51
|
Wei T, Lu L, Shen Q, Fang C. [Advances of the relationship between leptin system and non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 17:347-50. [PMID: 24758911 PMCID: PMC6000024 DOI: 10.3779/j.issn.1009-3419.2014.04.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
瘦素系统在肺部炎症反应、癌症发生发展等过程中发挥重要作用,但是其在肿瘤微环境中的作用机理、对肺癌的诊断价值仍不明晰。本文就瘦素系统与非小细胞肺癌之间的关系,从瘦素及其受体在循环和肿瘤组织中的表达变化、瘦素信号转导通路、瘦素与调节性T细胞的相互作用和瘦素及其受体的基因多态性等方面进行叙述,以期为非小细胞肺癌的诊治提供新方法。
Collapse
Affiliation(s)
- Tengfei Wei
- Department of Laboratory Diagnosis, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Longkun Lu
- Department of Laboratory Diagnosis, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Qian Shen
- Department of Laboratory Diagnosis, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Chaoping Fang
- Department of Laboratory Diagnosis, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
52
|
Pecht T, Gutman-Tirosh A, Bashan N, Rudich A. Peripheral blood leucocyte subclasses as potential biomarkers of adipose tissue inflammation and obesity subphenotypes in humans. Obes Rev 2014; 15:322-37. [PMID: 24251825 DOI: 10.1111/obr.12133] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/01/2013] [Accepted: 10/18/2013] [Indexed: 12/14/2022]
Abstract
While obesity is clearly accepted as a major risk factor for cardio-metabolic morbidity, it is also apparent that some obese patients largely escape this association, forming a unique obese subphenotype(s). Current approaches to define such subphenotypes include clinical biomarkers that largely reflect already manifested comorbidities, such as markers of dyslipidaemia, hyperglycaemia and impaired regulation of vascular tone, and anthropometric or imaging-based assessment of adipose tissue distribution. Low-grade inflammation, evident both systemically and within adipose tissue (particularly intra-abdominal fat depots), seems to characterize the more cardio-metabolically morbid forms of obesity. Indeed, several systemic inflammatory markers (C-reactive protein), adipokines (retinol-binding protein 4, adiponectin) and cytokines have been shown to correlate in humans with adipose tissue inflammation and with obesity-associated health risks. Circulating leucocytes constitute a diverse group of cells that form a major arm of the immune system. They are both major sources of cytokines and likely also of infiltrating adipose tissue immune cells in obesity. In the present review, we summarize currently available literature on 'classical' blood white cell classes and on more specific leucocyte subclasses present in the circulation in human obesity. We critically raise the possibility that leucocytes may constitute clinically available markers for the more morbidity-associated obesity subphenotype(s), and when available, for intra-abdominal adipose tissue inflammation.
Collapse
Affiliation(s)
- T Pecht
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The National Institute of Biotechnology (NIBN) in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
53
|
Immune cells and metabolic dysfunction. Semin Immunopathol 2013; 36:13-25. [PMID: 24212254 DOI: 10.1007/s00281-013-0403-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/15/2013] [Indexed: 02/06/2023]
Abstract
Throughout evolution, effective nutrient sensing and control of systemic energy homeostasis have relied on a close physical and functional interaction between immune and metabolically active cells. However, in today's obesogenic environment, this fine-tuned immunometabolic interface is perturbed. As a consequence, chronic inflammatory conditions and aberrant activation of immune cells have emerged as key features of obesity-related metabolic disorders, including insulin resistance, cardiovascular complications, and type 2 diabetes, whereas a major research focus has been placed on the adipocyte-macrophage interaction in the context of metabolic dysfunction; recent studies have not only expanded the scope of relevant immune cells in this setting but also highlight the impact of distinct metabolic organs, including the liver, on immunometabolic control, metabolic disease development, and potential anti-inflammatory therapeutic options in obesity-driven pathologies. This review will thus summarize recent progress in this emerging area of metabolic research.
