51
|
Heligmosomoides polygyrus infection reduces severity of type 1 diabetes induced by multiple low-dose streptozotocin in mice via STAT6- and IL-10-independent mechanisms. Exp Parasitol 2013; 135:388-96. [DOI: 10.1016/j.exppara.2013.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/01/2013] [Accepted: 08/09/2013] [Indexed: 12/11/2022]
|
52
|
Leung JM, Loke P. A role for IL-22 in the relationship between intestinal helminths, gut microbiota and mucosal immunity. Int J Parasitol 2013; 43:253-7. [PMID: 23178750 PMCID: PMC3955947 DOI: 10.1016/j.ijpara.2012.10.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 12/22/2022]
Abstract
The intestinal tract is home to nematodes as well as commensal bacteria (microbiota), which have coevolved with the mammalian host. The mucosal immune system must balance between an appropriate response to dangerous pathogens and an inappropriate response to commensal microbiota that may breach the epithelial barrier, in order to maintain intestinal homeostasis. IL-22 has been shown to play a critical role in maintaining barrier homeostasis against intestinal pathogens and commensal bacteria. Here we review the advances in our understanding of the role of IL-22 in helminth infections, as well as in response to commensal and pathogenic bacteria of the intestinal tract. We then consider the relationship between intestinal helminths and gut microbiota and hypothesize that this relationship may explain how helminths may improve symptoms of inflammatory bowel diseases. We propose that by inducing an immune response that includes IL-22, intestinal helminths may enhance the mucosal barrier function of the intestinal epithelium. This may restore the mucosal microbiota populations from dysbiosis associated with colitis and improve intestinal homeostasis.
Collapse
Affiliation(s)
| | - P’ng Loke
- Department of Microbiology, New York University, New York, NY, USA
| |
Collapse
|
53
|
Friberg IM, Little S, Ralli C, Lowe A, Hall A, Jackson JA, Bradley JE. Macroparasites at peripheral sites of infection are major and dynamic modifiers of systemic antimicrobial pattern recognition responses. Mol Ecol 2013; 22:2810-26. [PMID: 23379442 DOI: 10.1111/mec.12212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 12/20/2022]
Abstract
Immune defences and the maintenance of immunological homeostasis in the face of pathogenic and commensal microbial exposures are channelled by innate antimicrobial pattern recognition receptors (PRRs) such as toll-like receptors (TLRs). Whilst PRR-mediated response programmes are the result of long-term host-pathogen or host-commensal co-evolutionary dynamics involving microbes, an additional possibility is that macroparasitic co-infections may be a significant modifier of such interactions. We demonstrate experimentally that macroparasites (the model gastrointestinal nematode, Heligmosomoides) at peripheral sites of infection cause substantial alteration of the expression and function of TLRs at a systemic level (in cultured splenocytes), predominantly up-regulating TLR2, TLR4 and TLR9-mediated cytokine responses at times of high standing worm burdens. We consistently observed such effects in BALB/c and C57BL/6 mice under single-pulse and trickle exposures to Heligmosomoides larvae and in SWR and CBA mice under single-pulse exposures. A complementary long-term survey of TLR2-mediated tumour necrosis factor-alpha responses in wild wood mice (Apodemus sylvaticus) was consistent with substantial effects of macroparasites under some environmental conditions. A general pattern, though, was for the associations of macroparasites with TLR function to be temporally dynamic and context-dependent: varying with different conditions of infection exposure in the field and laboratory and with host genetic strain in the laboratory. These results are compelling evidence that macroparasites are a major and dynamic modifier of systemic innate antimicrobial responsiveness in naturally occurring mammals and thus likely to be an important influence on the interaction between microbial exposures and the immune system.
