51
|
Montalbán Del Barrio I, Penski C, Schlahsa L, Stein RG, Diessner J, Wöckel A, Dietl J, Lutz MB, Mittelbronn M, Wischhusen J, Häusler SFM. Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages - a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape. J Immunother Cancer 2016; 4:49. [PMID: 27532024 PMCID: PMC4986205 DOI: 10.1186/s40425-016-0154-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ovarian cancer (OvCA) tissues show abundant expression of the ectonucleotidases CD39 and CD73 which generate immunomodulatory adenosine, thereby inhibiting cytotoxic lymphocytes. Little, however, is known about the effect of adenosine on myeloid cells. Considering that tumor associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC) constitute up to 20 % of OvCA tissue, we investigated the effect of adenosine on myeloid cells and explored a possible contribution of myeloid cells to adenosine generation in vitro and ex vivo. METHODS Monocytes were used as human blood-derived myeloid cells. After co-incubation with SK-OV-3 or OAW-42 OvCA cells, monocyte migration was determined in transwell assays. For conversion into M2-polarized "TAM-like" macrophages, monocytes were co-incubated with OAW-42 cells. Ex vivo TAMs were obtained from OvCA ascites. Macrophage phenotypes were investigated by intracellular staining for IL-10 and IL-12. CD39 and CD73 expression were assessed by FACS analysis both on in vitro-induced TAM-like macrophages and on ascites-derived ex situ-TAMs. Myeloid cells in solid tumor tissue were analyzed by immunohistochemistry. Generation of biologically active adenosine by TAM-like macrophages was measured in luciferase-based reporter assays. Functional effects of adenosine were investigated in proliferation-experiments with CD4(+) T cells and specific inhibitors. RESULTS When CD39 or CD73 activity on OvCA cells were blocked, the migration of monocytes towards OvCA cells was significantly decreased. In vivo, myeloid cells in solid ovarian cancer tissue were found to express CD39 whereas CD73 was mainly detected on stromal fibroblasts. Ex situ-TAMs and in vitro differentiated TAM-like cells, however, upregulated the expression of CD39 and CD73 compared to monocytes or M1 macrophages. Expression of ectonucleotidases also translated into increased levels of biologically active adenosine. Accordingly, co-incubation with these TAMs suppressed CD4(+) T cell proliferation which could be rescued via blockade of CD39 or CD73. CONCLUSION Adenosine generated by OvCA cells likely contributes to the recruitment of TAMs which further amplify adenosine-dependent immunosuppression via additional ectonucleotidase activity. In solid ovarian cancer tissue, TAMs express CD39 while CD73 is found on stromal fibroblasts. Accordingly, small molecule inhibitors of CD39 or CD73 could improve immune responses in ovarian cancer.
Collapse
Affiliation(s)
- Itsaso Montalbán Del Barrio
- Department of Obstetrics and Gynaecology, University of Würzburg, School of Medicine, Josef-Schneider-Strasse 4, 97080 Würzburg, Germany.,Interdisciplinary Centre for Clinical Research, University of Würzburg, School of Medicine, Würzburg, Germany
| | - Cornelia Penski
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Edinger Institute (Neurological Institute), Goethe University, Frankfurt, Germany
| | - Laura Schlahsa
- Department of Obstetrics and Gynaecology, University of Würzburg, School of Medicine, Josef-Schneider-Strasse 4, 97080 Würzburg, Germany
| | - Roland G Stein
- Department of Obstetrics and Gynaecology, University of Würzburg, School of Medicine, Josef-Schneider-Strasse 4, 97080 Würzburg, Germany
| | - Joachim Diessner
- Department of Obstetrics and Gynaecology, University of Würzburg, School of Medicine, Josef-Schneider-Strasse 4, 97080 Würzburg, Germany
| | - Achim Wöckel
- Department of Obstetrics and Gynaecology, University of Würzburg, School of Medicine, Josef-Schneider-Strasse 4, 97080 Würzburg, Germany
| | - Johannes Dietl
- Department of Obstetrics and Gynaecology, University of Würzburg, School of Medicine, Josef-Schneider-Strasse 4, 97080 Würzburg, Germany
| | - Manfred B Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Versbacherstrasse 7, 97078 Würzburg, Germany
| | - Michel Mittelbronn
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Edinger Institute (Neurological Institute), Goethe University, Frankfurt, Germany
| | - Jörg Wischhusen
- Department of Obstetrics and Gynaecology, University of Würzburg, School of Medicine, Josef-Schneider-Strasse 4, 97080 Würzburg, Germany
| | - Sebastian F M Häusler
- Department of Obstetrics and Gynaecology, University of Würzburg, School of Medicine, Josef-Schneider-Strasse 4, 97080 Würzburg, Germany
| |
Collapse
|
52
|
Guy TV, Terry AM, Bolton HA, Hancock DG, Shklovskaya E, Fazekas de St. Groth B. Pro- and anti-tumour effects of B cells and antibodies in cancer: a comparison of clinical studies and preclinical models. Cancer Immunol Immunother 2016; 65:885-96. [PMID: 27222052 PMCID: PMC11029718 DOI: 10.1007/s00262-016-1848-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 05/12/2016] [Indexed: 12/15/2022]
Abstract
The primary immune role of B cells is to produce antibodies, but they can also influence T cell function via antigen presentation and, in some contexts, immune regulation. Whether their roles in tumour immunity are similar to those in other chronic immune responses such as autoimmunity and chronic infection, where both pro- and anti-inflammatory roles have been described, remains controversial. Many studies have aimed to define the role of B cells in antitumor immune responses, but despite this considerable body of work, it is not yet possible to predict how they will affect immunity to any given tumour. In many human cancers, the presence of tumour-infiltrating B cells and tumour-reactive antibodies correlates with extended patient survival, and this clinical observation is supported by data from some animal models. On the other hand, T cell responses can be adversely affected by B cell production of immunoregulatory cytokines, a phenomenon that has been demonstrated in humans and in animal models. The isotype and concentration of tumour-reactive antibodies may also influence tumour progression. Recruitment of B cells into tumours may directly reflect the subtype and strength of the anti-tumour T cell response. As the response becomes chronic, B cells may attenuate T cell responses in an attempt to decrease host damage, similar to their described role in chronic infection and autoimmunity. Understanding how B cell responses in cancer are related to the effectiveness of the overall anti-tumour response is likely to aid in the development of new therapeutic interventions against cancer.
