51
|
Drugs designed to inhibit human p38 mitogen-activated protein kinase activation treat Toxoplasma gondii and Encephalitozoon cuniculi infection. Antimicrob Agents Chemother 2007; 51:4324-8. [PMID: 17923491 DOI: 10.1128/aac.00680-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently showed that the pyridinylimidazoles SB203580 and SB202190, drugs designed to block human p38 mitogen-activated protein kinase (MAPK) activation, also inhibited replication of the medically important intracellular parasite Toxoplasma gondii in cultured human fibroblasts through a direct effect on the parasite. We now show that additional pyridinylimidazole and imidazopyrimidine p38 MAPK inhibitors inhibit intracellular T. gondii replication in vitro and protect mice against fatal T. gondii infection. Mice surviving infection following treatment with p38 MAPK inhibitors were resistant to subsequent T. gondii challenge, demonstrating induction of protective immunity. Thus, drugs originally developed to block human p38 MAPK activation are useful for treating T. gondii infection without inducing significant immunosuppression. MAPK inhibitors combined with either of the approved anti-Toxoplasma drugs sulfadiazine and pyrimethamine resulted in improved survival among mice challenged with a fatal T. gondii inoculum. A MAPK inhibitor also treated mice infected with the Microsporidium parasite Encephalitozoon cuniculi, suggesting that MAPK inhibitors represent a novel class of agents that may have a broad spectrum of antiparasitic activity. Preliminary studies implicate a T. gondii MAPK homologue as the target of drug action, suggesting possibilities for more-selective agents.
Collapse
|
52
|
Manéglier B, Spreux-Varoquaux O, Guillemin GJ, Rogez-Kreuz C, Dormont D, Advenier C, Clayette P. [Serotonin modulates HIV replication in primary culture of human macrophages: involvement of 5-HT(1A) sub-type receptors]. ACTA ACUST UNITED AC 2007; 55:495-503. [PMID: 17913389 DOI: 10.1016/j.patbio.2007.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 07/02/2007] [Indexed: 10/22/2022]
Abstract
The neurotransmitter 5-hydroxytryptamine (5-HT), commonly known as serotonin, is released at peripheral sites from activated platelets. At inflammatory sites, macrophages and lymphocytes could be exposed to 5-HT concentrations up to 100 microM. Moreover, 5-HT could modulate cytokine secretion by monocytes/macrophages and immune functions through the uptake of 5-HT at these inflammatory sites from T cells and dendritic cells. HIV infection is also under the control of inflammatory processes (including T cell proliferation and cytokines secretion). On this basis, we studied explored herein the effects of 5-HT on HIV-1/Ba-L (macrophage-tropic virus) replication in primary cultures of human macrophages. This pharmacological study with isotype-selective receptor agonists and antagonist allowed us to show that the 100 microM 5-HT concentration via 5-HT(1A) subtype receptors could decrease HIV replication. This observation was associated with an increase of MIP-1alpha secretion such as an increase of MIP-1alpha mRNA production and with a decrease of HIV-coreceptor CCR5 cell surface expression. Our results point out for the first time the inhibitory effects of 5-HT on HIV replication in primary culture of human macrophages via activation of 5-HT(1A) subtype receptors.
Collapse
Affiliation(s)
- B Manéglier
- Pharmacologie, Université Versailles Saint-Quentin, UFR Médicale Paris-Ile-de-France-Ouest, Saint-Quentin-en-Yvelines, France.