Collapse
Affiliation(s)
- I M Friberg
- School of Biology, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
The increasing incidence of type 1 diabetes (T1D) and autoimmune diseases in industrialized countries cannot be exclusively explained by genetic factors. Human epidemiological studies and animal experimental data provide accumulating evidence for the role of environmental factors, such as infections, in the regulation of allergy and autoimmune diseases. The hygiene hypothesis has formally provided a rationale for these observations, suggesting that our co-evolution with pathogens has contributed to the shaping of the present-day human immune system. Therefore, improved sanitation, together with infection control, has removed immunoregulatory mechanisms on which our immune system may depend. Helminths are multicellular organisms that have developed a wide range of strategies to manipulate the host immune system to survive and complete their reproductive cycles successfully. Immunity to helminths involves profound changes in both the innate and adaptive immune compartments, which can have a protective effect in inflammation and autoimmunity. Recently, helminth-derived antigens and molecules have been tested in vitro and in vivo to explore possible applications in the treatment of inflammatory and autoimmune diseases, including T1D. This exciting approach presents numerous challenges that will need to be addressed before it can reach safe clinical application. This review outlines basic insight into the ability of helminths to modulate the onset and progression of T1D, and frames some of the challenges that helminth-derived therapies may face in the context of clinical translation.
Collapse
Affiliation(s)
- Paola Zaccone
- Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QP, UK
| | | |
Collapse
|
55
|
Abstract
Modern hygienic lifestyles are associated with the emergence of inflammatory bowel disease (IBD) which now afflicts millions of people in highly-developed countries. Meticulous hygiene interrupts conduits of transmission required for ubiquitous exposure to parasitic worms (helminths). We proposed that loss of exposure to helminths permits development of IBD. Early clinical trials suggested that exposure to helminths such as Trichuris suis or Necator americanus can improve IBD. Over the last several years, processes to "medicinalize"T. suis have been developed and use of this helminth is now being studied in large multi-center clinical trials. Concurrently, we and others have identified some of the immune regulatory mechanisms elicited by helminth exposure that suppress inappropriate intestinal inflammation. These efforts could soon result in new therapies for patients with IBD.
Collapse
Affiliation(s)
- Joel V Weinstock
- Division of Gastroenterology, Tufts Medical Center, Boston, MA, USA.
| | | |
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW There is something about living in an industrialized country that dramatically increases the risk of acquiring inflammatory bowel disease (IBD). Loss of routine exposure to parasitic worms (helminths), due to modern highly hygienic life styles, likely contributes to this risk. This article reviews current understanding on how helminths influence intestinal inflammation and mucosal immune responses. RECENT FINDINGS IBD emerges in populations as regions develop socioeconomically and lose exposure to previously ubiquitous helminthic infections. Helminthic infections provided strong selective pressure for the dissemination of gene variants, many of which predispose to development of IBD. In animal models of IBD, helminth colonization suppresses intestinal inflammation through multiple mechanisms including induction of innate and adaptive regulatory circuits. Trials using helminths like hookworm (Necator americanus) or porcine whipworm (Trichuris suis) show that they are safe and may be effective therapies for the control of the aberrant intestinal inflammation seen in Crohn's disease and ulcerative colitis. SUMMARY Evidence is accumulating that highly hygienic living conditions create risk for developing immune-mediated disease such as IBD. To live in their host, helminths have developed the ability to activate cells of innate and adaptive immunity that suppress inflammation. Therapeutic trials using helminths are in progress.
Collapse
|
57
|
Reynolds LA, Filbey KJ, Maizels RM. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Semin Immunopathol 2012; 34:829-46. [PMID: 23053394 PMCID: PMC3496515 DOI: 10.1007/s00281-012-0347-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023]
Abstract
Heligmosomoides polygyrus is a natural intestinal parasite of mice, which offers an excellent model of the immunology of gastrointestinal helminth infections of humans and livestock. It is able to establish long-term chronic infections in many strains of mice, exerting potent immunomodulatory effects that dampen both protective immunity and bystander reactions to allergens and autoantigens. Immunity to the parasite develops naturally in some mouse strains and can be induced in others through immunization; while the mechanisms of protective immunity are not yet fully defined, both antibodies and a host cellular component are required, with strongest evidence for a role of alternatively activated macrophages. We discuss the balance between resistance and susceptibility in this model system and highlight new themes in innate and adaptive immunity, immunomodulation, and regulation of responsiveness in helminth infection.