Collapse
|
54
|
The deleterious role of basophils in systemic lupus erythematosus. Curr Opin Immunol 2013; 25:704-11. [PMID: 24209595 DOI: 10.1016/j.coi.2013.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 11/23/2022]
Abstract
Systemic lupus erythematosus is a complex autoimmune disease of multifactorial origins. All compartments of the immune system appear to be affected, at least in some way, and to contribute to disease pathogenesis. Because of an escape from negative selection autoreactive T and B cells accumulate in SLE patients leading to the production of autoantibodies mainly raised against nuclear components and their subsequent deposition into target organs. We recently showed that basophils, in an IgE and IL-4 dependent manner, contribute to SLE pathogenesis by amplifying autoantibody production. Here, we summarize what we have learned about the deleterious role of basophils in lupus both in a mouse model and in SLE patients. We discuss which possible pathways could be involved in basophil activation and recruitment to secondary lymphoid organs during SLE, and how basophils may amplify autoantibody production.
Collapse
|
55
|
Vonghia L, Michielsen P, Francque S. Immunological mechanisms in the pathophysiology of non-alcoholic steatohepatitis. Int J Mol Sci 2013; 14:19867-90. [PMID: 24084730 PMCID: PMC3821591 DOI: 10.3390/ijms141019867] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/11/2013] [Accepted: 09/22/2013] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by the presence of steatosis, inflammation and hepatocyte injury and constitutes hepatic manifestation of the metabolic syndrome. The pathogenesis of NASH is complex and implicates cross-talk between different metabolically active sites, such as liver and adipose tissue. Obesity is considered a chronic low-grade inflammatory state and the liver has been recognized as being an "immunological organ". The complex role of the immune system in the pathogenesis of NASH is currently raising great interest, also in view of the possible therapeutic potential of immunotherapy in NASH. This review focuses on the disturbances of the cells constituting the innate and adaptive immune system in the liver and in adipose tissue.
Collapse
Affiliation(s)
- Luisa Vonghia
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Wilrijkstraat 10, Edegem 2650, Belgium; E-Mails: (P.M.); (S.F.)
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, Bari 70100, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +32-3821-3323; Fax: +32-3821-4478
| | - Peter Michielsen
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Wilrijkstraat 10, Edegem 2650, Belgium; E-Mails: (P.M.); (S.F.)
| | - Sven Francque
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Wilrijkstraat 10, Edegem 2650, Belgium; E-Mails: (P.M.); (S.F.)
| |
Collapse
|
56
|
Baumann S, Lorentz A. Obesity - a promoter of allergy? Int Arch Allergy Immunol 2013; 162:205-13. [PMID: 24021931 DOI: 10.1159/000353972] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The prevalence of both obesity and allergy has been increasing throughout the world, leading to the hypothesis that the two are linked to one another. This overview summarizes the results of 34 studies from 2002 to 2012 that investigated a possible contributing effect of increasing body mass on the development and prevalence of various atopic diseases. Obesity was found to clearly affect bronchial asthma. However, the correlation was stronger in the nonatopic asthma phenotype. Obesity was found to be associated with the development of atopic dermatitis in children only. No clear association was found between obesity and the prevalence of allergic rhinitis or allergic conjunctivitis or increased sensitization to food allergens. This review sums up our study results and discusses a possible role of obesity in the promotion of allergy and asthma.
Collapse
Affiliation(s)
- Susanne Baumann
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | | |
Collapse
|
57
|
Koketsu R, Yamaguchi M, Suzukawa M, Tanaka Y, Tashimo H, Arai H, Nagase H, Matsumoto K, Saito H, Ra C, Yamamoto K, Ohta K. Pretreatment with low levels of FcεRI-crosslinking stimulation enhances basophil mediator release. Int Arch Allergy Immunol 2013; 161 Suppl 2:23-31. [PMID: 23711850 DOI: 10.1159/000350339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Basophils and mast cells are important initiator/effector cells capable of rapidly responding to IgE-mediated stimulation, but the precise mechanisms regulating their functions in vivo have not been fully identified. In this study, we assessed whether low levels of antigen can modulate activation of basophils and mast cells. METHODS Human basophils and cultured mast cells were pretreated with low concentrations of anti-FcεRI α-chain mAb (CRA-1 mAb), and their cell functions were assessed. RESULTS Basophils preincubated with CRA-1 mAb at as low as 1 ng/ml for 1 h showed significantly enhanced degranulation in response to various secretagogues such as MCP-1, FMLP, leukotriene B4 and Ca ionophore A23187. FMLP-induced leukotriene C4 production by basophils was also enhanced by CRA-1 mAb pretreatment. Degranulation was further enhanced when CRA-1 mAb-pretreated basophils were additionally treated with IL-3, IL-33 or leptin before stimulation with MCP-1. Priming by subthreshold CRA-1 mAb was a slow process, since 1 h of pretreatment was needed for maximal enhancement. Basophil priming also resulted from preincubation with subthreshold doses of an allergen, Der f 2. In parallel mAb experiments, CRA-1 mAb showed weak priming effects on human umbilical cord blood-derived cultured mast cells; a higher dose, 100 ng/ml, was necessary for this priming. CONCLUSION These results indicate that subthreshold doses of CRA-1 mAb or allergens can prime basophils and induce exaggerated responses to various IgE-independent stimuli. This may be a potentially important mechanism that explains environmental allergen-induced exacerbation of IgE-mediated allergic diseases such as asthma.