Collapse
Affiliation(s)
- Thomas V Guy
- T Cell Biology Research Program, Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag No. 6, Newtown, NSW, 2042, Australia
- Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Alexandra M Terry
- T Cell Biology Research Program, Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag No. 6, Newtown, NSW, 2042, Australia
- Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Holly A Bolton
- T Cell Biology Research Program, Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag No. 6, Newtown, NSW, 2042, Australia
- Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - David G Hancock
- T Cell Biology Research Program, Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag No. 6, Newtown, NSW, 2042, Australia
- Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Elena Shklovskaya
- T Cell Biology Research Program, Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag No. 6, Newtown, NSW, 2042, Australia
- Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Barbara Fazekas de St. Groth
- T Cell Biology Research Program, Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag No. 6, Newtown, NSW, 2042, Australia.
- Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
53
|
Morandi F, Morandi B, Horenstein AL, Chillemi A, Quarona V, Zaccarello G, Carrega P, Ferlazzo G, Mingari MC, Moretta L, Pistoia V, Malavasi F. A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation. Oncotarget 2016; 6:25602-18. [PMID: 26329660 PMCID: PMC4694853 DOI: 10.18632/oncotarget.4693] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022] Open
Abstract
Nucleotide-metabolizing ectoenzymes are endowed with an extracellular catalytic domain, which is involved in regulating the extracellular nucleotide/nucleoside balance. The tumor microenvironment contains high levels of adenosine (ADO) generated by this enzymatic network, thus promoting tumor growth by inhibiting anti-tumor immune responses. ADO inhibition in melanoma murine models limits tumor metastases and restores anti-tumor immune responses. This work investigates the expression and function of ectoenzymes in primary human melanoma cell lines. All of latter cells expressed CD38, CD39, CD73, and CD203a/PC-1, and produced ADO from AMP and NAD(+ )T cell proliferation. Accordingly, phosphorylation of S6 ribosomal protein, p38 and Stat1 was lower in activated memory cells than in naïve CD4(+) T lymphocytes. Melanoma cells also inhibited proliferation of naïve, memory and -to a lesser extent- of effector CD8(+) T cells. These different inhibitory effects correlated with distinct patterns of expression of the ADO receptor A2a and A2b. These results show that primary human melanoma cell lines suppress in vitro T cell proliferation through an adenosinergic pathway in which CD38 and CD73 play a prominent role.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Barbara Morandi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alberto L Horenstein
- Department of Medical Sciences, Laboratory of Immunogenetics and CeRMS, University of Torino, and Transplant Immunology, Città della Salute e della Scienza, Torino, Italy
| | - Antonella Chillemi
- Department of Medical Sciences, Laboratory of Immunogenetics and CeRMS, University of Torino, and Transplant Immunology, Città della Salute e della Scienza, Torino, Italy
| | - Valeria Quarona
- Department of Medical Sciences, Laboratory of Immunogenetics and CeRMS, University of Torino, and Transplant Immunology, Città della Salute e della Scienza, Torino, Italy
| | - Gianluca Zaccarello
- Department of Medical Sciences, Laboratory of Immunogenetics and CeRMS, University of Torino, and Transplant Immunology, Città della Salute e della Scienza, Torino, Italy
| | | | - Guido Ferlazzo
- Department of Human Pathology, University of Messina, Italy.,Cellular Therapy Program, University Hospital - A.O.U. Policlinico, Messina, Italy
| | | | | | - Vito Pistoia
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Fabio Malavasi
- Department of Medical Sciences, Laboratory of Immunogenetics and CeRMS, University of Torino, and Transplant Immunology, Città della Salute e della Scienza, Torino, Italy
| |
Collapse
|
54
|
Hay CM, Sult E, Huang Q, Mulgrew K, Fuhrmann SR, McGlinchey KA, Hammond SA, Rothstein R, Rios-Doria J, Poon E, Holoweckyj N, Durham NM, Leow CC, Diedrich G, Damschroder M, Herbst R, Hollingsworth RE, Sachsenmeier KF. Targeting CD73 in the tumor microenvironment with MEDI9447. Oncoimmunology 2016; 5:e1208875. [PMID: 27622077 PMCID: PMC5007986 DOI: 10.1080/2162402x.2016.1208875] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022] Open
Abstract
MEDI9447 is a human monoclonal antibody that is specific for the ectoenzyme CD73 and currently undergoing Phase I clinical trials. Here we show that MEDI9447 is a potent inhibitor of CD73 ectonucleotidase activity, with wide ranging immune regulatory consequences. MEDI9447 results in relief from adenosine monophosphate (AMP)-mediated lymphocyte suppression in vitro and inhibition of mouse syngeneic tumor growth in vivo. In contrast with other cancer immunotherapy agents such as checkpoint inhibitors or T-cell agonists, MEDI9447 drives changes in both myeloid and lymphoid infiltrating leukocyte populations within the tumor microenvironment of mouse models. Changes include significant alterations in a number of tumor micro-environmental subpopulations including increases in CD8+ effector cells and activated macrophages. Furthermore, these changes correlate directly with responder and non-responder subpopulations within animal studies using syngeneic tumors. Combination data showing additive activity between MEDI9447 and anti-PD-1 antibodies using human cells in vitro and mouse tumor models further demonstrate the potential value of relieving adenosine-mediated immunosuppression. Based on these data, a Phase I study to test the safety, tolerability, and clinical activity of MEDI9447 in cancer patients was initiated (NCT02503774).