| | | | | | | | | | | | | |
Collapse
|
53
|
Kang JH, Lee DH, Seo H, Park JS, Nam KH, Shin SY, Park CS, Chung IY. Regulation of functional phenotypes of cord blood derived eosinophils by gamma-secretase inhibitor. Am J Respir Cell Mol Biol 2007; 37:571-7. [PMID: 17600316 DOI: 10.1165/rcmb.2006-0412oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Eosinophils develop from stem cells in the bone marrow under the influence of hematopoietic cytokines, particularly IL-5. Previously, we have demonstrated that blockage of Notch signaling by a gamma-secretase inhibitor (GSI) promotes the differentiation of umbilical cord blood (UCB)-derived eosinophils. These highly major basic protein (MBP)-positive eosinophils cultured in the presence of the inhibitor lack the migratory response to eotaxin, although their CCR3 levels are similar to those of eosinophils cultured without the inhibitor. We investigated the mechanism underlying the differential responses of differentiating eosinophils and their functionalities in response to eosinophil-active cytokines in the presence and absence of GSI. UCB cells cultured for 4 weeks with hematopoietic cytokines in the presence or absence of GSI were monitored for extracellular signal-regulated kinase (ERK) phosphorylation, MBP expression, and functionality. Eosinophil differentiation from UCB cells was accompanied by activation of the ERK1/2 pathway during the 4-week culture period. In particular, strong ERK1/2 phosphorylation was observed in eosinophils during the final stage of culture when GSI was present. Consistent with this finding, ERK inhibition nullified the effect of GSI on eosinophil differentiation. Eosinophils cultured with GSI resembled airway eosinophils rather than peripheral blood eosinophils based on reduced IL-5Ralpha expression, blunted eosinophil cationic protein (ECP) degranulation, and decreased IL-13 and granulocyte macrophage-colony-stimulating factor production. These results suggest that Notch signaling regulates the terminal differentiation and subsequent effector phenotypes of eosinophils, partly through modulation of the ERK pathway. GSI has therapeutic potential for eosinophilic inflammatory diseases, such as asthma.
Collapse
Affiliation(s)
- Jin Hyun Kang
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Nath P, Leung SY, Williams A, Noble A, Chakravarty SDS, Luedtke GR, Medicherla S, Higgins LS, Protter A, Chung KF. Importance of p38 mitogen-activated protein kinase pathway in allergic airway remodelling and bronchial hyperresponsiveness. Eur J Pharmacol 2006; 544:160-7. [PMID: 16843456 DOI: 10.1016/j.ejphar.2006.06.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 06/12/2006] [Accepted: 06/15/2006] [Indexed: 12/30/2022]
Abstract
p38 mitogen-activated protein kinase (MAPK) plays an important role in the activation of inflammatory cells and in the proliferation of airway structural cells. We investigated the role of p38 MAPK by using a selective inhibitor of p38 alpha and beta isoforms, SD282, in a chronic model of 15 ovalbumin exposures in sensitised mice using two doses (30 and 90 mg/kg). Allergen exposure induced bronchial hyperresponsiveness to methacholine as measured by the concentration of methacholine needed to increase pulmonary resistance by 200% (PC200), eosinophilia in bronchoalveolar lavage fluid and increase in airway smooth muscle area and goblet cell hyperplasia. In addition, p38 MAPK activity as measured by phosphorylated p38 expression on Western blots was increased after allergen challenge, which was suppressed by SD282 at both doses. SD282 inhibited bronchial hyperresponsiveness, but had no effect on eosinophils in bronchoalveolar lavage fluid. It also reduced airway smooth muscle and goblet cell hyperplasia, but had no effect on serum immunoglobulin E. p38 MAPK is involved in the pathogenesis of bronchial hyperresponsiveness but not in eosinophilic inflammation or the allergic response; however, remodelling features such as airway smooth muscle or goblet cell hyperplasia are regulated through p38 MAPK. Furthermore, bronchial hyperresponsiveness induced by chronic allergen exposure may be related to the development of airway wall remodelling.