Collapse
Affiliation(s)
- Rikiya Koketsu
- Department of Allergy and Rheumatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Li Z, Yuan W, Ning S, Li J, Zhai W, Zhang S. Role of leptin receptor (LEPR) gene polymorphisms and haplotypes in susceptibility to hepatocellular carcinoma in subjects with chronic hepatitis B virus infection. Mol Diagn Ther 2013; 16:383-8. [PMID: 23090836 DOI: 10.1007/s40291-012-0008-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM The reported association of the leptin receptor (LEPR) protein with hepatocellular carcinoma (HCC) carcinogenesis prompted us to evaluate whether genetic polymorphisms of the LEPR gene affect susceptibility to HCC and its clinicopathologic characteristics. METHODS A total of 417 subjects who were diagnosed with HCC and 551 age- and sex-matched subjects without HCC were enrolled in this study. All subjects had chronic hepatitis B virus (HBV) infection. Three single nucleotide polymorphisms (SNPs) of the LEPR gene were determined. RESULTS The genotype frequencies of Lys109Arg and Gln223Arg differed significantly between HCC and non-HCC subjects (both p < 0.001). For the Lys109Arg polymorphism, HCC subjects had a higher prevalence of 109Arg/Arg than non-HCC subjects. The 109Arg/Arg carriers had a significantly higher adjusted risk of HCC than the 109Lys/Lys carriers. For the Gln223Arg polymorphism, subjects with the 223Arg/Arg genotype had a significantly higher risk of HCC than those with the 223Gln/Gln genotype. The Lys656Asn SNP did not affect the HCC risk. Haplotype analyses showed that subjects with 109Lys-656Lys-223Arg and 109Arg-656Asn-223Arg haplotypes had an increased HCC risk, while the 109Lys-656Lys-223Gln and 109Lys-656Asn-223Gln haplotypes had protective effects against HCC development. None of these polymorphisms were related to the clinicopathologic features of HCC. CONCLUSION The Lys109Arg and Gln223Arg polymorphisms of the LEPR gene are associated with susceptibility to HCC but not with its clinicopathologic features. These polymorphisms may represent genetic markers for the risk of HCC in the context of chronic HBV infection.
Collapse
Affiliation(s)
- Zhen Li
- Department of General Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | | | | | | | | | | |
Collapse
|
59
|
Suzukawa M, Miller M, Rosenthal P, Cho JY, Doherty TA, Varki A, Broide D. Sialyltransferase ST3Gal-III regulates Siglec-F ligand formation and eosinophilic lung inflammation in mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:5939-48. [PMID: 23677475 DOI: 10.4049/jimmunol.1203455] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sialic acid-binding, Ig-like lectin (Siglec)-F is highly expressed on mouse eosinophils and plays an important role in regulating levels of eosinophilic lung inflammation. In this study we investigated the mechanism of constitutive and inducible Siglec-F ligand expression by lung airway epithelial cells and inflammatory cells in wild-type (WT) and genetically altered mice (ST3Gal-III heterozygotes, Fuc-TIV/VII double null, STAT6 null). Flow cytometry demonstrated that Siglec-F ligands are constitutively expressed in vitro and in vivo in selected lung cell types (epithelial cells, eosinophils, macrophages, and mast cells, but not CD4, CD8, or B cells) and are induced in response to divergent stimuli, including innate stimuli (TLR ligands, Alternaria), Th2 cytokines (IL-4, IL-13), and adaptive immune stimuli (OVA allergen). Furthermore, studies of deficient mice demonstrated the greater importance of the sialyltransferase ST3Gal-III compared with fucosyltransferases Fuc-TIV/VII in the synthesis of the constitutive and inducible Siglec-F ligands by lung epithelial and nonepithelial cells. In keeping with this, ST3Gal-III heterozygote mice (deficient in expression of Siglec-F ligands) also had significantly enhanced OVA-induced eosinophilic airway inflammation associated with reduced eosinophil apoptosis. Reduced eosinophil apoptosis in the lung of ST3Gal-III-deficient mice is likely mediated by reduced epithelial expression of Siglec-F ligands as WT eosinophils (which highly express Siglec-F) cultured with ST3Gal-III-deficient epithelial cells (which do not express Siglec-F ligand) showed reduced eosinophil apoptosis compared with WT eosinophils cultured with WT epithelial cells. Overall, these studies demonstrate that ST3Gal-III plays an important role in Siglec-F ligand formation and eosinophil apoptosis with resultant effects on eosinophilic inflammation in the lung.