Collapse
Affiliation(s)
| | - Erin Sult
- MedImmune, LLC , Gaithersburg, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Ponce NE, Sanmarco LM, Eberhardt N, García MC, Rivarola HW, Cano RC, Aoki MP. CD73 Inhibition Shifts Cardiac Macrophage Polarization toward a Microbicidal Phenotype and Ameliorates the Outcome of Experimental Chagas Cardiomyopathy. THE JOURNAL OF IMMUNOLOGY 2016; 197:814-23. [PMID: 27335499 DOI: 10.4049/jimmunol.1600371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
Abstract
Increasing evidence demonstrates that generation of extracellular adenosine from ATP, which is hydrolyzed by the CD39/CD73 enzyme pair, attenuates the inflammatory response and deactivates macrophage antimicrobial mechanisms. Although CD73 is emerging as a critical pathway and therapeutic target in cardiovascular disorders, the involvement of this ectonucleotidase during myocardial infection has not been explored. Using a murine model of infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy, we observed a sudden switch from the classical M1 macrophage (microbicidal) phenotype toward an alternative M2 (repairing/anti-inflammatory) phenotype that occurred within the myocardium very shortly after BALB/c mice infection. The observed shift in M1/M2 rate correlated with the cardiac cytokine milieu. Considering that parasite persistence within myocardium is a necessary and sufficient condition for the development of the chronic myocarditis, we hypothesized that CD73 activity may counteract cardiac macrophage microbicidal polarization, rendering the local immune response less effective. In fact, a transient treatment with a specific CD73 inhibitor (adenosine 5'-α,β-methylene-diphosphate) enhanced the microbicidal M1 subset predominance, diminished IL-4- and IL-10-producing CD4(+) T cells, promoted a proinflammatory cytokine milieu, and reduced parasite load within the myocardium during the acute phase. As a direct consequence of these events, there was a reduction in serum levels of creatine kinase muscle-brain isoenzyme, a myocardial-specific injury marker, and an improvement in the electrocardiographic characteristics during the chronic phase. Our results demonstrate that this purinergic system drives the myocardial immune response postinfection and harbors a promising potential as a therapeutic target.
Collapse
Affiliation(s)
- Nicolás Eric Ponce
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Liliana Maria Sanmarco
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Natalia Eberhardt
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Mónica Cristina García
- Departamento de Farmacia, Facultad de Ciencias Químicas, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Héctor Walter Rivarola
- Facultad de Ciencias Médicas, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; and
| | - Roxana Carolina Cano
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; Facultad de Ciencias Químicas, UA Área de Ciencias Agrarias, Ingeniería, Ciencias Biológicas y de la salud-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Católica de Córdoba, Córdoba 5000, Argentina
| | - Maria Pilar Aoki
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina;
| |
Collapse
|
56
|
Buqué A, Bloy N, Aranda F, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology 2016; 5:e1149674. [PMID: 27471617 PMCID: PMC4938376 DOI: 10.1080/2162402x.2016.1149674] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Progressing malignancies establish robust immunosuppressive networks that operate both systemically and locally. In particular, as tumors escape immunosurveillance, they recruit increasing amounts of myeloid and lymphoid cells that exert pronounced immunosuppressive effects. These cells not only prevent the natural recognition of growing neoplasms by the immune system, but also inhibit anticancer immune responses elicited by chemo-, radio- and immuno therapeutic interventions. Throughout the past decade, multiple strategies have been devised to counteract the accumulation or activation of tumor-infiltrating immunosuppressive cells for therapeutic purposes. Here, we review recent preclinical and clinical advances on the use of small molecules that target the immunological tumor microenvironment for cancer therapy. These agents include inhibitors of indoleamine 2,3-dioxigenase 1 (IDO1), prostaglandin E2, and specific cytokine receptors, as well as modulators of intratumoral purinergic signaling and arginine metabolism.