Collapse
Affiliation(s)
- Puneeta Nath
- National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Gorska MM, Cen O, Liang Q, Stafford SJ, Alam R. Differential regulation of interleukin 5-stimulated signaling pathways by dynamin. J Biol Chem 2006; 281:14429-39. [PMID: 16556602 DOI: 10.1074/jbc.m512718200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Through the yeast two-hybrid screen we have identified dynamin-2 as a molecule that interacts with the alpha subunit of the interleukin (IL) 5 receptor. Dynamin-2 is a GTPase that is critical for endocytosis. We have shown that dynamin-2 interacts with the IL-5 receptor-associated tyrosine kinases, Lyn and JAK2, in eosinophils. Tyrosine phosphorylation of dynamin is markedly enhanced upon IL-5 stimulation. The inhibition of tyrosine kinases results in complete abolition of ligand-induced receptor endocytosis. Inhibition of dynamin by a dominant-negative mutant or by small interfering RNA results in enhancement of IL-5-stimulated ERK1/2 signaling and cell proliferation. In contrast, the absence of a functional dynamin does not affect STAT5 or AKT phosphorylation or cell survival. Thus, we have identified specific functions for dynamin in the IL-5 signaling pathway and demonstrated its role in receptor endocytosis and termination of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Magdalena M Gorska
- Division of Allergy and Immunology, Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | | | |
Collapse
|
56
|
Sawatzky DA, Willoughby DA, Colville-Nash PR, Rossi AG. The involvement of the apoptosis-modulating proteins ERK 1/2, Bcl-xL and Bax in the resolution of acute inflammation in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:33-41. [PMID: 16400007 PMCID: PMC1592663 DOI: 10.2353/ajpath.2006.050058] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammatory cell recruitment, activation, and apoptosis are highly regulated processes involving several checkpoints controlling the resolution of inflammation. We investigated the role of the mitogen-activated protein kinase (MAPK) signaling pathway (ie, ERK1/2) and apoptosis-regulating Bcl-2 family members (ie, Bcl-x(L) and Bax) in the resolution of a rat carrageenan-induced pleurisy model. The specific ERK1/2 inhibitor PD98059 enhanced the resolution of inflammation, whereas the MEK1/2 inhibitor U0126 had no effect and the flavonoid apigenin, a nonspecific inhibitor of ERK1/2 and COX-2, augmented inflammation. Specifically, PD98059 significantly decreased the total number of macrophages and neutrophils in the pleural cavity, mainly by increasing the rate of neutrophil apoptosis, as measured by Annexin V labeling and morphological analysis. Conversely, a specific inhibitor of proapoptotic Bax (V5) increased inflammation, indicating that by preventing apoptosis in vivo, resolution of inflammation is delayed. This was associated with a decrease in neutrophil apoptosis and an increase in macrophage and neutrophil numbers perpetuating the inflammatory response. In conclusion, this study shows that ERK1/2, Bax, and Bcl-x(L) play important functional roles in the resolution phase of the acute inflammatory response in vivo by influencing apoptosis. Importantly, these data may provide novel therapeutic targets for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Deborah A Sawatzky
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, Scotland, UK EH16 4TJ.
| | | | | | | |
Collapse
|
57
|
Terakawa M, Tomimori Y, Goto M, Hayashi Y, Oikawa S, Fukuda Y. Eosinophil migration induced by mast cell chymase is mediated by extracellular signal-regulated kinase pathway. Biochem Biophys Res Commun 2005; 332:969-75. [PMID: 15919053 DOI: 10.1016/j.bbrc.2005.04.172] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 04/14/2005] [Indexed: 01/11/2023]
Abstract
Mast cell chymase is known to induce eosinophil migration in vivo and in vitro. In the present study, we investigated possible involvement of mitogen-activated protein (MAP) kinases; extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38, in the chymase-induced eosinophil migration. Human chymase induced a rapid phosphorylation of ERK1/2 and p38 in human eosinophilic leukemia EoL-1 cells, while no phosphorylation was detected in JNK. The chymase-induced phosphorylation of ERK and p38 was inhibited by pertussis toxin. Similar results were obtained in the experiments using mouse chymase and eosinophils. U0126 (the inhibitor for MAP/ERK kinase) suppressed chymase-induced migration of EoL-1 cells and mouse eosinophils. However, SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor) showed little effect on the migration. It is suggested therefore that chymase activates ERK and p38 probably through G-protein-coupled receptor, and that ERK but not p38 cascade may have a crucial role in chymase-induced migration of eosinophils.