Collapse
Affiliation(s)
- Maho Suzukawa
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Geering B, Stoeckle C, Conus S, Simon HU. Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends Immunol 2013; 34:398-409. [PMID: 23665135 DOI: 10.1016/j.it.2013.04.002] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/22/2013] [Accepted: 04/05/2013] [Indexed: 12/15/2022]
Abstract
Neutrophils, eosinophils, and basophils play essential roles during microbe-induced and sterile inflammation. The severity of such inflammatory processes is controlled, at least in part, by factors that regulate cell death and survival of granulocytes. In recent years, major progress has been made in understanding the molecular mechanisms of granulocyte cell death and in identifying novel damage- and pathogen-associated molecular patterns as well as regulatory cytokines impacting granulocyte viability. Furthermore, an increased interest in innate immunity has boosted our overall understanding of granulocyte biology. In this review, we describe and compare factors and mechanisms regulating neutrophil, eosinophil, and basophil lifespan. Because dysregulation of death pathways in granulocytes can contribute to inflammation-associated immunopathology, targeting granulocyte lifespan could be therapeutically promising.
Collapse
Affiliation(s)
- Barbara Geering
- Institute of Pharmacology, University of Bern, Friedbuehlstrasse 49, CH-3010 Bern, Switzerland
| | | | | | | |
Collapse
|
61
|
Abstract
Mast cells and basophils are potent effector cells of the innate immune system, and they have both beneficial and detrimental functions for the host. They are mainly implicated in pro-inflammatory responses to allergens but can also contribute to protection against pathogens. Although both cell types were identified more than 130 years ago by Paul Ehrlich, their in vivo functions remain poorly understood. The precursor cell populations that give rise to mast cells and basophils have recently been characterized and isolated. Furthermore, new genetically modified mouse strains have been developed, which enable more specific targeting of mast cells and basophils. Such advances offer new opportunities to uncover the true in vivo activities of these cells and to revisit their previously proposed effector functions.
Collapse
|
62
|
Nakae S, Morita H, Ohno T, Arae K, Matsumoto K, Saito H. Role of interleukin-33 in innate-type immune cells in allergy. Allergol Int 2013; 62:13-20. [PMID: 23439054 DOI: 10.2332/allergolint.13-rai-0538] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family, is preferentially and constitutively expressed in epithelial cells, and it is especially localized in the cells' nucleus. The nuclear IL-33 is released by necrotic cells after tissue injury and/or trauma, and subsequently provokes local inflammation as an alarmin, like high-mobility group box protein-1 (HMGB-1) and IL-1α. IL-33 mainly activates Th2 cells and such innate-type immune cells as mast cells, basophils, eosinophils and natural helper cells that express IL-33R (a heterodimer of IL-1 receptor-like 1 [IL-1RL1; also called ST2, T1, Der4, fit-1] and IL-1 receptor accessory protein [IL-1RAcP]). That activation causes the cells to produce Th2 cytokines, which contribute to host defense against nematodes. On the other hand, excessive and/or inappropriate production of IL-33 is also considered to be involved in the development of such disorders as allergy. In this review, we summarize current knowledge regarding the pathogenic roles of IL-33 in the development of allergic inflammation by focusing on its effects on innate-type immune cells.