Collapse
Affiliation(s)
- Lisa A. Reynolds
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
| | - Kara J. Filbey
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
| | - Rick M. Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
- Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT UK
| |
Collapse
|
58
|
McSorley HJ, O'Gorman MT, Blair N, Sutherland TE, Filbey KJ, Maizels RM. Suppression of type 2 immunity and allergic airway inflammation by secreted products of the helminth Heligmosomoides polygyrus. Eur J Immunol 2012; 42:2667-82. [PMID: 22706967 PMCID: PMC4916998 DOI: 10.1002/eji.201142161] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 05/11/2012] [Accepted: 06/06/2012] [Indexed: 01/23/2023]
Abstract
Allergic asthma is less prevalent in countries with parasitic helminth infections, and mice infected with parasites such as Heligmosomoides polygyrus are protected from allergic airway inflammation. To establish whether suppression of allergy could be mediated by soluble products of this helminth, we tested H. polygyrus excretory-secretory (HES) material for its ability to impair allergic inflammation. When HES was added to sensitising doses of ovalbumin, the subsequent allergic airway response was suppressed, with ablated cell infiltration, a lower ratio of effector (CD4(+) CD25(+) Foxp3(-) ) to regulatory (CD4(+) Foxp3(+) ) T (Treg) cells, and reduced Th1, Th2 and Th17 cytokine production. HES exposure reduced IL-5 responses and eosinophilia, abolished IgE production and inhibited the type 2 innate molecules arginase-1 and RELM-α (resistin-like molecule-α). Although HES contains a TGF-β-like activity, similar effects in modulating allergy were not observed when administering mammalian TGF-β alone. HES also protected previously sensitised mice, suppressing recruitment of eosinophils to the airways when given at challenge, but no change in Th or Treg cell populations was apparent. Because heat-treatment of HES did not impair suppression at sensitisation, but compromised its ability to suppress at challenge, we propose that HES contains distinct heat-stable and heat-labile immunomodulatory molecules, which modulate pro-allergic adaptive and innate cell populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Rick M Maizels
- Institute of Immunology and Infection Research University of Edinburgh, Edinburgh, EH9 3JT, UK
| |
Collapse
|
59
|
Whelan RAK, Hartmann S, Rausch S. Nematode modulation of inflammatory bowel disease. PROTOPLASMA 2012; 249:871-886. [PMID: 22086188 PMCID: PMC3459088 DOI: 10.1007/s00709-011-0342-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/11/2011] [Indexed: 05/31/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic disease arising due to a culmination of genetic, environmental, and lifestyle-associated factors and resulting in an excessive pro-inflammatory response to bacterial populations in the gastrointestinal tract. The prevalence of IBD in developing nations is relatively low, and it has been proposed that this is directly correlated with a high incidence of helminth infections in these areas. Gastrointestinal nematodes are the most prevalent parasitic worms, and they efficiently modulate the immune system of their hosts in order to establish chronic infections. Thus, they may be capable of suppressing unrelated inflammation in disorders such as IBD. This review describes how nematodes, or their products, suppress innate and adaptive pro-inflammatory immune responses and how the mechanisms involved in the induction of anti-nematode responses regulate colitis in experimental models and clinical trials with IBD patients. We also discuss how refinement of nematode-derived therapies should ultimately result in the development of potent new therapeutics of clinical inflammatory disorders.
Collapse
Affiliation(s)
- Rose A. K. Whelan
- Department of Molecular Parasitology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Susanne Hartmann
- Department of Molecular Parasitology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Sebastian Rausch
- Department of Molecular Parasitology, Humboldt University of Berlin, 10115 Berlin, Germany
| |
Collapse
|
60
|
Abstract
Helminth parasites infect almost one-third of the world's population, primarily in tropical regions. However, regions where helminth parasites are endemic record much lower prevalences of allergies and autoimmune diseases, suggesting that parasites may protect against immunopathological syndromes. Most helminth diseases are spectral in nature, with a large proportion of relatively asymptomatic cases and a subset of patients who develop severe pathologies. The maintenance of the asymptomatic state is now recognized as reflecting an immunoregulatory environment, which may be promoted by parasites, and involves multiple levels of host regulatory cells and cytokines; a breakdown of this regulation is observed in pathological disease. Currently, there is much interest in whether helminth-associated immune regulation may ameliorate allergy and autoimmunity, with investigations in both laboratory models and human trials. Understanding and exploiting the interactions between these parasites and the host regulatory network are therefore likely to highlight new strategies to control both infectious and immunological diseases.
