51
|
Characterization of a novel fusion protein from IpaB and IpaD of Shigella spp. and its potential as a pan-Shigella vaccine. Infect Immun 2013; 81:4470-7. [PMID: 24060976 DOI: 10.1128/iai.00859-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigellosis is an important disease in the developing world, where about 90 million people become infected with Shigella spp. each year. We previously demonstrated that the type three secretion apparatus (T3SA) proteins IpaB and IpaD are protective antigens in the mouse lethal pulmonary model. In order to simplify vaccine formulation and process development, we have evaluated a vaccine design that incorporates both of these previously tested Shigella antigens into a single polypeptide chain. To determine if this fusion protein (DB fusion) retains the antigenic and protective capacities of IpaB and IpaD, we immunized mice with the DB fusion and compared the immune response to that elicited by the IpaB/IpaD combination vaccine. Purification of the DB fusion required coexpression with IpgC, the IpaB chaperone, and after purification it maintained the highly α-helical characteristics of IpaB and IpaD. The DB fusion also induced comparable immune responses and retained the ability to protect mice against Shigella flexneri and S. sonnei in the lethal pulmonary challenge. It also offered limited protection against S. dysenteriae challenge. Our results show the feasibility of generating a protective Shigella vaccine comprised of the DB fusion.
Collapse
|
52
|
The role of T helper (TH)17 cells as a double-edged sword in the interplay of infection and autoimmunity with a focus on xenobiotic-induced immunomodulation. Clin Dev Immunol 2013; 2013:374769. [PMID: 24151516 PMCID: PMC3787652 DOI: 10.1155/2013/374769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/04/2013] [Accepted: 06/22/2013] [Indexed: 12/18/2022]
Abstract
Extensive research in recent years suggests that exposure to xenobiotic stimuli plays a critical role in autoimmunity induction and severity and that the resulting response would be exacerbated in individuals with an infection-aroused immune system. In this context, heavy metals constitute a prominent category of xenobiotic substances, known to alter divergent immune cell responses in accidentally and occupationally exposed individuals, thereby increasing the susceptibility to autoimmunity and cancer, especially when accompanied by inflammation-triggered persistent sensitization. This perception is learned from experimental models of infection and epidemiologic studies and clearly underscores the interplay of exposure to such immunomodulatory elements with pre- or postexposure infectious events. Further, the TH17 cell subset, known to be associated with a growing list of autoimmune manifestations, may be the “superstar” at the interface of xenobiotic exposure and autoimmunity. In this review, the most recently established links to this nomination are short-listed to create a framework to better understand new insights into TH17's contributions to autoimmunity.
Collapse
|
53
|
Heine SJ, Diaz-McNair J, Martinez-Becerra FJ, Choudhari SP, Clements JD, Picking WL, Pasetti MF. Evaluation of immunogenicity and protective efficacy of orally delivered Shigella type III secretion system proteins IpaB and IpaD. Vaccine 2013; 31:2919-29. [PMID: 23644075 DOI: 10.1016/j.vaccine.2013.04.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
Shigella spp. are food- and water-borne pathogens that cause shigellosis, a severe diarrheal and dysenteric disease that is associated with a high morbidity and mortality in resource-poor countries. No licensed vaccine is available to prevent shigellosis. We have recently demonstrated that Shigella invasion plasmid antigens (Ipas), IpaB and IpaD, which are components of the bacterial type III secretion system (TTSS), can prevent infection in a mouse model of intranasal immunization and lethal pulmonary challenge. Because they are conserved across Shigella spp. and highly immunogenic, these proteins are excellent candidates for a cross-protective vaccine. Ideally, such a vaccine could be administered to humans orally to induce mucosal and systemic immunity. In this study, we investigated the immunogenicity and protective efficacy of Shigella IpaB and IpaD administered orally with a double mutant of the Escherichia coli heat labile toxin (dmLT) as a mucosal adjuvant. We characterized the immune responses induced by oral vs. intranasal immunization and the protective efficacy using a mouse pulmonary infection model. Serum IgG and fecal IgA against IpaB were induced after oral immunization. These responses, however, were lower than those obtained after intranasal immunization despite a 100-fold dosage increase. The level of protection induced by oral immunization with IpaB and IpaD was 40%, while intranasal immunization resulted in 90% protective efficacy. IpaB- and IpaD-specific IgA antibody-secreting cells in the lungs and spleen and T-cell-derived IL-2, IL-5, IL-17 and IL-10 were associated with protection. These results demonstrate the immunogenicity of orally administered IpaB and IpaD and support further studies in humans.
Collapse
Affiliation(s)
- Shannon J Heine
- Center for Vaccine Development and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | | | | | | | | | | |
Collapse
|
54
|
Martinez-Becerra FJ, Scobey M, Harrison K, Choudhari SP, Quick AM, Joshi SB, Middaugh CR, Picking WL. Parenteral immunization with IpaB/IpaD protects mice against lethal pulmonary infection by Shigella. Vaccine 2013; 31:2667-72. [PMID: 23602665 DOI: 10.1016/j.vaccine.2013.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/28/2013] [Accepted: 04/03/2013] [Indexed: 12/12/2022]
Abstract
Shigellosis is an important diarrheal disease, especially among children in the developing world. About 90 million infections with Shigella spp are estimated to appear each year. We previously demonstrated that the type III secretion apparatus (T3SA) proteins IpaB and IpaD are protective antigens when administered intranasally using the mouse lethal pulmonary model. To simplify vaccine administration, we tested the parenteral route for IpaB and IpaD with several adjuvants and compared the immune response and protective efficacy via the intranasal route. We found that the intramuscular administration generated a response consisting of similar levels of serum IgG, a lack of IgA response and higher IL-17 secretion. Therefore, while parenteral administration yielded a unique pattern of immune responses, it retained the ability to protect mice in a lethal pulmonary challenge against S. flexneri when both proteins were used. Our results show the feasibility of generating protective parenteral vaccines against Shigella spp.