Collapse
Affiliation(s)
- Maki Terakawa
- Daiichi Suntory Biomedical Research Limited, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8513, Japan
| | | | | | | | | | | |
Collapse
|
58
|
Pelaia G, Cuda G, Vatrella A, Gallelli L, Caraglia M, Marra M, Abbruzzese A, Caputi M, Maselli R, Costanzo FS, Marsico SA. Mitogen-activated protein kinases and asthma. J Cell Physiol 2005; 202:642-53. [PMID: 15316926 DOI: 10.1002/jcp.20169] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are evolutionary conserved enzymes which play a key role in signal transduction mediated by cytokines, growth factors, neurotransmitters and various types of environmental stresses. In the airways, these extracellular stimuli elicit complex inflammatory and structural changes leading to the typical features of asthma including T cell activation, eosinophil and mast cell infiltration, as well as bronchial hyperresponsiveness and airway remodelling. Because MAPKs represent an important point of convergence for several different signalling pathways, they affect multiple aspects of normal airway function and also significantly contribute to asthma pathophysiology. Therefore, this review focuses on the crucial involvement of MAPKs in asthma pathogenesis, thus also discussing their emerging role as molecular targets for anti-asthma drugs.
Collapse
Affiliation(s)
- Girolamo Pelaia
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Woerly G, Decot V, Loiseau S, Loyens M, Chihara J, Ono N, Capron M. CD28 and secretory immunoglobulin A-dependent activation of eosinophils: inhibition of mediator release by the anti-allergic drug, suplatast tosilate. Clin Exp Allergy 2005; 34:1379-87. [PMID: 15347370 DOI: 10.1111/j.1365-2222.2004.02036.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Eosinophils are major effector cells in allergic diseases. After their recruitment to sites of inflammation, they contribute to the pathophysiology of the disease by releasing granule proteins and cytokines. Suplatast tosilate (IPD-1151T), a new anti-allergic agent, has shown beneficial effect in the treatment of asthma, associated with reduced bronchoalveolar lavage eosinophil infiltration and eosinophilic cationic protein (ECP) release in serum and sputum. OBJECTIVE We investigated whether suplatast tosilate could exert direct effects on human eosinophil activation. METHODS Eosinophils from hypereosinophilic patients or normal donors were purified by Percoll gradient and the magnetic cell separation system. Chemotaxis was studied using the Boyden chamber technique using three chemoattractants, formyl-methionine-leucine-phenylalanine (fMLP), IL-5 and eotaxin. Oxidative metabolism was determined by a luminol-dependent chemiluminescence assay after activation with eotaxin or secretory IgA (sIgA). The release of ECP and eosinophil derived neurotoxin (EDN) was measured by radioimmunoassay and cytokine production was determined by ELISA following activation with sIgA or anti-CD28. RESULTS The chemotactic response to fMLP, IL-5 and eotaxin was significantly inhibited by IPD-1151T. Suplatast tosilate was partially inhibiting the release of reactive oxygen species (ROS) induced by eotaxin and sIgA. Activation by sIgA and CD28 ligation resulted in the release of ECP and EDN, which was inhibited by IPD-1151T. Upon activation by anti-CD28, only IL-13 production was inhibited by IPD-1151T, whereas release of IL-2 and IFN-gamma was not affected. IL-10 release induced by sIgA was also inhibited by IPD-1151T. Additionally, the pro-inflammatory cytokine IL-6, which was secreted following anti-CD28 and sIgA stimulation, was strongly inhibited by IPD-1151T. CONCLUSION Through inhibition of chemotaxis, IPD-1151T might limit the number of eosinophils at the inflammation site. Furthermore, it could reduce the pathological potential of eosinophils by inhibiting the release of ROS and cationic proteins, main inflammatory mediators produced by eosinophils. Moreover, the inhibition of immunoregulatory cytokines released by eosinophils could locally modify the immune response.