Collapse
|
61
|
Maizels RM, Hewitson JP, Murray J, Harcus YM, Dayer B, Filbey KJ, Grainger JR, McSorley HJ, Reynolds LA, Smith KA. Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp Parasitol 2012; 132:76-89. [PMID: 21875581 PMCID: PMC6485391 DOI: 10.1016/j.exppara.2011.08.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 01/12/2023]
Abstract
The intestinal nematode parasite Heligmosomoides polygyrus bakeri exerts widespread immunomodulatory effects on both the innate and adaptive immune system of the host. Infected mice adopt an immunoregulated phenotype, with abated allergic and autoimmune reactions. At the cellular level, infection is accompanied by expanded regulatory T cell populations, skewed dendritic cell and macrophage phenotypes, B cell hyperstimulation and multiple localised changes within the intestinal environment. In most mouse strains, these act to block protective Th2 immunity. The molecular basis of parasite interactions with the host immune system centres upon secreted products termed HES (H. polygyrus excretory-secretory antigen), which include a TGF-β-like ligand that induces de novo regulatory T cells, factors that modify innate inflammatory responses, and molecules that block allergy in vivo. Proteomic and transcriptomic definition of parasite proteins, combined with biochemical identification of immunogenic molecules in resistant mice, will provide new candidate immunomodulators and vaccine antigens for future research.
Collapse
Affiliation(s)
- Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Leung J, Hang L, Blum A, Setiawan T, Stoyanoff K, Weinstock J. Heligmosomoides polygyrus abrogates antigen-specific gut injury in a murine model of inflammatory bowel disease. Inflamm Bowel Dis 2012; 18:1447-55. [PMID: 22223533 PMCID: PMC4123417 DOI: 10.1002/ibd.22858] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 11/22/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Developing countries have a low incidence of inflammatory bowel disease (IBD), perhaps prevented by the high prevalence of helminth infections and other alterations in intestinal flora and fauna. Helminth infections prevent colitis in various murine models of IBD. IBD may be driven by an aberrant immune response to luminal antigen(s). METHODS We developed a murine model of IBD in which gut injury was induced by a specific antigen to better simulate the IBD disease process and to determine if helminth infections could abolish gut injury induced by an orally administered antigen. The model features pan-enterocolitis triggered by feeding ovalbumin (OVA). RESULTS The intestinal inflammation is antigen-specific and generates interleukin (IL)-17 and interferon-gamma (IFN-γ), but not IL-4. Full expression of the disease required T cells with defective capacity to make IL-10 and treatment with a noninjurious, low dose of a nonsteroidal antiinflammatory drug. Exposure to Heligmosomoides polygyrus abrogated this antigen-induced gut injury. H. polygyrus colonization induced Foxp3(+) T regulatory cells (Tregs) and mucosal production of IL-10 from non-T cells. Lamina propria mononuclear cells from H. polygyrus-infected mice released less IL-17 and IFN-γ constitutively and when stimulated with OVA or anti-CD3/CD28 monoclonal antibodies. CONCLUSIONS We developed a murine IBD model featuring antigen-specific enterocolitis and demonstrate for the first time that gut inflammation induced by an antigen could be abrogated by H. polygyrus infection. Protection was associated with suppressed IL-17 and IFN-γ production, induction of Foxp3(+) Tregs, and elevated secretion of non-T-cell-derived IL-10, all of which could be part of the protective processes.