Collapse
|
55
|
Davis CL, Wahid R, Toapanta FR, Simon JK, Sztein MB, Levy D. Applying mathematical tools to accelerate vaccine development: modeling Shigella immune dynamics. PLoS One 2013; 8:e59465. [PMID: 23589755 PMCID: PMC3614931 DOI: 10.1371/journal.pone.0059465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/11/2013] [Indexed: 12/02/2022] Open
Abstract
We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella’s outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design.
Collapse
Affiliation(s)
- Courtney L Davis
- Natural Science Division, Pepperdine University, Malibu, California, United States of America.
| | | | | | | | | | | |
Collapse
|
56
|
Abstract
The Gram-negative enteroinvasive bacterium Shigella flexneri is responsible for the endemic form of bacillary dysentery, an acute rectocolitis in humans. S. flexneri uses a type III secretion system to inject effector proteins into host cells, thus diverting cellular functions to its own benefit. Protective immunity to reinfection requires several rounds of infection to be elicited and is short-lasting, suggesting that S. flexneri interferes with the priming of specific immunity. Considering the key role played by T-lymphocyte trafficking in priming of adaptive immunity, we investigated the impact of S. flexneri on T-cell dynamics in vivo. By using two-photon microscopy to visualize bacterium-T-cell cross-talks in the lymph nodes, where the adaptive immunity is initiated, we provide evidence that S. flexneri, via its type III secretion system, impairs the migration pattern of CD4(+) T cells independently of cognate recognition of bacterial antigens. We show that bacterial invasion of CD4(+) T lymphocytes occurs in vivo, and results in cell migration arrest. In the absence of invasion, CD4(+) T-cell migration parameters are also dramatically altered. Signals resulting from S. flexneri interactions with subcapsular sinus macrophages and dendritic cells, and recruitment of polymorphonuclear cells are likely to contribute to this phenomenon. These findings indicate that S. flexneri targets T lymphocytes in vivo and highlight the role of type III effector secretion in modulating host adaptive immune responses.
Collapse
|
57
|
25-Hydroxy vitamin D3 modulates dendritic cell phenotype and function in Crohn's disease. Inflammopharmacology 2013; 21:177-86. [PMID: 23341164 DOI: 10.1007/s10787-012-0168-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/31/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND In Crohn's disease (CrD), vitamin D may help to balance an exaggerated immune response and thereby improve the disease course. The immunomodulating effects depend on the activation of 25-hydroxy vitamin D3 (25-D3), into 1,25-dihydroxy vitamin D3 (1,25-D3). This activation has previously been shown to take place in dendritic cells (DC) from healthy individuals. We hypothesised that DC from CrD patients are able to regulate and control inflammatory responses through 25-D3 activation. METHODS During differentiation, monocyte-derived DC from 20 CrD patients were cultured with either 25-D3 or 1,25-D3 and matured with lipopolysaccharide (LPS). We examined DC surface marker expression, cytokine production, and the ability to induce cell proliferation in an allogeneic mixed leukocyte reaction. RESULTS Following stimulation with LPS, DC exposed to either 25-D3 or 1,25-D3 exhibited lower expression levels of CD80, CD83, CD86, and HLA-DR and diminished TNF-α production compared with DC cultured with LPS alone. In contrast, CD14 expression and IL-6 production were higher following 25-D3 or 1,25-D3 treatment. Compared with LPS alone, both forms of vitamin D3 reduced the ability of DC to activate lymphocytes. CONCLUSIONS Following stimulation with 25-D3, DC from CrD patients displayed a reduced response to LPS with a diminished capability to activate T cells compared with DC stimulated with LPS alone. These data indicate that intrinsic activation of 25-D3 occurs in DC from CrD patients and show that 25-D3 can modulate DC function in CrD. Our data suggest that vitamin D deficiency may contribute to the uncontrolled inflammatory process seen in CrD.
Collapse
|
58
|
Jacoby M, Gohrbandt S, Clausse V, Brons NH, Muller CP. Interindividual variability and co-regulation of DNA methylation differ among blood cell populations. Epigenetics 2012; 7:1421-34. [PMID: 23151460 DOI: 10.4161/epi.22845] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA methylation regulates gene expression in a cell-type specific way. Although peripheral blood mononuclear cells (PBMCs) comprise a heterogeneous cell population, most studies of DNA methylation in blood are performed on total mononuclear cells. In this study, we investigated high resolution methylation profiles of 58 CpG sites dispersed over eight immune response genes in multiple purified blood cells from healthy adults and newborns. Adjacent CpG sites showed methylation levels that were increasingly correlated in adult blood vs. cord blood. Thus, while interindividual variability increases from newborn to adult blood, the underlying methylation changes may not be merely stochastic, but seem to be orchestrated as clusters of adjacent CpG sites. Multiple linear regression analysis showed that interindividual methylation variability was influenced by distance of average methylation levels to the closest border (0 or 100%), presence of transcription factor binding sites, CpG conservation across species and age. Furthermore, CD4+ and CD14+ cell types were negative predictors of methylation variability. Concerns that PBMC methylation differences may be confounded by variations in blood cell composition were justified for CpG sites with large methylation differences across cell types, such as in the IFN-γ gene promoter. Taken together, our data suggest that unsorted mononuclear cells are reasonable surrogates of CD8+ and, to a lesser extent, CD4+ T cell methylation in adult peripheral, but not in neonatal, cord blood.