Collapse
Affiliation(s)
- Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
63
|
Johnson AR, Milner JJ, Makowski L. The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev 2013; 249:218-38. [PMID: 22889225 DOI: 10.1111/j.1600-065x.2012.01151.x] [Citation(s) in RCA: 422] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As humans evolved, perhaps the two strongest selection determinants of survival were a robust immune response able to clear bacterial, viral, and parasitic infection and an ability to efficiently store nutrients to survive times when food sources were scarce. These traits are not mutually exclusive. It is now apparent that critical proteins necessary for regulating energy metabolism, such as peroxisome proliferator-activated receptors, Toll-like receptors, and fatty acid-binding proteins, also act as links between nutrient metabolism and inflammatory pathway activation in immune cells. Obesity in humans is a symptom of energy imbalance: the scale has been tipped such that energy intake exceeds energy output and may be a result, in part, of evolutionary selection toward a phenotype characterized by efficient energy storage. As discussed in this review, obesity is a state of low-grade, chronic inflammation that promotes the development of insulin resistance and diabetes. Ironically, the formation of systemic and/or local, tissue-specific insulin resistance upon inflammatory cell activation may actually be a protective mechanism that co-evolved to repartition energy sources within the body during times of stress during infection. However, the point has been reached where a once beneficial adaptive trait has become detrimental to the health of the individual and an immense public health and economic burden. This article reviews the complex relationship between obesity, insulin resistance/diabetes, and inflammation, and although the liver, brain, pancreas, muscle, and other tissues are relevant, we focus specifically on how the obese adipose microenvironment can promote immune cell influx and sustain damaging inflammation that can lead to the onset of insulin resistance and diabetes. Finally, we address how substrate metabolism may regulate the immune response and discuss how fuel uptake and metabolism may be a targetable approach to limit or abrogate obesity-induced inflammation.
Collapse
Affiliation(s)
- Amy R Johnson
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
64
|
Sun Z, Dragon S, Becker A, Gounni AS. Leptin inhibits neutrophil apoptosis in children via ERK/NF-κB-dependent pathways. PLoS One 2013; 8:e55249. [PMID: 23383125 PMCID: PMC3561393 DOI: 10.1371/journal.pone.0055249] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 12/27/2012] [Indexed: 01/23/2023] Open
Abstract
Introduction and Rationale Previous studies have shown that delayed neutrophil apoptosis is associated with chronic airway diseases. Leptin is an adipocyte-derived hormone that acts as a regulator of energy homeostasis and food intake. Emerging evidence suggests that leptin can regulate immune responses including the release of proinflammatory cytokines and protection of inflammatory cells from apoptosis. Serum leptin is increased during allergic reactions in the airways. However, the expression and function of leptin receptor in neutrophils isolated from children is not known. Methods Flow cytometry was used to detect leptin receptor expression in neutrophils isolated from allergic asthmatic (n = 14), allergic non asthmatic (n = 21), non allergic asthmatic (n = 7) and healthy children (n = 23); confocal laser scanning microscopy combined with immunofluorescence was performed to detect intracellular pool of leptin receptor; Annexin-V/PI staining and caspase 3 activity was used to determine neutrophil survival. Pharmacological inhibitors were utilized to understand the role of MAPK and NF-κB pathway in leptin-induced neutrophil survival. Results and Conclusion A heterogeneous leptin receptor expression was observed on neutrophils isolated from children. Neutrophils isolated from healthy children expressed more leptin receptor than those from allergic asthmatic (P<0.05) but not allergic non-asthmatic (P>0.05) or non-allergic asthmatic children (n = 7, P>0.05). Neutrophils isolated from children express an intracellular pool of leptin receptor that was mobilized to the cell surface upon GM-CSF stimulation. Finally, leptin exhibited anti-apoptotic properties on neutrophils via NF-κB and MEK1/2 MAPK pathway. Collectively, our data suggest that leptin may enhance airway inflammation by promoting neutrophil survival.
Collapse
Affiliation(s)
- Zhizhi Sun
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stéphane Dragon
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Allan Becker
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- GREAT ICE (the Gender Related Evolution of Asthma Team Inter-disciplinary Capacity Enhancement), University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abdelilah S. Gounni
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- GREAT ICE (the Gender Related Evolution of Asthma Team Inter-disciplinary Capacity Enhancement), University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
65
|
Abstract
Basophils have recently been recognized as critical effector cells in allergic reactions and protective immunity against helminths. Precise characterization of basophil biology could help to develop specific therapies that interfere with differentiation, tissue recruitment, or induction of effector functions and thereby ameliorate allergic disorders. The development, homeostasis, and effector functions of basophils are tightly regulated by extrinsic signals and in particular by cytokines. IL-3, GM-CSF, and thymic stromal lymphopoietin activate the STAT5 pathway that promotes proliferation, activation, and cytokine secretion but also induces a negative feedback loop via Pim-1 and SOCS proteins. Basophils further express receptors for IL-18 and IL-33, which are associated with the signaling adaptor MyD88 and activate the NF-κB and MAP kinase pathways. This review focuses on positive and negative regulation of basophils by these cytokines.