Collapse
Affiliation(s)
- G Woerly
- Inserm U547-IFR17, Institut Pasteur de Lille, Lille, France
| | | | | | | | | | | | | |
Collapse
|
60
|
Duan W, Chan JHP, McKay K, Crosby JR, Choo HH, Leung BP, Karras JG, Wong WSF. Inhaled p38alpha mitogen-activated protein kinase antisense oligonucleotide attenuates asthma in mice. Am J Respir Crit Care Med 2004; 171:571-8. [PMID: 15557129 DOI: 10.1164/rccm.200408-1006oc] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) plays a critical role in the activation of inflammatory cells. Therefore, we investigated the antiinflammatory effects of a respirable p38alpha MAPK antisense oligonucleotide (p38alpha-ASO) in a mouse asthma model. A potent and selective p38alpha-ASO was characterized in vitro. Inhalation of aerosolized p38alpha-ASO using an aerosol chamber dosing system produced measurable lung deposition of ASO and significant reduction of ovalbumin (OVA-)-induced increases in total cells, eosinophils, and interleukin 4 (IL-4), IL-5, and IL-13 levels in bronchoalveolar lavage fluid, and dose-dependent inhibition of airway hyperresponsiveness in allergen-challenged mice. Furthermore, inhaled p38alpha-ASO markedly inhibited OVA-induced lung tissue eosinophilia and airway mucus hypersecretion. Quantitative polymerase chain reaction analysis of bronchoalveolar lavage fluid cells and peribronchial lymph node cells showed that p38alpha-ASO significantly reduced p38alpha MAPK mRNA expression. Nose-only aerosol exposure of mice verified the p38alpha-ASO-induced inhibition of OVA-induced pulmonary eosinophilia, mucus hypersecretion, and airway hyperresponsiveness. None of the effects of the p38alpha-ASO were produced by a six-base mismatched control oligonucleotide. These findings demonstrate antisense pharmacodynamic activity in the airways after aerosol delivery and suggest that a p38alpha MAPK ASO approach may have therapeutic potential for asthma and other inflammatory lung diseases.
Collapse
Affiliation(s)
- Wei Duan
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, MD2, 18 Medical Drive, Singapore 117597
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Wong CK, Ip WK, Lam CWK. Biochemical assessment of intracellular signal transduction pathways in eosinophils: implications for pharmacotherapy. Crit Rev Clin Lab Sci 2004; 41:79-113. [PMID: 15077724 DOI: 10.1080/10408360490427624] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Allergic asthma and allergic rhinitis are inflammatory diseases of the airway. Cytokines and chemokines produced by T helper (Th) type 2 cells (GM-CSF, IL-4, IL-5, IL-6, IL-9, IL-10 and IL-13), eotaxin, transforming growth factor-beta, and IL-11 orchestrate most pathophysiological processes of the late-phase allergic reaction, including the recruitment, activation, and delayed apoptosis of eosinophils, as well as eosinophilic degranulation to release eosinophilic cationic protein, major basic protein, and eosinophil-derived neurotoxin. These processes are regulated through an extensive network of interactive intracellular signal transduction pathways that have been intensively investigated recently. Our present review updates the cytokine and chemokine-mediated signal transduction mechanisms including the RAS-RAF-mitogen-activated protein kinases, Janus kinases (signal transducers and activators of transcription), phosphatidylinositol 3-kinase, nuclear factor-kappa B, activator protein-1, GATA, and cyclic AMP-dependent pathways, and describes the roles of different signaling pathways in the regulation of eosinophil differentiation, recruitment, degranulation, and expression of adhesion molecules. We shall also discuss different biochemical methods for the assessment of various intracellular signal transduction molecules, and various antagonists of receptors, modulators, and inhibitors of intracellular signaling molecules, many of which are potential therapeutic agents for treating allergic diseases.
Collapse
Affiliation(s)
- Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | | | | |
Collapse
|
62
|
Eynott PR, Xu L, Bennett BL, Noble A, Leung SY, Nath P, Groneberg DA, Adcock IM, Chung KF. Effect of an inhibitor of Jun N-terminal protein kinase, SP600125, in single allergen challenge in sensitized rats. Immunology 2004; 112:446-53. [PMID: 15196213 PMCID: PMC1782503 DOI: 10.1111/j.1365-2567.2004.01887.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 03/08/2004] [Accepted: 03/31/2004] [Indexed: 01/22/2023] Open
Abstract
Jun N-terminal kinase (JNK) has been implicated in the pathogenesis of inflammatory diseases including asthma. We examined the effect of SP600125 (anthra [1,9-cd] pyrazol-6 (2H)-one), a novel inhibitor of JNK in a model of asthma. Brown-Norway rats were sensitized to ovalbumin and treated with SP600125 intraperitoneally (90 mg/kg in total). SP600125 inhibited allergen-induced, increased activity of phosphorylated c-jun but not of phosphorylated-MAPKAPK2, indicative of activation of p38 MAPK, in the lung. SP600125 inhibited macrophage (P < 0.04), lymphocyte (P < 0.05), eosinophil (P < 0.04) and neutrophil (P < 0.005) numbers in bronchoalveolar lavage. Eosinophil and T-cell accumulation in the airways, mRNA expression for interleukin-1beta, tumour necrosis factor-beta, interleukin-3, interleukin-4 and interleukin-5, serum levels of allergen-specific immunoglobulin E and bronchial hyperresponsiveness were not affected by SP600125. Selective inhibition of JNK reduced inflammatory cell egress into the airway lumen after single allergen exposure. The role of JNK mitogen-activated protein kinase activation may be limited in the pathogenesis of bronchial hyperresponsiveness after single allergen exposure.