Collapse
Affiliation(s)
- Monique Jacoby
- Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, Luxembourg, Luxembourg
| | | | | | | | | |
Collapse
|
59
|
Teo I, Toms SM, Marteyn B, Barata TS, Simpson P, Johnston KA, Schnupf P, Puhar A, Bell T, Tang C, Zloh M, Matthews S, Rendle PM, Sansonetti PJ, Shaunak S. Preventing acute gut wall damage in infectious diarrhoeas with glycosylated dendrimers. EMBO Mol Med 2012; 4:866-81. [PMID: 22887873 PMCID: PMC3491821 DOI: 10.1002/emmm.201201290] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/15/2012] [Accepted: 06/22/2012] [Indexed: 01/25/2023] Open
Abstract
Intestinal pathogens use the host's excessive inflammatory cytokine response, designed to eliminate dangerous bacteria, to disrupt epithelial gut wall integrity and promote their tissue invasion. We sought to develop a non-antibiotic-based approach to prevent this injury. Molecular docking studies suggested that glycosylated dendrimers block the TLR4-MD-2-LPS complex, and a 13.6 kDa polyamidoamine (PAMAM) dendrimer glucosamine (DG) reduced the induction of human monocyte interleukin (IL)-6 by Gram-negative bacteria. In a rabbit model of shigellosis, PAMAM-DG prevented epithelial gut wall damage and intestinal villous destruction, reduced local IL-6 and IL-8 expression, and minimized bacterial invasion. Computational modelling studies identified a 3.3 kDa polypropyletherimine (PETIM)-DG as the smallest likely bioactive molecule. In human monocytes, high purity PETIM-DG potently inhibited Shigella Lipid A-induced IL-6 expression. In rabbits, PETIM-DG prevented Shigella-induced epithelial gut wall damage, reduced local IL-6 and IL-8 expression, and minimized bacterial invasion. There was no change in β-defensin, IL-10, interferon-β, transforming growth factor-β, CD3 or FoxP3 expression. Small and orally delivered DG could be useful for preventing gut wall tissue damage in a wide spectrum of infectious diarrhoeal diseases. –>See accompanying article http://dx.doi.org/10.1002/emmm.201201668
Collapse
Affiliation(s)
- Ian Teo
- Departments of Medicine, Infectious Diseases & Immunity, Imperial College London, Hammersmith Hospital, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Vaccine-induced th17 cells are maintained long-term postvaccination as a distinct and phenotypically stable memory subset. Infect Immun 2012; 80:3533-44. [PMID: 22851756 DOI: 10.1128/iai.00550-12] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Th17 cells are increasingly being recognized as an important T helper subset for immune-mediated protection, especially against pathogens at mucosal ports of entry. In several cases, it would thus be highly relevant to induce Th17 memory by vaccination. Th17 cells are reported to exhibit high plasticity and may not stably maintain their differentiation program once induced, questioning the possibility of inducing durable Th17 memory. Accordingly, there is no consensus as to whether Th17 memory can be established unless influenced by continuous Th17 polarizing conditions. We have previously reported (T. Lindenstrøm, et al., J. Immunol. 182:8047-8055, 2009) that the cationic liposome adjuvant CAF01 can prime both Th1 and Th17 responses and promote robust, long-lived Th1 memory. Here, we demonstrate that subunit vaccination in mice with CAF01 leads to establishment of bona fide Th17 memory cells. Accordingly, Th17 memory cells exhibited lineage stability by retaining both phenotypic and functional properties for nearly 2 years. Antigen-specific, long-term Th17 memory cells were found to be mobilized from lung-draining lymph nodes to the lung following an aerosol challenge by Mycobacterium tuberculosis nearly 2 years after their induction and proliferated at levels comparable to those of Th1 memory cells. During the infection, the vaccine-induced Th17 memory cells expanded in the lungs and adapted Th1 characteristics, implying that they represent a metastable population which exhibits plasticity when exposed to prolonged Th1 polarizing, inflammatory conditions such as those found in the M. tuberculosis-infected lung. In the absence of overt inflammation, however, stable bona fide Th17 memory can indeed be induced by parenteral immunization.
Collapse
|
61
|
Liang SL, Wang WZ, Huang S, Wang XK, Zhang S, Wu Y. Th17 helper cell and T-cell immunoglobulin and mucin domain 3 involvement in Guillain-Barré syndrome. Immunopharmacol Immunotoxicol 2012; 34:1039-46. [PMID: 22738814 DOI: 10.3109/08923973.2012.697469] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE AND DESIGN We investigated the involvement of Th17 cells and T-cell immunoglobulin and mucin domain 3 (TIM-3) in Guillain-Barré syndrome (GBS) in comparison to healthy subjects. MATERIALS AND SUBJECTS Peripheral blood samples were obtained from 29 healthy subjects and 29 GBS patients. TREATMENT Peripheral blood mononuclear cells (PBMCs) and CD4(+) T cells were stimulated with anti-CD3 and anti-CD28 mAbs, in the absence or presence of anti-TIM-3 mAb. METHODS mRNA levels of TIM-3 and the transcription factor retinoic acid-related orphan receptor γt (RORγt) were determined by RT-PCR and were expressed relative to β-actin mRNA (housekeeping gene). Serum IFN-γ and IL-17 levels were determined by ELISA. RESULTS Compared to controls, relative TIM-3 mRNA levels were lower in both stimulated and unstimulated PBMCs from GBS patients. Unstimulated GBS CD4(+) T cells and GBS CD4+ T cells stimulated with anti-CD3 and CD28 mAbs had higher relative RORγt mRNA expression compared to controls. GBS CD4(+) T cells secreted significantly more IFN-γ and IL-17 in the presence of anti-TIM-3 mAb. GBS patients had (1) higher numbers of Th17, but not Th1 or Th2 cells in peripheral blood and (2) higher serum concentrations of IFN-γ and IL-17 compared to controls. CONCLUSION TIM-3 may inhibit Th17 cell activation, thereby modulating their cytokine secretion patterns. Th17 cell differentiation, IL-17 levels, and TIM-3 regulation may be involved in the pathogenesis of GBS.