Collapse
Affiliation(s)
- David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
66
|
Abstract
Enhanced susceptibility to infection has long been recognized in children with congenital deficiency of leptin or its receptor. Studies in mice have demonstrated that leptin deficiency affects both the innate and acquired immune systems. Here, we review recent studies that demonstrate the impact on immunity of a common non-synonomous polymorphism of the leptin receptor. In a Bangladesh cohort of children, the presence of two copies of the ancestral Q223 allele was significantly associated with resistance to amebiasis. Children and mice with at least one copy of the leptin receptor 223R mutation were more susceptible to amebic colitis. Leptin signaling in the intestinal epithelium and downstream STAT3 (signal transducer and activator of transcription 3) and SHP2 (Src homology phosphatase 2) signaling were required for protection in the murine model of amebic colitis. Murine models have also implicated leptin in protection from other infections, including Mycobacterium tuberculosis, Klebsiella pneumoniae, and Streptococcus pneumoniae. Thus, the role of leptin signaling in infectious disease and specifically leptin-mediated protection of the intestinal epithelium will be the focus of this review.
Collapse
|
67
|
Suzukawa M, Morita H, Nambu A, Arae K, Shimura E, Shibui A, Yamaguchi S, Suzukawa K, Nakanishi W, Oboki K, Kajiwara N, Ohno T, Ishii A, Körner H, Cua DJ, Suto H, Yoshimoto T, Iwakura Y, Yamasoba T, Ohta K, Sudo K, Saito H, Okumura K, Broide DH, Matsumoto K, Nakae S. Epithelial cell-derived IL-25, but not Th17 cell-derived IL-17 or IL-17F, is crucial for murine asthma. THE JOURNAL OF IMMUNOLOGY 2012; 189:3641-52. [PMID: 22942422 DOI: 10.4049/jimmunol.1200461] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-17A, IL-17F, and IL-25 are ligands for IL-17RA. In the current study, we demonstrated that IL-25-deficient mice-but not IL-17A-, IL-17F-, IL-17A/F-, IL-23p19-, or retinoic acid-related orphan receptor (ROR)-γt-deficient mice-showed significant suppression of 1) the number of eosinophils and the levels of proinflammatory mediators in bronchoalveolar lavage fluids, 2) airway hyperresponsiveness to methacholine, and 3) OVA-specific IgG1 and IgE levels in the serum during OVA-induced Th2-type/eosinophilic airway inflammation. The IL-25 deficiency did not affect lung dendritic cell migration or Ag-specific memory-Th2 cell expansion during Ag sensitization. Adoptive transfer of T cells, mast cells, or bone marrow cells from IL-25-deficient mice revealed that induction of Th2-type/eosinophilic airway inflammation was dependent on activation of lung epithelial cells and eosinophils by IL-25 produced by airway structural cells such as epithelial cells but not by such hematopoietic stem-cell-origin immune cells as T cells and mast cells. Therefore, airway structural cell-derived IL-25-rather than Th17 cell-derived IL-17A and IL-17F-is responsible for induction of local inflammation by promoting activation of lung epithelial cells and eosinophils in the elicitation phase of Th2-type/eosinophilic airway inflammation. It is not required for Ag-specific Th2 cell differentiation in the sensitization phase.
Collapse
Affiliation(s)
- Maho Suzukawa
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
van Beek AA, Knol EF, de Vos P, Smelt MJ, Savelkoul HFJ, van Neerven RJJ. Recent developments in basophil research: do basophils initiate and perpetuate type 2 T-helper cell responses? Int Arch Allergy Immunol 2012; 160:7-17. [PMID: 22948001 DOI: 10.1159/000341633] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Basophils account for only 0.1-1% of all peripheral blood leukocytes. They were considered to be a redundant cell type for a long time. However, several findings show a non-redundant role for basophils in type 2 T-helper cell (Th2) immune responses in helminth infections, allergy and autoimmunity. Both immunoglobulin-E-dependent and -independent pathways have been described to contribute to basophil activation. In addition, several recent studies reported that basophils can function as antigen-presenting cells and are important in the initiation of Th2 immune responses. However, there are also conflicting studies that do not corroborate the importance of basophils in Th2 immune responses. This review discusses the role of basophils in Th2 immune responses in view of these recent findings.