Collapse
Affiliation(s)
- John Leung
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center
| | - Long Hang
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center
| | - Arthur Blum
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center
| | - Tommy Setiawan
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center
| | - Karynn Stoyanoff
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center
| | - Joel Weinstock
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center
| |
Collapse
|
63
|
Blum AM, Hang L, Setiawan T, Urban JP, Stoyanoff KM, Leung J, Weinstock JV. Heligmosomoides polygyrus bakeri induces tolerogenic dendritic cells that block colitis and prevent antigen-specific gut T cell responses. THE JOURNAL OF IMMUNOLOGY 2012; 189:2512-20. [PMID: 22844110 DOI: 10.4049/jimmunol.1102892] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Immunological diseases such as inflammatory bowel disease (IBD) are infrequent in less developed countries, possibly because helminths provide protection by modulating host immunity. In IBD murine models, the helminth Heligmosomoides polygyrus bakeri prevents colitis. It was determined whether H. polygyrus bakeri mediated IBD protection by altering dendritic cell (DC) function. We used a Rag IBD model where animals were reconstituted with IL10⁻/⁻ T cells, making them susceptible to IBD and with OVA Ag-responsive OT2 T cells, allowing study of a gut antigenic response. Intestinal DC from H. polygyrus bakeri-infected Rag mice added to lamina propria mononuclear cells (LPMC) isolated from colitic animals blocked OVA IFN-γ/IL-17 responses in vitro through direct contact with the inflammatory LPMC. DC from uninfected Rag mice displayed no regulatory activity. Transfer of DC from H. polygyrus bakeri-infected mice into Rag mice reconstituted with IL10⁻/⁻ T cells protected animals from IBD, and LPMC from these mice lost OVA responsiveness. After DC transfer, OT2 T cells populated the intestines normally. However, the OT2 T cells were rendered Ag nonresponsive through regulatory action of LPMC non-T cells. The process of regulation appeared to be regulatory T cell independent. Thus, H. polygyrus bakeri modulates intestinal DC function, rendering them tolerogenic. This appears to be an important mechanism through which H. polygyrus bakeri suppresses colitis. IFN-γ and IL-17 are colitogenic. The capacity of these DC to block a gut Ag-specific IFN-γ/IL-17 T cell response also is significant.
Collapse
Affiliation(s)
- Arthur M Blum
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Hepworth MR, Hartmann S. Worming our way closer to the clinic. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:187-90. [PMID: 24533279 DOI: 10.1016/j.ijpddr.2012.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/28/2012] [Accepted: 07/01/2012] [Indexed: 12/26/2022]
Abstract
In a recent issue of "The International Journal for Parasitology: Drugs and Drug Resistance" Prof. David Pritchard from the University of Nottingham offers his intriguing opinion on the current status of "worm therapy" and outlines future research priorities aimed at bringing this research area closer to the clinic. In this response article we discuss various aspects of the current state of the research field and offer some alternative viewpoints regarding the future of "worm therapy".
Collapse
Affiliation(s)
- Matthew R Hepworth
- Institute of Immunology, School of Veterinary Medicine, Free University, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, School of Veterinary Medicine, Free University, Berlin, Germany
| |
Collapse
|
65
|
Abstract
Throughout the twentieth century, there were striking increases in the incidences of many chronic inflammatory disorders in the rich developed countries. These included autoimmune disorders such as Type 1 diabetes and multiple sclerosis. Although genetics and specific triggering mechanisms such as molecular mimicry and viruses are likely to be involved, the increases have been so rapid that any explanation that omits environmental change is incomplete. This chapter suggests that a series of environmental factors, most of them microbial, have led to a decrease in the efficiency of our immunoregulatory mechanisms because we are in a state of evolved dependence on organisms with which we co-evolved (and that had to be tolerated) as inducers of immunoregulatory circuits. These organisms ("Old Friends") are depleted from the modern urban environment. Rather than considering fetal programming by maternal microbial exposures, neonatal programming, the hygiene hypothesis, gut microbiota, and diet as separate and competing hypotheses, I attempt here to integrate these ideas under a single umbrella concept that can provide the missing immunoregulatory environmental factor that is needed to explain the recent increases in autoimmune disease.