Collapse
Affiliation(s)
- Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- INSERM, U970, Paris, France
- Paris-Cardiovascular Research Center (PARCC), Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
57
|
Wang JZ, Zhang YH, Guo XH, Zhang HY, Zhang Y. The double-edge role of B cells in mediating antitumor T-cell immunity: Pharmacological strategies for cancer immunotherapy. Int Immunopharmacol 2016; 36:73-85. [PMID: 27111515 DOI: 10.1016/j.intimp.2016.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022]
Abstract
Emerging evidence reveals the controversial role of B cells in antitumor immunity, but the underlying mechanisms have to be explored. Three latest articles published in the issue 521 of Nature in 2015 reconfirmed the puzzling topic and put forward some explanations of how B cells regulate antitumor T-cell responses both positively and negatively. This paper attempts to demonstrate that different B-cell subpopulations have distinct immunological properties and that they are involved in either antitumor responses or immunosuppression. Recent studies supporting the positive and negative roles of B cells in tumor development were summarized comprehensively. Several specific B-cell subpopulations, such as IgG(+), IgA(+), IL-10(+), and regulatory B cells, were described in detail. The mechanisms underlying the controversial B-cell effects were mainly attributed to different B-cell subpopulations, different B-cell-derived cytokines, direct B cell-T cell interaction, different cancer categories, and different malignant stages, and the immunological interaction between B cells and T cells is mediated by dendritic cells. Promising B-cell-based antitumor strategies were proposed and novel B-cell regulators were summarized to present interesting therapeutic targets. Future investigations are needed to make sure that B-cell-based pharmacological strategies benefit cancer immunotherapy substantially.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| | - Yu-Hua Zhang
- Department of Library, Hebei University of Engineering, Handan 056038, PR China
| | - Xin-Hua Guo
- Department of Medicine, College of Medicine, Hebei University of Engineering, Handan 056002, PR China
| | - Hong-Yan Zhang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Yuan Zhang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| |
Collapse
|
58
|
Antonioli L, Yegutkin GG, Pacher P, Blandizzi C, Haskó G. Anti-CD73 in cancer immunotherapy: awakening new opportunities. Trends Cancer 2016; 2:95-109. [PMID: 27014745 PMCID: PMC4800751 DOI: 10.1016/j.trecan.2016.01.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, cancer immunotherapy made significant advances due to a better understanding of the principles underlying tumor biology and immunology. In this context, CD73 is a key molecule, since via degradation of adenosine monophosphate into adenosine, endorses the generation of an immunosuppressed and pro-angiogenic niche within the tumor microenvironment that promotes the onset and progression of cancer. Targeting CD73 results in favorable antitumor effects in pre-clinical models and combined treatments of CD73 blockade with other immune-modulating agents (i.e. anti-CTLA-4 mAb or anti-PD1 mAb) is particularly attractive. Although there is still a long way to go, anti-CD73 therapy, through the development of CD73 monoclonal antibodies, can potentially constitute a new biologic therapy for cancer patients. In this review, we discuss the link between CD73 and the onset, development and spread of tumors, highlighting the potential value of this molecule as a target and as a novel biomarker in the context of personalized cancer therapy.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Gennady G Yegutkin
- Medicity Research Laboratory, Department of Medical Microbiology and Immunology, University of Turku, Finland
| | - Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratories of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD 20892, USA
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
59
|
Allard D, Allard B, Gaudreau PO, Chrobak P, Stagg J. CD73-adenosine: a next-generation target in immuno-oncology. Immunotherapy 2016; 8:145-63. [PMID: 26808918 DOI: 10.2217/imt.15.106] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy has entered in a new era with the development of first-generation immune checkpoint inhibitors targeting the PD1/PD-L1 and CTLA-4 pathways. In this context, considerable research effort is being deployed to find the next generation of cancer immunotherapeutics. The CD73-adenosine axis constitutes one of the most promising pathways in immuno-oncology. We and others have demonstrated the immunosuppressive role of CD73-adenosine in cancer and established proof-of-concept that the targeted blockade of CD73 or adenosine receptors could effectively promote anti-tumor immunity and enhance the activity of first-generation immune checkpoint blockers. With Phase I clinical trials now underway evaluating anti-CD73 or anti-A2A therapies in cancer patients, we here discuss the fundamental, preclinical and clinical findings related to the role of the CD73-adenosinergic pathway in tumor immunity.
Collapse
Affiliation(s)
- David Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Pierre-Olivier Gaudreau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Pavel Chrobak
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| |
Collapse
|
60
|
Downregulation of CD73 in 4T1 breast cancer cells through siRNA-loaded chitosan-lactate nanoparticles. Tumour Biol 2016; 37:8403-12. [DOI: 10.1007/s13277-015-4732-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022] Open
|
61
|
CD73 on B16F10 melanoma cells in CD73-deficient mice promotes tumor growth, angiogenesis, neovascularization, macrophage infiltration and metastasis. Int J Biochem Cell Biol 2015; 69:1-10. [DOI: 10.1016/j.biocel.2015.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/20/2015] [Accepted: 10/07/2015] [Indexed: 11/21/2022]
|
62
|
Abstract
The regulatory approval of ipilimumab (Yervoy) in 2011 ushered in a new era of cancer immunotherapies with durable clinical effects. Most of these breakthrough medicines are monoclonal antibodies that block protein-protein interactions between T cell checkpoint receptors and their cognate ligands. In addition, genetically engineered autologous T cell therapies have also recently demonstrated significant clinical responses in haematological cancers. Conspicuously missing from this class of therapies are traditional small-molecule drugs, which have previously served as the backbone of targeted cancer therapies. Modulating the immune system through a small-molecule approach offers several unique advantages that are complementary to, and potentially synergistic with, biologic modalities. This Review highlights immuno-oncology pathways and mechanisms that can be best or solely targeted by small-molecule medicines. Agents aimed at these mechanisms--modulation of the immune response, trafficking to the tumour microenvironment and cellular infiltration--are poised to significantly extend the scope of immuno-oncology applications and enhance the opportunities for combination with tumour-targeted agents and biologic immunotherapies.