Collapse
Affiliation(s)
- Song-lan Liang
- Department of Neurology, the Second Affiliated Hospital ofHarbin Medical University, Harbin, Helongjiang, PR China
| | | | | | | | | | | |
Collapse
|
62
|
Cieza RJ, Cao AT, Cong Y, Torres AG. Immunomodulation for gastrointestinal infections. Expert Rev Anti Infect Ther 2012; 10:391-400. [PMID: 22397571 DOI: 10.1586/eri.11.176] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal epithelium provides a barrier between a variety of luminal antigens and provides the components of intestinal innate and adaptive immunity. It is crucial that at this interface, the epithelial cell layer and the components of the intestinal immunity interact with dietary and bacterial antigens in a regulated way to maintain homeostasis. Failure to tightly control immune reactions can be detrimental and result in inflammation. In the current review, we described the regulatory mechanisms controlling host-immune homeostasis and the role of regulatory CD4(+) T cells, with a special emphasis in the regulatory T-cell subsets (Tregs). Furthermore, the participation of innate cell cross-talk in the polarization of intestinal immune responses is also evaluated. Finally, the recent characterization of host responses to normal commensal flora, the role of bacteria and bacterial factors in the maintenance of immunomodulation, and the disruption of this balance by bacterial enteric pathogens is also summarized.
Collapse
Affiliation(s)
- Roberto J Cieza
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
63
|
McArthur MA, Sztein MB. Heterogeneity of multifunctional IL-17A producing S. Typhi-specific CD8+ T cells in volunteers following Ty21a typhoid immunization. PLoS One 2012; 7:e38408. [PMID: 22679502 PMCID: PMC3367967 DOI: 10.1371/journal.pone.0038408] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/04/2012] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, continues to cause significant morbidity and mortality world-wide. CD8+ T cells are an important component of the cell mediated immune (CMI) response against S. Typhi. Recently, interleukin (IL)-17A has been shown to contribute to mucosal immunity and protection against intracellular pathogens. To investigate multifunctional IL-17A responses against S. Typhi antigens in T memory subsets, we developed multiparametric flow cytometry methods to detect up to 6 cytokines/chemokines (IL-10, IL-17A, IL-2, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and macrophage inflammatory protein-1β (MIP-1β)) simultaneously. Five volunteers were immunized with a 4 dose regimen of live-attenuated S. Typhi vaccine (Ty21a), peripheral blood mononuclear cells (PBMC) were isolated before and at 11 time points after immunization, and CMI responses were evaluated. Of the 5 immunized volunteers studied, 3 produced detectable CD8+ T cell responses following stimulation with S. Typhi-infected autologous B lymphoblastoid cell lines (B-LCL). Additionally, 2 volunteers had detectable levels of intracellular cytokines in response to stimulation with S. Typhi-infected HLA-E restricted cells. Although the kinetics of the responses differed among volunteers, all of the responses were bi- or tri-phasic and included multifunctional CD8+ T cells. Virtually all of the IL-17A detected was derived from multifunctional CD8+ T cells. The presence of these multifunctional IL-17A+ CD8+ T cells was confirmed using an unsupervised analysis program, flow cytometry clustering without K (FLOCK). This is the first report of IL-17A production in response to S. Typhi in humans, indicating the presence of a Tc17 response which may be important in protection. The presence of IL-17A in multifunctional cells co-producing Tc1 cytokines (IL-2, IFN-γ and TNF-α) may also indicate that the distinction between Tc17 and Tc1 responses in humans is not as clearly delineated as suggested by in vitro experiments and animal models.
Collapse
Affiliation(s)
- Monica A. McArthur
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Marcelo B. Sztein
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
64
|
Schnupf P, Sansonetti PJ. Quantitative RT-PCR profiling of the rabbit immune response: assessment of acute Shigella flexneri infection. PLoS One 2012; 7:e36446. [PMID: 22675469 PMCID: PMC3366964 DOI: 10.1371/journal.pone.0036446] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/04/2012] [Indexed: 12/18/2022] Open
Abstract
Quantitative reverse transcription PCR analysis is an important tool to monitor changes in gene expression in animal models. The rabbit is a widely accepted and commonly used animal model in the study of human diseases and infections by viral, fungal, bacterial and protozoan pathogens. Only a limited number of rabbit genes have, however, been analyzed by this method as the rabbit genome sequence remains unfinished. Recently, increasing coverage of the genome has permitted the prediction of a growing number of genes that are relevant in the context of the immune response. We hereby report the design of twenty-four quantitative PCR primer pairs covering common cytokines, chemoattractants, antimicrobials and enzymes for a rapid, sensitive and quantitative analysis of the rabbit immune response. Importantly, all primer pairs were designed to be used under identical experimental conditions, thereby enabling the simultaneous analysis of all genes in a high-throughput format. This tool was used to analyze the rabbit innate immune response to infection with the human gastrointestinal pathogen Shigella flexneri. Beyond the known inflammatory mediators, we identified IL-22, IL-17A and IL-17F as highly upregulated cytokines and as first responders to infection during the innate phase of the host immune response. This set of qPCR primers also provides a convenient tool for monitoring the rabbit immune response during infection with other pathogens and other inflammatory conditions.