Collapse
Affiliation(s)
- Paul R Eynott
- Thoracic Medicine, National Heart and Lung Institute, Imperial College School of Medicine, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Taube C, Nick JA, Siegmund B, Duez C, Takeda K, Rha YH, Park JW, Joetham A, Poch K, Dakhama A, Dinarello CA, Gelfand EW. Inhibition of Early Airway Neutrophilia Does Not Affect Development of Airway Hyperresponsiveness. Am J Respir Cell Mol Biol 2004; 30:837-43. [PMID: 14742296 DOI: 10.1165/rcmb.2003-0395oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The effect of modifying early neutrophil-mediated inflammation on the development of airway hyperresponsiveness (AHR) was investigated using an interleukin (IL)-1 receptor antagonist (IL-1Ra), an anti-IL-18 antibody (anti-IL-18) or a p38 mitogen-activated protein kinase (MAPK) inhibitor (M39). Balb/c mice were sensitized to ovalbumin (OVA) and challenged with a single intranasal dose of OVA. Treatment with the IL-1Ra or anti-IL-18 was initiated 20 min before challenge, whereas M39 was administered 4 h before the challenge. Eight hours after challenge, sensitized mice showed significantly higher numbers of neutrophils in bronchoalveolar lavage (BAL) fluid; treatment with IL-1Ra, anti-IL-18, or M39 significantly decreased the influx of neutrophils. At 48 h, none of the treatments affected eosinophil inflammation in BAL fluid and lung tissue, goblet cell hyperplasia, or cytokine levels (IL-4, IL-5, IL-12, IL-13, interferon-gamma) in BAL fluid. Anti-IL-18 or IL-1Ra had no effect on the development of AHR, whereas M39-treated mice showed a decrease in methacholine responsiveness. These results demonstrate that early neutrophil influx following allergen challenge is mediated by IL-1, IL-18, and p38 MAPK. However, neutralization of IL-1 and IL-18 did not affect the later development of AHR and eosinophilic airway inflammation. The effects of inhibiting p38 MAPK in decreasing AHR indicate activities independent of its prevention of neutrophil accumulation.
Collapse
Affiliation(s)
- Christian Taube
- Division of Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Wiehler S, Cuvelier SL, Chakrabarti S, Patel KD. p38 MAP kinase regulates rapid matrix metalloproteinase-9 release from eosinophils. Biochem Biophys Res Commun 2004; 315:463-70. [PMID: 14766231 DOI: 10.1016/j.bbrc.2004.01.078] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Indexed: 11/18/2022]
Abstract
Eosinophils constitutively produce and store matrix metalloproteinase-9 (MMP-9), a protease implicated in tissue remodeling observed in asthma. In this study, we examined the rapid release of stored MMP-9 from eosinophils following stimulation with either tumor necrosis factor-alpha (TNF-alpha or the bacterial product fMLP. TNF-alpha induced rapid and robust pro-MMP-9 release from eosinophils. MMP-9 could be detected in the cell-free supernatant as early as 15min after stimulation. Rapid MMP-9 release was similarly induced by fMLP. TNF-alpha stimulation activated the mitogen-activated protein (MAP) kinases p38 MAP kinase and extracellular signal-regulated kinase-2 (Erk-2) at times and concentrations similar to that observed for MMP-9 release. Using pharmacological inhibitors, we found that TNF-alpha-stimulated MMP-9 release was mediated by p38 MAP kinase, but not Erk-1/2. Signaling through p38 MAP kinase may represent a universal mechanism for MMP-9 release from eosinophils, as fMLP-induced MMP-9 release was also regulated by p38 MAP kinase.