Collapse
Affiliation(s)
- Graham A W Rook
- Department of Infection, Centre for Clinical Microbiology, University College London (UCL), London, UK.
| |
Collapse
|
66
|
Reynolds LA, Maizels RM. Cutting edge: in the absence of TGF-β signaling in T cells, fewer CD103+ regulatory T cells develop, but exuberant IFN-γ production renders mice more susceptible to helminth infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:1113-7. [PMID: 22753928 DOI: 10.4049/jimmunol.1200991] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple factors control susceptibility of C57BL/6 mice to infection with the helminth Heligmosomoides polygyrus, including TGF-β signaling, which inhibits immunity in vivo. However, mice expressing a T cell-specific dominant-negative TGF-β receptor II (TGF-βRII DN) show dampened Th2 immunity and diminished resistance to infection. Interestingly, H. polygyrus-infected TGF-βRII DN mice show greater frequencies of CD4(+)Foxp3(+)Helios(+) Tregs than infected wild-type mice, but levels of CD103 are greatly reduced on both these cells and on the CD4(+)Foxp3(+)Helios(-) population. Although Th9 and Th17 levels are comparable between infected TGF-βRII DN and wild-type mice, the former develop exaggerated CD4(+) and CD8(+) T cell IFN-γ responses. Increased susceptibility conferred by TGF-βRII DN expression was lost in IFN-γ-deficient mice, although they remained unable to completely clear infection. Hence, overexpression of IFN-γ negatively modulates immunity, and the presence of Helios(+) Tregs may maintain susceptibility on the C57BL/6 background.
Collapse
Affiliation(s)
- Lisa A Reynolds
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | |
Collapse
|
67
|
Can we vaccinate against depression? Drug Discov Today 2012; 17:451-8. [PMID: 22507593 DOI: 10.1016/j.drudis.2012.03.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 02/12/2012] [Accepted: 03/30/2012] [Indexed: 01/03/2023]
Abstract
Major depression is common in the context of autoimmune and inflammatory diseases and is frequently associated with persistently raised levels of proinflammatory cytokines and other markers of inflammation, even in the absence of another diagnosable immune pathology to account for these findings. Therefore immunoregulation-inducing vaccines or manipulations of the gut microbiota might prevent or treat depression. These strategies are already undergoing clinical trials for chronic inflammatory disorders, such as allergies, autoimmunity and inflammatory bowel disease. In this article, we summarize data suggesting that this approach might be effective in depression and encourage the initiation of clinical vaccination trials in this disorder.
Collapse
|
68
|
Wolff MJ, Broadhurst MJ, Loke P. Helminthic therapy: improving mucosal barrier function. Trends Parasitol 2012; 28:187-94. [PMID: 22464690 DOI: 10.1016/j.pt.2012.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 12/21/2022]
Abstract
The epidemiology of autoimmune diseases and helminth infections led to suggestions that helminths could improve inflammatory conditions, which was then tested using animal models. This has translated to clinical investigations aimed at the safe and controlled reintroduction of helminthic exposure to patients suffering from autoimmune diseases (so-called 'helminthic therapy') in an effort to mitigate the inflammatory response. In this review, we summarize the results of recent clinical trials of helminthic therapy, with particular attention to mechanisms of action. Whereas previous reviews have emphasized immune regulatory mechanisms activated by helminths, we propose that enhancement of mucosal barrier function may have an equally important role in improving conditions of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Martin J Wolff
- Division of Gastroenterology, Department of Medicine, New York University School of Medicine, New York, NY 10010, USA
| | | | | |
Collapse
|
69
|
Kolbaum J, Tartz S, Hartmann W, Helm S, Nagel A, Heussler V, Sebo P, Fleischer B, Jacobs T, Breloer M. Nematode-induced interference with the anti-Plasmodium CD8+ T-cell response can be overcome by optimizing antigen administration. Eur J Immunol 2012; 42:890-900. [PMID: 22161305 DOI: 10.1002/eji.201141955] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 11/16/2011] [Accepted: 12/02/2011] [Indexed: 12/29/2022]
Abstract
Malaria is still responsible for up to 1 million deaths per year worldwide, highlighting the need for protective malaria vaccines. Helminth infections that are prevalent in malaria endemic areas can modulate immune responses of the host. Here we show that Strongy-Ioides ratti, a gut-dwelling nematode that causes transient infections, did not change the efficacy of vaccination against Plasmodium berghei. An ongoing infection with Litomosoides sigmodontis, a tissue-dwelling filaria that induces chronic infections in BALB/c mice, significantly interfered with vaccination efficacy. The induction of P. berghei circumspor-ozoite protein (CSP)-specific CD8(+) T cells, achieved by a single immunization with a CSP fusion protein, was diminished in L. sigmodontis-infected mice. This modulation was reflected by reduced frequencies of CSP-specific CD8(+) T cells, reduced CSP-specific IFN-y and TNF-a production, reduced CSP-specific cytotoxicity, and reduced protection against P. berghei challenge infection. Implementation of a more potent vaccine regime, by first priming with CSP-expressing recombinant live Salmonella prior to CSP fusion protein immunization, restored induction of CSP-specific CD8(+) T cells and conferred almost sterile immunity to P. berghei challenge infection also in L. sigmodontis-infected mice. In summary, we show that appropriate vaccination regimes can overcome helminth-induced interference with vaccination efficacy.