Collapse
Affiliation(s)
- Pamela Schnupf
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
| | | |
Collapse
|
65
|
Liu Y, Islam EA, Jarvis GA, Gray-Owen SD, Russell MW. Neisseria gonorrhoeae selectively suppresses the development of Th1 and Th2 cells, and enhances Th17 cell responses, through TGF-β-dependent mechanisms. Mucosal Immunol 2012; 5:320-31. [PMID: 22354319 PMCID: PMC3328619 DOI: 10.1038/mi.2012.12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Infection with Neisseria gonorrhoeae does not induce specific immunity or immune memory. Our previous studies in a murine model of vaginal gonococcal infection showed that innate immunity governed by Th17 cells was a critical aspect of the immune response elicited by this pathogen. Herein we show that N. gonorrhoeae selectively inhibited Th1 and Th2 cells and enhanced Th17 cell development through the induction of TGF-β. Whereas Th17 responses depended on gonococcal lipooligosaccharide acting through TLR4, the inhibitory effect of N. gonorrhoeae on Th1/Th2 responses involved gonococcal Opa proteins. In vitro Th17 responses to N. gonorrhoeae could be diverted to Th1/Th2 by blockade of TGF-β, but not by blockade of IL-17. The results reveal that N. gonorrhoeae suppresses Th1/Th2-mediated adaptive immune response through mechanisms dependent on TGF-β, and that this effect can be manipulated to promote the development of adaptive immunity.
Collapse
Affiliation(s)
- Yingru Liu
- Department of Microbiology and Immunology, and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY 14214, USA
| | - Epshita A. Islam
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gary A. Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, CA, 94121; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael W. Russell
- Department of Microbiology and Immunology, and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
66
|
Abstract
Much is known about the molecular effectors of pathogenicity of gram-negative enteric pathogens, among which Shigella can be considered a model. This is due to its capacity to recapitulate the multiple steps required for a pathogenic microbe to survive close to its mucosal target, colonize and then invade its epithelial surface, cause its inflammatory destruction and simultaneously regulate the extent of the elicited innate response to likely survive the encounter and achieve successful subsequent transmission. These various steps of the infectious process represent an array of successive environmental conditions to which the bacteria need to successfully adapt. These conditions represent the selective pressure that triggered the "arms race" in which Shigella acquired the genetic and molecular effectors of its pathogenic armory, including the regulatory hierarchies that regulate the expression and function of these effectors. They also represent cues through which Shigella achieves the temporo-spatial expression and regulation of its virulence effectors. The role of such environmental cues has recently become obvious in the case of the major virulence effector of Shigella, the type three secretion system (T3SS) and its dedicated secreted virulence effectors. It needs to be better defined for other major virulence components such as the LPS and peptidoglycan which are used as examples here, in addition to the T3SS as models of regulation as it relates to the assembly and functional regulation of complex macromolecular systems of the bacterial surface. This review also stresses the need to better define what the true and relevant environmental conditions can be at the various steps of the progression of infection. The "identity" of the pathogen differs depending whether it is cultivated under in vitro or in vivo conditions. Moreover, this "identity" may quickly change during its progression into the infected tissue. Novel concepts and relevant tools are needed to address this challenge in microbial pathogenesis.
Collapse
Affiliation(s)
- Benoit Marteyn
- Unité de Pathogénie Microbienne Moléculaire; Institut Pasteur; Paris, France,Unité INSERM 786; Institut Pasteur; Paris, France
| | - Anastasia Gazi
- Unité de Pathogénie Microbienne Moléculaire; Institut Pasteur; Paris, France,Unité INSERM 786; Institut Pasteur; Paris, France
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire; Institut Pasteur; Paris, France,Unité INSERM 786; Institut Pasteur; Paris, France,Chaire de Microbiologie et Maladies Infectieuses; Collège de France; Paris, France,Correspondence to: Philippe Sansonetti,
| |
Collapse
|
67
|
Raïch-Regué D, Naranjo-Gómez M, Grau-López L, Ramo C, Pujol-Borrell R, Martínez-Cáceres E, Borràs FE. Differential effects of monophosphoryl lipid A and cytokine cocktail as maturation stimuli of immunogenic and tolerogenic dendritic cells for immunotherapy. Vaccine 2011; 30:378-87. [PMID: 22085546 DOI: 10.1016/j.vaccine.2011.10.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/10/2011] [Accepted: 10/28/2011] [Indexed: 12/20/2022]
Abstract
Immunotherapy using monocyte-derived dendritic cells (MDDC) is increasingly being considered as alternative therapeutic approach in cancer, infectious diseases and also in autoimmunity when patients are not responsive to conventional treatments. In general, generation of MDDC from monocytes is induced in the presence of GM-CSF and IL-4, and a maturation stimulus is added to the culture to obtain mature DCs suitable for therapy. For DC maturation, different combinations of pro-inflammatory mediators and Toll-like receptor ligands have been tested, obtaining DCs that differ in their properties and the type of immune response they promote. Therefore, it is necessary to find an optimal cytokine environment for DC maturation to obtain a cellular product suitable for DC-based immunotherapeutic protocols. In this study, we have evaluated in vitro the effects of different maturation stimuli on the viability, phenotype, cytokine profile, stability and functionality of immunogenic and tolerogenic (1α,25-dihydroxyvitamin D(3)-treated) MDDC. Maturation was induced using the clinical grade TLR4-agonist: monophosphoryl lipid A (LA), compared to the traditional cytokine cocktail (CC; clinical grade TNF-α, IL-1β, PGE2) and a combination of both. Our results showed the combination of CC+LA rendered a potent immunogenic DC population that induced the production of IFN-γ and IL-17 in allogeneic co-cultures, suggesting a Th17 polarization. Moreover, these immunogenic DCs showed a high surface expression of CD83, CD86, HLA-DR and secretion of IL-12p70. When aiming to induce tolerance, using LA to generate mature TolDC did not represent a clear advantage, and the stability and the suppressive capability exhibited by CC-matured TolDC may represent the best option. Altogether, these findings demonstrate the relevance of an appropriate maturation stimulus to rationally modulate the therapeutic potential of DCs in immunotherapy.