Collapse
Affiliation(s)
- Shahina Wiehler
- Departments of Physiology and Biophysics, University of Calgary, Calgary, Alta., Canada T2N 4N1
| | | | | | | |
Collapse
|
65
|
Esnault S, Malter JS. Hyaluronic acid or TNF-alpha plus fibronectin triggers granulocyte macrophage-colony-stimulating factor mRNA stabilization in eosinophils yet engages differential intracellular pathways and mRNA binding proteins. THE JOURNAL OF IMMUNOLOGY 2004; 171:6780-7. [PMID: 14662883 DOI: 10.4049/jimmunol.171.12.6780] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Eosinophils (Eos) accumulate in airways and lung parenchyma of active asthmatics. GM-CSF is a potent inhibitor of Eos apoptosis both in vitro and in vivo and is produced by activated fibroblasts, mast cells, T lymphocytes as well as Eos. Cytokine release by Eos is preceded by GM-CSF mRNA stabilization induced by TNF-alpha plus fibronectin. Hyaluronic acid (HA) is a major extracellular matrix proteoglycan, which also accumulates in the lung during asthma exacerbations. In this study we have analyzed the effects of HA on Eos survival and GM-CSF expression. We demonstrate that like TNF-alpha plus fibronectin, HA stabilizes GM-CSF mRNA, increases GM-CSF secretion, and prolongs in vitro Eos survival. GM-CSF mRNA stabilization accounts for most of the observed GM-CSF mRNA accumulation and protein production. Unlike TNF-alpha plus fibronectin, GM-CSF mRNA stabilization induction by HA requires continuous extracellular signal-regulated kinase phosphorylation. Finally, to identify potential protein regulators responsible for GM-CSF mRNA stabilization, immunoprecipitation-RT-PCR studies revealed increased GM-CSF mRNA associated with YB-1, HuR, and heterogeneous nuclear ribonucleoprotein (hnRNP) C after TNF-alpha plus fibronectin but only hnRNP C after HA. Thus, our data suggest that both TNF-alpha plus fibronectin and HA, which are relevant physiological effectors in asthma, contributes to long-term Eos survival in vivo by enhancing GM-CSF production through two different posttranscriptional regulatory pathways involving extracellular signal-regulated kinase phosphorylation and RNA binding proteins YB-1, HuR, and hnRNP C.
Collapse
Affiliation(s)
- Stéphane Esnault
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison, WI 53792, USA
| | | |
Collapse
|
66
|
Newton R, Holden N. Inhibitors of p38 mitogen-activated protein kinase: potential as anti-inflammatory agents in asthma? BioDrugs 2004; 17:113-29. [PMID: 12641490 DOI: 10.2165/00063030-200317020-00004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Asthma is an inflammatory disease of the airways, which in patients with mild to moderate symptoms is adequately controlled by either beta(2)-adrenoceptor agonists or corticosteroids, or a combination of both. Despite this, there are classes of patients that fail to respond to these treatments. In addition, there is a general trend towards increasing morbidity and mortality due to asthma, which suggests that there is a need for new and improved treatments. The p38 mitogen-activated protein kinases (MAPKs) represent a point of convergence for multiple signalling processes that are activated in inflammation and that impact on a diverse range of events that are important in inflammation. Small molecule pyridinyl imidazole inhibitors of p38 MAPK have proved to be highly effective in reducing various parameters of inflammation, in particular cytokine expression. Like corticosteroids, inhibitors of p38 MAPK appear to be able to repress gene expression at multiple levels, for example, by transcriptional, posttranscriptional and translational repression, and this raises the possibility of a similarly broad spectrum of anti-inflammatory activities. Indeed these molecules have proved to be effective in numerous in vitro and in vivo models of inflammation and septicaemia, which suggests that such compounds may be effective as therapeutic agents against inflammatory disorders. Despite these very promising indications of the possible therapeutic use of p38 MAPK inhibitors, a number of events that are p38-dependent are in fact also beneficial to the resolution or modulation of diseases such as asthma. We conclude that the overall effect of p38 MAPK inhibition would be beneficial in inflammatory diseases such as rheumatoid arthritis and asthma. However, these drugs may result in a complex phenotype that will require careful evaluation. Currently, a number of second or third generation inhibitors of p38 MAPK are being tested in phase I and phase II clinical trials.