Collapse
Affiliation(s)
- Julia Kolbaum
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Elliott DE, Weinstock JV. Helminth-host immunological interactions: prevention and control of immune-mediated diseases. Ann N Y Acad Sci 2012; 1247:83-96. [PMID: 22239614 DOI: 10.1111/j.1749-6632.2011.06292.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exposure to commensal and pathogenic organisms strongly influences our immune system. Exposure to helminths was frequent before humans constructed their current highly hygienic environment. Today, in highly industrialized countries, contact between humans and helminths is rare. Congruent with the decline in helminth infections is an increase in the prevalence of autoimmune and inflammatory disease. It is possible that exclusion of helminths from the environment has permitted the emergence of immune-mediated disease. We review the protective effects of helminths on expression of inflammatory bowel disease, multiple sclerosis, and animal models of these and other inflammatory diseases. We also review the immune pathways altered by helminths that may afford protection from these illnesses. Helminth exposure tends to inhibit IFN-γ and IL-17 production, promote IL-4, IL-10, and TGF-β release, induce CD4(+) T cell Foxp3 expression, and generate regulatory macrophages, dendritic cells, and B cells. Helminths enable protective pathways that may vary by specific species and disease model. Helminths or their products likely have therapeutic potential to control or prevent immune-mediated illness.
Collapse
Affiliation(s)
- David E Elliott
- Division of Gastroenterology, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
71
|
Hewitson JP, Harcus Y, Murray J, van Agtmaal M, Filbey KJ, Grainger JR, Bridgett S, Blaxter ML, Ashton PD, Ashford D, Curwen RS, Wilson RA, Dowle AA, Maizels RM. Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins. J Proteomics 2011; 74:1573-94. [PMID: 21722761 PMCID: PMC4794625 DOI: 10.1016/j.jprot.2011.06.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/20/2011] [Accepted: 06/05/2011] [Indexed: 01/25/2023]
Abstract
The intestinal helminth parasite, Heligmosomoides polygyrus bakeri offers a tractable experimental model for human hookworm infections such as Ancylostoma duodenale and veterinary parasites such as Haemonchus contortus. Parasite excretory-secretory (ES) products represent the major focus for immunological and biochemical analyses, and contain immunomodulatory molecules responsible for nematode immune evasion. In a proteomic analysis of adult H. polygyrus secretions (termed HES) matched to an extensive transcriptomic dataset, we identified 374 HES proteins by LC-MS/MS, which were distinct from those in somatic extract HEx, comprising 446 identified proteins, confirming selective export of ES proteins. The predominant secreted protein families were proteases (astacins and other metalloproteases, aspartic, cysteine and serine-type proteases), lysozymes, apyrases and acetylcholinesterases. The most abundant products were members of the highly divergent venom allergen-like (VAL) family, related to Ancylostoma secreted protein (ASP); 25 homologues were identified, with VAL-1 and -2 also shown to be associated with the parasite surface. The dominance of VAL proteins is similar to profiles reported for Ancylostoma and Haemonchus ES products. Overall, this study shows that the secretions of H. polygyrus closely parallel those of clinically important GI nematodes, confirming the value of this parasite as a model of helminth infection.
Collapse
Affiliation(s)
- James P. Hewitson
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Yvonne Harcus
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Janice Murray
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Maaike van Agtmaal
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Kara J. Filbey
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | | | | | | | | | | | | | | | | | - Rick M. Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, UK
| |
Collapse
|