Collapse
Affiliation(s)
- Dàlia Raïch-Regué
- Laboratory of Immunobiology for Research and Diagnosis (LIRAD), Blood and Tissue Bank (BST), Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
68
|
Camacho AI, de Souza J, Sánchez-Gómez S, Pardo-Ros M, Irache JM, Gamazo C. Mucosal immunization with Shigella flexneri outer membrane vesicles induced protection in mice. Vaccine 2011; 29:8222-9. [PMID: 21911022 DOI: 10.1016/j.vaccine.2011.08.121] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 12/24/2022]
Abstract
Vaccination appears to be the only rational prophylactic approach to control shigellosis. Unfortunately, there is still no safe and efficacious vaccine available. We investigated the protection conferred by a new vaccine containing outer membrane vesicles (OMVs) from Shigella flexneri with an adjuvant based on nanoparticles in an experimental model of shigellosis in mice. OMVs were encapsulated in poly(anhydride) nanoparticles prepared by a solvent displacement method with the copolymer PMV/MA. OMVs loaded into NPs (NP-OMVs) were homogeneous and spherical in shape, with a size of 197nm (PdI=0.06). BALB/c mice (females, 9-week-old, 20±1g) were immunized by intradermal, nasal, ocular (20μg) or oral route (100μg) with free or encapsulated OMV. Thirty-five days after administration, mice were infected intranasally with a lethal dose of S. flexneri (1×10(7)CFU). The new vaccine was able to protect fully against infection when it was administered via mucosa. By intradermal route the NP-OMVs formulation increased the protection from 20%, obtained with free extract, to 100%. Interestingly, both OMVs and OMV-NP induced full protection when administered by the nasal and conjuntival route. A strong association between the ratio of IL-12p40/IL-10 and protection was found. Moreover, low levels of IFN-γ correlate with protection. Under the experimental conditions used, the adjuvant did not induce any adverse effects. These results place OMVs among promising candidates to be used for vaccination against Shigellosis.
Collapse
Affiliation(s)
- A I Camacho
- Department of Microbiology, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
69
|
Ashida H, Ogawa M, Mimuro H, Kobayashi T, Sanada T, Sasakawa C. Shigella are versatile mucosal pathogens that circumvent the host innate immune system. Curr Opin Immunol 2011; 23:448-55. [DOI: 10.1016/j.coi.2011.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/02/2011] [Accepted: 06/08/2011] [Indexed: 12/25/2022]
|
70
|
Identification of an innate T helper type 17 response to intestinal bacterial pathogens. Nat Med 2011; 17:837-44. [PMID: 21666695 DOI: 10.1038/nm.2391] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/02/2011] [Indexed: 12/14/2022]
Abstract
Interleukin 17 (IL-17) is a central cytokine implicated in inflammation and antimicrobial defense. After infection, both innate and adaptive IL-17 responses have been reported, but the type of cells involved in innate IL-17 induction, as well as their contribution to in vivo responses, are poorly understood. Here we found that Citrobacter and Salmonella infection triggered early IL-17 production, which was crucial for host defense and was mediated by CD4(+) T helper cells. Enteric innate T helper type 17 (iT(H)17) responses occurred principally in the cecum, were dependent on the Nod-like receptors Nod1 and Nod2, required IL-6 induction and were associated with a decrease in mucosal CD103(+) dendritic cells. Moreover, imprinting by the intestinal microbiota was fully required for the generation of iT(H)17 responses. Together, these results identify the Nod-iT(H)17 axis as a central element in controlling enteric pathogens, which may implicate Nod-driven iT(H)17 responses in the development of inflammatory bowel diseases.
Collapse
|
71
|
Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 2011; 29:71-109. [PMID: 21166540 DOI: 10.1146/annurev-immunol-031210-101312] [Citation(s) in RCA: 1323] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The IL-10 family of cytokines consists of nine members: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, and the more distantly related IL-28A, IL-28B, and IL-29. Evolutionarily, IL-10 family cytokines emerged before the adaptive immune response. These cytokines elicit diverse host defense mechanisms, especially from epithelial cells, during various infections. IL-10 family cytokines are essential for maintaining the integrity and homeostasis of tissue epithelial layers. Members of this family can promote innate immune responses from tissue epithelia to limit the damage caused by viral and bacterial infections. These cytokines can also facilitate the tissue-healing process in injuries caused by infection or inflammation. Finally, IL-10 itself can repress proinflammatory responses and limit unnecessary tissue disruptions caused by inflammation. Thus, IL-10 family cytokines have indispensable functions in many infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Wenjun Ouyang
- Department of Immunology, Genentech, Inc., South San Francisco, California 94080, USA.