Collapse
|
63
|
Zhang Y, Gallastegui N, Rosenblatt JD. Regulatory B cells in anti-tumor immunity. Int Immunol 2015; 27:521-30. [PMID: 25999597 DOI: 10.1093/intimm/dxv034] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/18/2015] [Indexed: 12/19/2022] Open
Abstract
Advances in understanding of the immune microenvironment have highlighted the role of immunosuppressive T cell, myeloid, dendritic and monocytic sub-populations in inhibition of the anti-tumor immune response. The role of B cells in modulating the immune response to solid tumors as well as lymphoid malignancies is less well understood. Murine models of autoimmune disease have defined B regulatory cell (Breg) subsets with immune suppressive activity, including B cell subsets that express IL-10, and transforming growth factor-β, which can facilitate T regulatory cell recruitment and expansion. Multiple murine tumor models point to the existence of similar immune suppressive B cell sub-populations that can migrate into tumor deposits and acquire an immune suppressive phenotype, which then leads to attenuation of the local anti-tumor immune response. Other murine models of viral or chemically induced skin carcinogenesis have identified a pivotal role for B cells in promoting inflammation and carcinogenesis. While many human solid tumors demonstrate significant B cell infiltration and/or tertiary lymphoid structure formation, the functional properties of tumor-infiltrating B cells and their effects on immunity are poorly understood. Recent successes in early Phase I/II trials using anti-checkpoint inhibitor antibodies such as nivolumab or pidilizumab directed against PD-1 in the setting of Hodgkin's and non-Hodgkin's lymphomas validate the therapeutic utility of reversing B cell-mediated immune suppression. Further studies to define Breg subsets, and mechanisms of suppression, may provide new avenues for modulation of the immune response and meaningful therapeutic intervention in both lymphoid and solid tumors.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Nicolas Gallastegui
- Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Joseph D Rosenblatt
- Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
64
|
Burghoff S, Gong X, Viethen C, Jacoby C, Flögel U, Bongardt S, Schorr A, Hippe A, Homey B, Schrader J. Growth and metastasis of B16-F10 melanoma cells is not critically dependent on host CD73 expression in mice. BMC Cancer 2014; 14:898. [PMID: 25465225 PMCID: PMC4265456 DOI: 10.1186/1471-2407-14-898] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 11/27/2014] [Indexed: 12/03/2022] Open
Abstract
Background Recent studies have suggested that adenosine generated by ecto-5′-nucleotidase (CD73) in the tumor microenvironment plays a major role in promoting tumor growth by suppressing the immune response and stimulating angiogenesis via A2A and A2B receptors. However, adenosine has also been reported to inhibit tumor growth acting via A1 and A3 receptors. Therefore the aim of this study was to clarify the role of host CD73, which catalyzes the extracellular hydrolysis of AMP to adenosine, on tumor growth and metastasis of B16-F10 melanoma cells. Methods CD73 and alkaline phosphatase (AP) activity of B16-F10 melanoma cells were measured by HPLC. Tumor cells were injected either subcutaneously or intradermally in WT and CD73−/− mice and tumor growth was monitored by MRI at 9.4 T. Immune cell subpopulations within tumors were assessed by FACS after enzymatic digestion. An endothelium specific CD73−/− was created using Tie2-Cre+ mice and CD73flox/flox (loxP) mice. Chimeric mice lacking CD73−/− on hematopoietic cells was generated by bone marrow transplantation. Lung metastatic spread was measured after intravenous B16-F10 application. Results B16-F10 cells showed very little CD73 and negligible AP activity. Neither complete loss of host CD73 nor specific knockout of CD73 on endothelial cells or hematopoietic cells affected tumor growth after subcutaneous or intradermal tumor cell application. Only peritumoral edema formation was significantly attenuated in global CD73−/− mice in the intradermal model. Immune cell composition revealed no differences in the different transgenic mice models. Also lung metastasis after intravenous B16-F10 injection was not altered in CD73−/− mice. Conclusions CD73 expression on host cells, particularly on endothelial and hematopoietic cells, does not modulate tumor growth and metastatic spread of B16-F10 melanoma cells most likely because of insufficient adenosine formation by the tumor itself. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-898) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jürgen Schrader
- Institute of Molecular Cardiology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany.
| |
Collapse
|
65
|
Abstract
High amounts of adenosine are released in the tumor mass. Depending on the levels of adenosine, as well as on the receptor subtypes that are expressed by immune cells, adenosine can affect tumor growth in different fashions. Specifically targeting CD73, the rate-limiting enzyme for the extracellular generation of adenosine, or the A3 receptor offers new therapeutic strategies to limit tumor progression.
Collapse
Affiliation(s)
- Rosalinda Sorrentino
- Department of Pharmaceutical and Biomedical Sciences; University of Salerno; Salerno, Italy
| | | | | |
Collapse
|
66
|
Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia 2014; 15:1400-9. [PMID: 24403862 DOI: 10.1593/neo.131748] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 01/14/2023] Open
Abstract
The A2b receptor (A2bR) belongs to the adenosine receptor family. Emerging evidence suggest that A2bR is implicated in tumor progression in some murine tumor models, but the therapeutic potential of targeting A2bR in melanoma has not been examined. This study first shows that melanoma-bearing mice treated with Bay 60-6583, a selective A2bR agonist, had increased melanoma growth. This effect was associated with higher levels of immune regulatory mediators interleukin-10 (IL-10) and monocyte chemoattractant protein 1 (MCP-1) and accumulation of tumor-associated CD11b positive Gr1 positive cells (CD11b(+)Gr1(+)) myeloid-derived suppressor cells (MDSCs). Depletion of CD11b(+)Gr1(+) cells completely reversed the protumor activity of Bay 60-6583. Conversely, pharmacological blockade of A2bR with PSB1115 reversed immune suppression in the tumor microenvironment, leading to a significant melanoma growth delay. PSB1115 treatment reduced both levels of IL-10 and MCP-1 and CD11b(+)Gr1(+) cell number in melanoma lesions. These effects were associated with higher frequency of tumor-infiltrating CD8 positive (CD8(+)) T cells and natural killer T (NKT) cells and increased levels of T helper 1 (Th1)-like cytokines. Adoptive transfer of CD11b(+)Gr1(+) cells abrogated the antitumor activity of PSB1115. These data suggest that the antitumor activity of PSB1115 relies on its ability to lower accumulation of tumor-infiltrating MDSCs and restore an efficient antitumor T cell response. The antitumor effect of PSB1115 was not observed in melanoma-bearing nude mice. Furthermore, PSB1115 enhanced the antitumor efficacy of dacarbazine. These data indicate that A2bR antagonists such as PSB1115 should be investigated as adjuvants in the treatment of melanoma.
Collapse
|
67
|
The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. CANCER MICROENVIRONMENT 2014; 8:125-58. [PMID: 24895166 DOI: 10.1007/s12307-014-0147-5] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023]
Abstract
Neutrophils are myeloid cells that constitute 50-70 % of all white blood cells in the human circulation. Traditionally, neutrophils are viewed as the first line of defense against infections and as a major component of the inflammatory process. In addition, accumulating evidence suggest that neutrophils may also play a key role in multiple aspects of cancer biology. The possible involvement of neutrophils in cancer prevention and promotion was already suggested more than half a century ago, however, despite being the major component of the immune system, their contribution has often been overshadowed by other immune components such as lymphocytes and macrophages. Neutrophils seem to have conflicting functions in cancer and can be classified into anti-tumor (N1) and pro-tumor (N2) sub-populations. The aim of this review is to discuss the varying nature of neutrophil function in the cancer microenvironment with a specific emphasis on the mechanisms that regulate neutrophil mobilization, recruitment and activation.
