+ and NADPH levels were significantly degraded in prediabetes and T2D but were largely protected when mice were supplemented with NR. The data justify testing of NR in human models of obesity, T2D and associated neuropathies.
Collapse
|