| | | | | | | | | |
Collapse
|
72
|
Approach to discover T- and B-cell antigens of intracellular pathogens applied to the design of Chlamydia trachomatis vaccines. Proc Natl Acad Sci U S A 2011; 108:9969-74. [PMID: 21628568 DOI: 10.1073/pnas.1101756108] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural immunity against obligate and/or facultative intracellular pathogens is usually mediated by both humoral and cellular immunity. The identification of those antigens stimulating both arms of the immune system is instrumental for vaccine discovery. Although high-throughput technologies have been applied for the discovery of antibody-inducing antigens, few examples of their application for T-cell antigens have been reported. We describe how the compilation of the immunome, here defined as the pool of immunogenic antigens inducing T- and B-cell responses in vivo, can lead to vaccine candidates against Chlamydia trachomatis. We selected 120 C. trachomatis proteins and assessed their immunogenicity using two parallel high-throughput approaches. Protein arrays were generated and screened with sera from C. trachomatis-infected patients to identify antibody-inducing antigens. Splenocytes from C. trachomatis-infected mice were stimulated with 79 proteins, and the frequency of antigen-specific CD4(+)/IFN-γ(+) T cells was analyzed by flow cytometry. We identified 21 antibody-inducing antigens, 16 CD4(+)/IFN-γ(+)-inducing antigens, and five antigens eliciting both types of responses. Assessment of their protective activity in a mouse model of Chlamydia muridarum lung infection led to the identification of seven antigens conferring partial protection when administered with LTK63/CpG adjuvant. Protection was largely the result of cellular immunity as assessed by CD4(+) T-cell depletion. The seven antigens provided robust additive protection when combined in four-antigen combinations. This study paves the way for the development of an effective anti-Chlamydia vaccine and provides a general approach for the discovery of vaccines against other intracellular pathogens.
Collapse
|
73
|
Smith PM, Garrett WS. The gut microbiota and mucosal T cells. Front Microbiol 2011; 2:111. [PMID: 21833339 PMCID: PMC3153059 DOI: 10.3389/fmicb.2011.00111] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/07/2011] [Indexed: 12/11/2022] Open
Abstract
It is intuitive that immune cells in the gut may require microbiota-derived cues for their differentiation. The proximity between host and microbe in the intestine would seemingly necessitate co-adaptation. However, it has been challenging to determine the members and features of the gut microbiota that influence immune system development and function. The recent identification of immunomodulatory members of the commensal microbiota is providing insight into the dependence of select, intestinal immune cell subsets on specific microbial species. In this review, we focus on the gut microbiota's influence on the development and function of mucosal T cells subsets, specifically intraepithelial lymphocytes and lamina propria CD4 T cells.
Collapse
Affiliation(s)
- Patrick M Smith
- Department of Immunology and Infectious Diseases, Harvard School of Public Health Boston, MA, USA
| | | |
Collapse
|
74
|
Konradt C, Frigimelica E, Nothelfer K, Puhar A, Salgado-Pabon W, di Bartolo V, Scott-Algara D, Rodrigues C, Sansonetti P, Phalipon A. The Shigella flexneri Type Three Secretion System Effector IpgD Inhibits T Cell Migration by Manipulating Host Phosphoinositide Metabolism. Cell Host Microbe 2011; 9:263-72. [DOI: 10.1016/j.chom.2011.03.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 02/02/2011] [Accepted: 03/18/2011] [Indexed: 11/24/2022]
|
75
|
Abstract
CD8(+) T lymphocytes often play a primary role in adaptive immunity to cytosolic microbial pathogens. Surprisingly, CD8(+) T cells are not required for protective immunity to the enteric pathogen Shigella flexneri, despite the ability of Shigella to actively secrete proteins into the host cytoplasm, a location from which antigenic peptides are processed for presentation to CD8(+) T cells. To determine why CD8(+) T cells fail to play a role in adaptive immunity to S. flexneri, we investigated whether antigen-specific CD8(+) T cells are primed during infection but are unable to confer protection or, alternatively, whether T cells fail to be primed. To test whether Shigella is capable of stimulating an antigen-specific CD8(+) T-cell response, we created an S. flexneri strain that constitutively secretes a viral CD8(+) T-cell epitope via the Shigella type III secretion system and characterized the CD8(+) T-cell response to this strain both in mice and in cultured cells. Surprisingly, no T cells specific for the viral epitope were stimulated in mice infected with this strain, and cells infected with the recombinant strain were not targeted by epitope-specific T cells. Additionally, we found that the usually robust T-cell response to antigens artificially introduced into the cytoplasm of cultured cells was significantly reduced when the antigen-presenting cell was infected with Shigella. Collectively, these results suggest that antigen-specific CD8(+) T cells are not primed during S. flexneri infection and, as a result, afford little protection to the host during primary or subsequent infection.
Collapse
|
76
|
Yang W, Ding X, Deng J, Lu Y, Matsuda Z, Thiel A, Chen J, Deng H, Qin Z. Interferon-gamma negatively regulates Th17-mediated immunopathology during mouse hepatitis virus infection. J Mol Med (Berl) 2010; 89:399-409. [PMID: 21191565 PMCID: PMC7079994 DOI: 10.1007/s00109-010-0711-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/15/2010] [Accepted: 12/02/2010] [Indexed: 12/24/2022]
Abstract
Fulminant hepatitis can cause acute liver failure and death in both humans and mice. However, the cellular and molecular mechanisms underlying the acute disease are still not well understood. Here, we examine the role of Th17 response in the development of the acute hepatitis following infection with mouse hepatitis virus (MHV). We show that IL-17 levels in serum are rapidly elevated and positively correlated to liver damage and death of the mice. In IFN-γR−/− mice, Th17 response is enhanced and the elevated IL-17 production contributes to severe liver damage as well as detrimental inflammation because neutralization of IL-17 effectively suppresses inflammation and protects mice from liver injury. We further show that IFN-γ facilitates antigen-induced apoptosis of Th17 cells and adoptive transferred IFN-γR−/−, but not IFN-γR+/+; CD4+ T cells promotes an enhanced liver damage in wild-type mice. The results demonstrate an essential role of Th17 cells in MHV-induced immunopathology and the importance of IFN-γ in maintaining immune balance between Th1 and Th17 responses during acute viral infection.