Collapse
|
68
|
Allard B, Turcotte M, Stagg J. Targeting CD73 and downstream adenosine receptor signaling in triple-negative breast cancer. Expert Opin Ther Targets 2014; 18:863-81. [PMID: 24798880 DOI: 10.1517/14728222.2014.915315] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Despite significant improvements in diagnosis and therapy over the past 20 years, breast cancer remains a worldwide public health issue. In particular, triple negative breast cancer (TNBC), a subset of very aggressive breast tumors, is associated with a poor prognosis and has very few efficient therapeutic options. The ectonucleotidase CD73 has recently emerged as a promising new target for TNBC in preclinical models. Pharmacological targeting of CD73 and downstream adenosine A2A/A2B receptor signaling is currently an active field of research that could lead to the development of new cancer therapeutics, including options against TNBC. AREAS COVERED This article reviews the basic structural and molecular features of CD73 and its role in the development of cancer, with a particular focus on CD73's role in the biology of TNBC. EXPERT OPINION It was recently demonstrated that CD73 expression in TNBC is associated with worse clinical outcomes and increased resistance to anthracycline chemotherapy. Targeted blockade of the CD73/A2A axis has been shown to impair various aspects of tumorigenesis and displays synergism with other anti-cancer treatments in preclinical studies. Hence, we strongly argue for the development of CD73 inhibitors and for the repositioning of A2A antagonists in cancer.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculté de Pharmacie et Institut du Cancer de Montréal , 900 Rue Saint Denis, 10ième étage, Montréal H2X0X9, QC , Canada +514 890 8000 ext: 25170 ; +514 412 7661 ;
| | | | | |
Collapse
|
69
|
Iannone R, Miele L, Maiolino P, Pinto A, Morello S. Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. Am J Cancer Res 2014; 4:172-181. [PMID: 24660106 PMCID: PMC3960454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/15/2014] [Indexed: 06/03/2023] Open
Abstract
Combination therapies for melanoma that target immune-regulatory networks are entering clinical practice, and more are under investigation in preclinical or clinical studies. Adenosine plays a key role in regulating melanoma progression. We investigated the effectiveness of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) antibody (mAb) in combination with either modulators of adenosine receptors (AR) activation or an inhibitor of adenosine production in a murine model of melanoma. We found that treatment with APCP, selective inhibitor of the adenosine-generating nucleotidase CD73, enhanced the activity of anti-CTLA4 mAb, by improving tumor immune response. Blockade of the adenosine A2a receptor (A2aR), which plays a critical role in the regulation of T-cell functions, significantly reduced melanoma growth. Most importantly, combination therapy including an A2aR antagonist with anti-CTLA4 mAb markedly inhibited tumor growth and enhanced anti-tumor immune responses. Targeting A3R and CTLA4 was not as effective in limiting melanoma growth as targeting A2aR. These data suggest that the efficacy of anti-CTLA4 melanoma therapy may be improved by targeting multiple mechanisms of immune suppression within tumor tissue, including CD73 or A2a receptor.
Collapse
Affiliation(s)
| | - Lucio Miele
- Cancer Institute and Departments of Medicine and Pharmacology, University of Mississippi Medical CenterJackson, MS 39216, USA
| | - Piera Maiolino
- National Cancer Institute “Pascale”, Pharmacy UnitNaples, Italy
| | - Aldo Pinto
- Department of Pharmacy, University of SalernoItaly
| | | |
Collapse
|
70
|
Aliagas E, Vidal A, Texidó L, Ponce J, Condom E, Martín-Satué M. High expression of ecto-nucleotidases CD39 and CD73 in human endometrial tumors. Mediators Inflamm 2014; 2014:509027. [PMID: 24707115 PMCID: PMC3953595 DOI: 10.1155/2014/509027] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/25/2013] [Accepted: 01/08/2014] [Indexed: 01/22/2023] Open
Abstract
One of the strategies used by tumors to evade immunosurveillance is the accumulation of extracellular adenosine, which has immunosupressive and tumor promoting effects. The study of the mechanisms leading to adenosine formation at the tumor interstitium are therefore of great interest in oncology. The dominant pathway generating extracellular adenosine in tumors is the dephosphorylation of ATP by ecto-nucleotidases. Two of these enzymes acting sequentially, CD39 and CD73, efficiently hydrolyze extracellular ATP to adenosine. They have been found to play a crucial role in a variety of tumors, but there were no data concerning endometrial cancer, the most frequent of the invasive tumors of the female genital tract. The aim of the present work is to study the expression of CD39 and CD73 in human endometrial cancer. We have analyzed protein and gene expression, as well as enzyme activity, in type I endometrioid adenocarcinomas and type II serous adenocarcinomas and their nonpathological endometrial counterparts. High levels of both enzymes were found in tumor samples, with significantly increased expression of CD39 in type II serous tumors, which also coincided with the higher tumor grade. Our results reinforce the involvement of the adenosinergic system in cancer, emphasizing the relevance of ecto-nucleotidases as emerging therapeutic targets in oncology.