Collapse
Affiliation(s)
- A A van Beek
- Top Institute Food and Nutrition, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
69
|
Bobbert P, Jenke A, Bobbert T, Kühl U, Rauch U, Lassner D, Scheibenbogen C, Poller W, Schultheiss HP, Skurk C. High leptin and resistin expression in chronic heart failure: adverse outcome in patients with dilated and inflammatory cardiomyopathy. Eur J Heart Fail 2012; 14:1265-75. [PMID: 22764185 DOI: 10.1093/eurjhf/hfs111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIM The expression of leptin and resistin is known to be positively correlated with the incidence of chronic heart failure (CHF). Both adipokines have been implicated in immunomodulation and cardiac remodelling. Therefore, we performed for the first time a clinical study to elucidate the effects of leptin and resistin on progression of CHF in patients with non-ischaemic dilated (DCM) and inflammatory (DCMi) cardiomyopathy. METHODS AND RESULTS For the clinical study 120 patients were divided into a control (n = 16), DCM (n = 52), and DCMi (n = 52) group to determine the effect of leptin and resistin on CHF progression. Nuclear factor-κB (NF-κB) activation, reactive oxygen species generation, and tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression following adipokine exposition were determined in vitro in cardiomyocytes. Leptin and resistin systemic plasma levels and not cardiac expression were significantly elevated in patients with DCM (leptin, 13.12 ± 17.2 ng/mL, P < 0.05; resistin, 6.87 ± 2.25 ng/mL, P < 0.05) and DCMi (leptin, 13.63 ± 16 ng/mL, P < 0.05; resistin, 7.27 ± 2.2 ng/mL, P < 0.05) compared with the control group (leptin, 7.34 ± 5.7 ng/mL; resistin, 4.4 ± 1.18 ng/mL). A multivariate linear regression model revealed low leptin and resistin plasma levels as contributors for favourable cardiac functional parameters at 6-month follow-up independent of inflammatory conditions. Cell culture experiments in vitro showed leptin and resistin to be potent regulators of TNF-α and IL-6 expression in cardiomyocytes, leading to significantly increased redox stress in cardiac cells. CONCLUSIONS High leptin and resistin expression in patients with DCM and DCMi is associated with CHF progression, i.e. severe cardiac dysfunction, independent of immune responses.
Collapse
Affiliation(s)
- Peter Bobbert
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Walton SF, Weir C. The interplay between diet and emerging allergy: what can we learn from Indigenous Australians? Int Rev Immunol 2012; 31:184-201. [PMID: 22587020 DOI: 10.3109/08830185.2012.667180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pathophysiology of atopic diseases, including asthma and allergy, is the result of complex gene-environment interactions. Since European colonization the Indigenous population of Australia has undergone significant changes with respect to their lifestyle as hunter-gatherers. These changes have had a detrimental effect on Aboriginal health, in part due to immunological modification. This review provides a comparative look at both the traditional Aboriginal/Indigenous diet and modern Western diets, examines some common allergies increasingly reported in contemporary Indigenous populations, and reviews concepts such the effect of vitamin deficiencies and changes in gut microbiota on immune function.
Collapse
Affiliation(s)
- Shelley F Walton
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| | | |
Collapse
|
71
|
Link between leptin and interleukin-6 levels in the initial phase of obesity related inflammation. Transl Res 2012; 159:118-24. [PMID: 22243796 DOI: 10.1016/j.trsl.2011.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/30/2011] [Accepted: 10/05/2011] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying the pathogenesis of obesity-related atherosclerosis remain to be clarified. To investigate the preclinical phase, interleukin-6 (IL-6) plasma levels were analyzed together with clinical, anthropometric, inflammatory, and metabolic variables in a well-defined cohort of 677 young and middle-aged overweight/obese and normal-weight subjects. In the juvenile and adult overweight/obese study group, IL-6 levels were increased significantly compared with normal-weight, age-matched controls (P < 0.001). In both juveniles and adults, higher levels of IL-6 were observed in obese compared with overweight participants. Subjects with metabolic syndrome (MS) had significantly higher IL-6 levels than those without MS. In juveniles, leptin, and in adults, the waist-to-height ratio, turned out to be the best predictor of IL-6 plasma levels in a multiple stepwise regression model. Taken together, in every age group, interleukin-6 is associated positively with the grade of overweight. Interestingly, leptin, which is the best known adipokine, is associated predictively with interleukin-6 plasma levels only in juveniles, which may indicate an important role of this molecule in the initiation of obesity-related inflammation.