Collapse
Affiliation(s)
- Wei Yang
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Kim BJ, Jones HP. Epinephrine-primed murine bone marrow-derived dendritic cells facilitate production of IL-17A and IL-4 but not IFN-γ by CD4+ T cells. Brain Behav Immun 2010; 24:1126-36. [PMID: 20621581 PMCID: PMC2939238 DOI: 10.1016/j.bbi.2010.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 12/14/2022] Open
Abstract
Sympathetic activation leading to the release of epinephrine and norepinephrine, is known as an important regulatory circuit related to immune-mediated diseases. However, questions still remain on the behavior of antigen presenting cells (APC) dictated by stress-induced sympathetic neurotransmitters. The purpose of this study was to examine the fate of bone marrow-derived dendritic cell (BMDC)-associated influences on resting CD4(+) T cell activation. We hypothesize that pre-exposure of dendritic cells (DCs) can modify the intensity of cytokine production, leading to preference in resting CD4(+) T cell activation. BMDCs were pre-treated with epinephrine for 2h followed by subsequent treatment of lipopolysaccharide (LPS). Subsequently, BMDCs were cocultured with purified CD4(+) T cells from mouse spleen in the absence or presence of anti-CD3 stimulation in epinephrine-free media. Epinephrine pre-treatment enhanced surface expression of MHCII, CD80 and CD86. Quantitative RT-PCR showed that epinephrine pre-treatment induced a significant transcriptional decrease of IL-12p40 and a significant increase of IL-12p35 and IL-23p19. In addition, β2-adrenergic-blockade was shown to reverse these effects. Epinephrine pre-treatment also induced a significant decrease of IL-12p70 and a significant increase of IL-23 and IL-10 cytokine production. Importantly, these changes corresponded with increased IL-4 and IL-17A, but not IFN-g cytokine production by CD4(+) T cells in a b2-adrenergic receptor-dependent manner. These results suggest that exposure to stress-derived epinephrine dictates dendritic cells to generate a dominant Th2/Th17 phenotype in the context of subsequent exposure to a pathogenic stimulus.
Collapse
Affiliation(s)
| | - Harlan P. Jones
- Correspondence; Harlan P. Jones, Ph.D., Assistant Professor, Department of Molecular Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, USA, , Telephone: (817) 735-2448, Fax: (817) 735-2133
| |
Collapse
|
78
|
Hemdan NYA, Birkenmeier G, Wichmann G, Abu El-Saad AM, Krieger T, Conrad K, Sack U. Interleukin-17-producing T helper cells in autoimmunity. Autoimmun Rev 2010; 9:785-92. [PMID: 20647062 DOI: 10.1016/j.autrev.2010.07.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/15/2010] [Indexed: 02/06/2023]
Abstract
With all the incredible progress in scientific research over the past two decades, the trigger of the majority of autoimmune disorders remains largely elusive. Research on the biology of T helper type 17 (T(H)17) cells over the last decade not only clarified previous observations of immune regulations and disease manifestations, but also provided considerable information on the signaling pathways mediating the effects of this lineage and its seemingly dual role in fighting the invading pathogens on one hand, and in frightening the host by inducing chronic inflammation and autoimmunity on the other hand. In this context, recent reports have implicated T(H)17 cells in mediating host defense as well as a growing list of autoimmune diseases in genetically-susceptible individuals. Herein, we summarize the current knowledge on T(H)17 in autoimmunity with emphasis on its differentiation factors and some mechanisms involved in initiating pathological events of autoimmunity.
Collapse
Affiliation(s)
- Nasr Y A Hemdan
- Department of Zoology, Faculty of Science, University of Alexandria, Egypt.
| | | | | | | | | | | | | |
Collapse
|
79
|
Bartels LE, Hvas CL, Agnholt J, Dahlerup JF, Agger R. Human dendritic cell antigen presentation and chemotaxis are inhibited by intrinsic 25-hydroxy vitamin D activation. Int Immunopharmacol 2010; 10:922-8. [PMID: 20483384 DOI: 10.1016/j.intimp.2010.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/22/2010] [Accepted: 05/10/2010] [Indexed: 01/08/2023]
Abstract
The immunomodulatory effects of vitamin D have primarily been investigated using the biologically active form 1,25-dihydroxy vitamin D3 (1,25-D3). It was recently demonstrated that dendritic cells (DC) are able to convert the inactive 25-hydroxy vitamin D3 (25-D3) into the active form via 1 alpha-hydroxylase. In this study, we set out to examine the possible consequences of this conversion on adaptive immune functions. Human monocyte-derived DC were matured by lipopolysaccharide (LPS) in the presence or absence of 25-D3. Subsequently, the conversion of 25-D3 into 1,25-D3, and the effects on surface marker expression, cytokine production, antigen-presenting capacity and chemotaxis of the DC were examined. 25-D3 was clearly converted into 1,25-D3 in the DC cultures and the process was accompanied by a reduced expression of CD80 (p<0.01), CD83 (p<0.01), CD86 (p=0.02), and HLA-DR (p=0.02). Also, the levels of the pro-inflammatory cytokines tumour necrosis factor (TNF) alpha (p=0.02) and interleukin (IL) 12 (p<0.01) were reduced. Interestingly, however, the CD14 expression (p<0.01) and the production of IL-1 beta (p<0.01) and IL-6 (p<0.01) increased. Thus, 25-D3 affected the delicate interplay between anti- and pro-inflammatory cytokines produced by the DC. Concurrently, 25-D3 reduced DC capacity to induce proliferation of antigen-specific T cells and DC chemotaxis towards chemokine (CC) ligand 21. This indicates that 25-D3 has a regulating function following intrinsic 1 alpha-hydroxylation, a mechanism that potentially has an immunomodulatory effect in vivo.
Collapse
Affiliation(s)
- Lars E Bartels
- Laboratory of Immunology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg Ø, Denmark.
| | | | | | | | | |
Collapse
|