Collapse
Affiliation(s)
- Elisabet Aliagas
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, Campus de Bellvitge, Universitat de Barcelona, Pavelló de Govern, 4a Planta, Lab. 4145, C/Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - August Vidal
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, Campus de Bellvitge, Universitat de Barcelona, Pavelló de Govern, 4a Planta, Lab. 4145, C/Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
- Servei d'Anatomia Patològica, Hospital de Bellvitge, Barcelona, Spain
| | - Laura Texidó
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, Campus de Bellvitge, Universitat de Barcelona, Pavelló de Govern, 4a Planta, Lab. 4145, C/Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Ponce
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
- Servei de Ginecologia, Hospital de Bellvitge, Barcelona, Spain
| | - Enric Condom
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, Campus de Bellvitge, Universitat de Barcelona, Pavelló de Govern, 4a Planta, Lab. 4145, C/Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
- Servei d'Anatomia Patològica, Hospital de Bellvitge, Barcelona, Spain
| | - Mireia Martín-Satué
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, Campus de Bellvitge, Universitat de Barcelona, Pavelló de Govern, 4a Planta, Lab. 4145, C/Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| |
Collapse
|
71
|
Antonioli L, Blandizzi C, Pacher P, Haskó G. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 2013; 13:842-57. [PMID: 24226193 DOI: 10.1038/nrc3613] [Citation(s) in RCA: 552] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is a complex disease that is dictated by both cancer cell-intrinsic and cell-extrinsic processes. Adenosine is an ancient extracellular signalling molecule that can regulate almost all aspects of tissue function. As such, several studies have recently highlighted a crucial role for adenosine signalling in regulating the various aspects of cell-intrinsic and cell-extrinsic processes of cancer development. This Review critically discusses the role of adenosine and its receptors in regulating the complex interplay among immune, inflammatory, endothelial and cancer cells during the course of neoplastic disease.
Collapse
Affiliation(s)
- Luca Antonioli
- 1] Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy. [2] Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
72
|
Koszałka P, Pryszlak A, Gołuńska M, Kolasa J, Stasiłojć G, Składanowski AC, Bigda JJ. Inhibition of CD73 stimulates the migration and invasion of B16F10 melanoma cells in vitro, but results in impaired angiogenesis and reduced melanoma growth in vivo. Oncol Rep 2013; 31:819-27. [PMID: 24297662 DOI: 10.3892/or.2013.2883] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/29/2013] [Indexed: 11/05/2022] Open
Abstract
The role of ecto-5'-nucleotidase (CD73), an enzyme providing interstitial adenosine, was investigated in B16F10 melanoma progression. Chemical inhibition of CD73 decreased adherence of cells to extracellular matrix proteins in vitro and led to enhanced migration and invasion. Both processes were reversed by adenosine receptor agonists. In CD73‑deficient mice, tumor growth was decreased in comparison with that of wild-type animals. Additionally, the vasculature of CD73-inhibited tumors was impaired and neoangiogenesis in Matrigel plugs was reduced. It is, therefore, proposed that although CD73 shows anti-invasive and antimigratory function in B16F10 melanoma cells, its proangiogenic action is prevalent in vivo and may contribute to increased tumor growth.
Collapse
Affiliation(s)
- Patrycja Koszałka
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG‑MUG, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Anna Pryszlak
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG‑MUG, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Monika Gołuńska
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG‑MUG, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Justyna Kolasa
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG‑MUG, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG‑MUG, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Andrzej C Składanowski
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG‑MUG, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Jacek J Bigda
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG‑MUG, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| |
Collapse
|
73
|
Adenosine receptors as potential targets in melanoma. Pharmacol Res 2013; 76:34-40. [DOI: 10.1016/j.phrs.2013.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/04/2013] [Accepted: 07/04/2013] [Indexed: 01/24/2023]
|
74
|
Grozio A, Sociali G, Sturla L, Caffa I, Soncini D, Salis A, Raffaelli N, De Flora A, Nencioni A, Bruzzone S. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. J Biol Chem 2013; 288:25938-25949. [PMID: 23880765 DOI: 10.1074/jbc.m113.470435] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
NAD(+) is mainly synthesized in human cells via the "salvage" pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the "salvage" pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. Here we demonstrate that low micromolar concentrations of extracellular NAD(+) or NAD(+) precursors, nicotinamide mononucleotide (NMN) and NR, can reverse the FK866-induced cell death, this representing a plausible explanation for the failure of NAMPT inhibition as an anti-cancer therapy. NMN is a substrate of both ectoenzymes CD38 and CD73, with generation of NAM and NR, respectively. In this study, we investigated the roles of CD38 and CD73 in providing ectocellular NAD(+) precursors for NAD(+) biosynthesis and in modulating cell susceptibility to FK866. By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD(+) biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors.
Collapse
Affiliation(s)
- Alessia Grozio
- From the Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research (CEBR) and
| | - Giovanna Sociali
- From the Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research (CEBR) and
| | - Laura Sturla
- From the Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research (CEBR) and
| | - Irene Caffa
- the Department of Internal Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy and
| | - Debora Soncini
- the Department of Internal Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy and
| | - Annalisa Salis
- From the Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research (CEBR) and
| | - Nadia Raffaelli
- the Department of Agricultural, Food, Environmental Science, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Antonio De Flora
- From the Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research (CEBR) and
| | - Alessio Nencioni
- the Department of Internal Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy and
| | - Santina Bruzzone
- From the Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research (CEBR) and.
| |
Collapse
|
75
|
Cicala C, Ialenti A. Adenosine signaling in airways: toward a promising antiasthmatic approach. Eur J Pharmacol 2013; 714:522-5. [PMID: 23850943 DOI: 10.1016/j.ejphar.2013.06.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/14/2013] [Accepted: 06/21/2013] [Indexed: 12/16/2022]
Abstract
Adenosine participates to asthma physiopathology by signaling through more than just one receptor subtype. Defining the role of each receptor is complicated by evidence that often results obtained on rodents do not coincide with human studies, but what emerges is that an important condition to establish hyperresponsiveness to adenosine in any species of sensitized animals is the exposure to allergen; this feature appears to be very similar to the human situation, since allergic humans regularly undergo exposure to allergen. Furthermore, A₂B in humans, but A₃ receptor in rodents, would mediate, indirectly, the bronchoconstriction in response to adenosine and would play the main role in adenosine-induced airway inflammation and airway hyperreactivity. On the other hand, A₁ receptor over-expressed on asthmatic airways would mediate a direct adenosine bronchoconstrictor effect. Antagonists and agonists to adenosine receptors have been considered as antiasthmatic drugs but often their development has been limited by unwanted effects. Preventing adenosine accumulation in airways should be considered as a novel promising antiasthmatic strategy.