Collapse
|
72
|
Abstract
The hormone leptin has a variety of functions. Originally known for its role in satiety and weight loss, leptin more recently has been shown to augment tumor growth in a variety of cancers. Within gliomas, there is a correlation between tumor grade and tumor expression of leptin and its receptor. This suggests that autocrine signaling within the tumor microenvironment may promote the growth of high-grade gliomas. Leptin does this through stimulation of cellular pathways that are also advantageous for tumor growth and recurrence: antiapoptosis, proliferation, angiogenesis, and migration. Conversely, a loss of leptin expression attenuates tumor growth. In animal models of colon cancer and melanoma, a decline in the expression and secretion of leptin resulted in a reduction of tumor growth. In these models, positive mental stimulation through environmental enrichment decreased leptin secretion and improved tumor outcome. This review explores the link between leptin and glioblastoma.
Collapse
|
73
|
Li Y, Geng J, Wang Y, Lu Q, Du Y, Wang W, Li Z. The role of leptin receptor gene polymorphisms in determining the susceptibility and prognosis of NSCLC in Chinese patients. J Cancer Res Clin Oncol 2011; 138:311-6. [PMID: 22127368 DOI: 10.1007/s00432-011-1098-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/08/2011] [Indexed: 12/18/2022]
Abstract
AIM Although the role of genetic polymorphisms of leptin receptor (LEPR) gene in several cancers has been documented, the association between polymorphisms of LEPR gene and lung cancer remains unknown. METHOD We recruited 744 patients histologically diagnosed as non-small cell lung cancer (NSCLC) and 832 controls in this study. Polymorphism analysis of LEPR gene was performed by PCR-restriction fragment length polymorphisms. RESULTS The Arg/Arg genotype and Arg allele frequency of the Gln223Arg in LEPR gene were significantly prevalent in NSCLC subjects than in controls (P < 0.05). The odd ratio (OR) for NSCLC in Arg/Arg genotype carriers was 3.12 (95% CI: 2.25-4.56, P = 0.0023, with Gln/Gln as reference). There were no significant differences in the genotype distributions and allele frequencies of Lys109Arg and Lys656Asn in LEPR gene between NSCLC cases and controls (All P > 0.05). The Arg/Arg carriers had higher cancer grade and higher TNM stage. Kaplan-Mier curve showed the Arg/Arg carriers had a poor prognosis than those with Gln/Arg and Gln/Gln genotype carriers. Cox proportional hazards regression models showed the hazard ratio (HR) for death associated with Arg/Arg genotype was 3.43 (95% CI: 2.45-5.92, compared with Gln/Gln carriers, P = 0.002). The other two SNPs of LEPR gene did not show this trend in the evaluation of their role in determining the prognosis of NSCLC subjects. CONCLUSION The results suggest the polymorphisms of Gln223Arg, rather than Lys109Arg and Lys656Asn, may be used as a molecular marker for progression and prognosis of NSCLC.
Collapse
Affiliation(s)
- Yuliang Li
- Second Affiliated Hospital of Shandong University, BeiYuan Road 247, Jinan city, 250033, Shandong province, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
74
|
Voehringer D. Basophils in allergic immune responses. Curr Opin Immunol 2011; 23:789-93. [PMID: 22035810 DOI: 10.1016/j.coi.2011.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/28/2011] [Indexed: 01/22/2023]
Abstract
Basophils are rare effector cells of the innate immune system. They are generally associated with type 2 immune responses that develop during helminth infections and allergic reactions. The role of basophils for initiation and execution of allergic immune responses is not well understood. Over the past few years new tools have been generated to study the function of basophils in mouse models. Depending on the experimental systems used conflicting results were obtained with regard to the role of basophils for initiation and execution of immune responses against allergens and helminths. This review highlights the current knowledge about basophil in vivo functions with a focus on the role of basophils for allergic responses like asthma, allergic skin diseases and anaphylaxis.
Collapse
Affiliation(s)
- David Voehringer
- Department of Infection Biology, Institute for Medical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
| |
Collapse
|