Collapse
Affiliation(s)
- Carla Cicala
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy.
| | | |
Collapse
|
76
|
Multilevel pharmacological manipulation of adenosine-prostaglandin E₂/cAMP nexus in the tumor microenvironment: a 'two hit' therapeutic opportunity. Pharmacol Res 2013; 73:8-19. [PMID: 23619528 DOI: 10.1016/j.phrs.2013.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 04/14/2013] [Indexed: 02/06/2023]
Abstract
Novel trends in cancer treatment research are focused on targeting the tumor microenvironment, thereby developing chemo-immunotherapeutic strategies which not only directly kill tumor cells, but also trigger the anti-tumor immune effector responses. Ectonucleotidases (CD39 and CD73)-generated extracellular adenosine and cyclooxygenase-2 (COX2)-derived prostaglandin E₂ (PGE₂) are amongst the tumor microenvironmental factors that have emerged as attractive targets in this regard. Both comprise a pivotal axis in tumor progression and immune escape via autocrine and paracrine activation of a common intracellular signaling pathway, the cAMP-protein kinase A (PKA) pathway, in cancer and immune cells. In this review, we venture a potential and realistic strategy that this adenosine-PGE₂/cAMP nexus is targetable at different levels, thereby pointing out a 'two hit' chemo-immunotherapeutic proposition: direct killing of tumor cells on one hand, and the rescuing of endogenous anti-tumor immune response on the other. The reviewed experimental, preclinical and clinical data provide the proof of concept that 'two hit' multilevel pharmacological manipulation of adenosine-E₂/cAMP nexus is achievable within the tumor microenvironment.
Collapse
|
77
|
Liu H, Zhang Z, Tabuchi T, Wang S, Wang J. The role of pro-inflammatory cytokines and immune cells in colorectal carcinoma progression. Oncol Lett 2013; 5:1177-1182. [PMID: 23599759 PMCID: PMC3628903 DOI: 10.3892/ol.2013.1176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/07/2013] [Indexed: 01/20/2023] Open
Abstract
Cytokines exhibit a pleiotropic effect in the regulation of the immune cell function, tumor growth and antitumor immune responses. A total of 30 patients with colorectal carcinoma were enrolled on this study and their levels of interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, serum granulocyte colony-stimulating factor (sG-CSF) and serum macrophage colony-stimulating factor (sM-CSF) were measured preoperatively using ELISA. Tumor-infiltrating granulocyte (TIG), tumor-associated macrophage (TAM), G-CSF and M-CSF expression in tumor cells were examined using immunostaining. This study revealed abnormal levels of cytokines in patients, including IL-1β (1/30, 3.3%), IL-6 (16/30 53.3%), IL-81 (15/30, 50%), TNF-α (4/21, 19%), sG-CSF (17/30, 56.7%) and sM-CSF (4/21, 19%). There was a positive linear correlation between IL-6 and sM-CSF (P=0.017, R=0.517). sG-CSF was significantly associated with a deeper tumor invasion (P=0.039) and a more advanced tumor stage (P=0.023). The granulocyte/lymphocyte (G/L) ratio was associated with abnormal levels of sG-CSF. Logistic univariate analysis revealed that TIGs were a risk factor for lymph node metastasis (0.019) and TAMs were a risk factor for depth of invasion (0.029), but this was not confirmed in logistic multivariate analysis. In conclusion, IL-6, IL-8, sM-CSF and sG-CSF may indirectly promote tumor growth, progression and metastasis by changing the leukocyte populations in the blood and the tumor microenvironment.
Collapse
Affiliation(s)
- Huanran Liu
- Department of Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P.R. China
| | | | | | | | | |
Collapse
|
78
|
Heuts DPHM, Weissenborn MJ, Olkhov RV, Shaw AM, Gummadova J, Levy C, Scrutton NS. Crystal structure of a soluble form of human CD73 with ecto-5'-nucleotidase activity. Chembiochem 2012; 13:2384-91. [PMID: 22997138 DOI: 10.1002/cbic.201200426] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Indexed: 01/14/2023]
Abstract
CD73 is a dimeric ecto-5'-nucleotidase that is expressed on the exterior side of the plasma membrane. CD73 has important regulatory functions in the extracellular metabolism of certain nucleoside monophosphates, in particular adenosine monophosphate, and has been linked to a number of pathological conditions such as cancer and myocardial ischaemia. Here, we present the crystal structure of a soluble form of human soluble CD73 (sCD73) at 2.2 Å resolution, a truncated form of CD73 that retains ecto-5'-nucleotidase activity. With this structure we obtained insight into the dimerisation of CD73, active site architecture, and a sense of secondary modifications of the protein. The crystal structure reveals a conserved loop that is directly involved in the dimer-dimer interaction showing that the two subunits of the dimer are not linked by disulfide bridges. Using biophotonic microarray imaging we were able to confirm glycosylation of the enzyme and show that the enzyme is decorated with a variety of oligosaccharide structures. The crystal structure of sCD73 will aid the design of inhibitors or activator molecules for the treatment of several diseases and prove useful in explaining the possible roles of single nucleotide polymorphisms in physiology and disease.
Collapse
Affiliation(s)
- Dominic P H M Heuts
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | | | |
Collapse
|