Collapse
Affiliation(s)
- Robert Newton
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | | |
Collapse
|
67
|
Oliveira SHP, Lukacs NW. The role of chemokines and chemokine receptors in eosinophil activation during inflammatory allergic reactions. Braz J Med Biol Res 2003; 36:1455-63. [PMID: 14576899 DOI: 10.1590/s0100-879x2003001100002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chemokines are important chemotactic cytokines that play a fundamental role in the trafficking of leukocytes to sites of inflammation. They are also potent cell-activating factors, inducing cytokine and histamine release and free radical production, a fact that makes them particularly important in the pathogenesis of allergic inflammation. The action of chemokines is regulated at the level of agonist production and processing as well as at the level of receptor expression and coupling. Therefore, an analysis of the ligands must necessarily consider receptors. Eosinophils are target cells involved in the allergic inflammatory response since they are able to release a wide variety of mediators including CC and CXC chemokines and express their receptors. These mediators could damage the airway epithelial cells and might be important to stimulate other cells inducing an amplification of the allergic response. This review focuses on recently emerging data pertaining to the importance of chemokines and chemokine receptors in promoting eosinophil activation and migration during the allergic inflammatory process. The analysis of the function of eosinophils and their chemokine receptors during allergic inflammation might be a good approach to understanding the determinants of asthma severity and to developing novel therapies.
Collapse
Affiliation(s)
- S H P Oliveira
- Departamento de Ciências Básicas, Faculdade de Odontologia de Araçatuba, Universidade Estadual Paulista, Araçatuba, SP, Brasil.
| | | |
Collapse
|
68
|
Kim IS, Ryang YS, Kim YS, Jang SW, Sung HJ, Lee YH, Kim J, Na DS, Ko J. Leukotactin-1-induced ERK activation is mediated via Gi/Go protein/PLC/PKC delta/Ras cascades in HOS cells. Life Sci 2003; 73:447-59. [PMID: 12759139 DOI: 10.1016/s0024-3205(03)00312-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently cloned leukotactin-1 (Lkn-1) that belongs to CC chemokine family has not been characterized. To understand the intracellular events following Lkn-1 binding to CCR1, we investigated the activities of signaling molecules in response to Lkn-1 in human osteogenic sarcoma cells expressing CCR1. Lkn-1-stimulated cells showed elevated phosphorylation of extracellular signal-related kinases (ERK1/2) with a distinct time course. ERK activation was peaked in 30 min and 12 h showing biphasic activation of ERK. Pertussis toxin, an inhibitor of G(i)/G(o) protein, and phospholipase C (PLC) inhibitor blocked Lkn-1-induced activation of ERK. Protein kinase C delta (PKC delta) specific inhibitor rottlerin inhibited ERK activation in Lkn-1-stimulated cells. The activities of PLC and PKC delta were also enhanced by Lkn-1 stimulation. Dominant negative Ras inhibited activation of ERK. Immediate early response genes such as c-fos and c-myc were induced by Lkn-1 stimulation. Lkn-1 affected the cell cycle progression by cyclin D(3) induction. These results suggest that Lkn-1 activates the ERK pathway by transducing the signal through G(i)/G(o) protein, PLC, PKC delta and Ras, and it may play a role for cell proliferation, differentiation, and regulation of gene expression for other cellular processes.
Collapse
Affiliation(s)
- In Sik Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, 388-1 Poongnap-dong, Songpa-gu, Seoul 138-736, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Triggiani M, Granata F, Balestrieri B, Petraroli A, Scalia G, Del Vecchio L, Marone G. Secretory phospholipases A2 activate selective functions in human eosinophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3279-88. [PMID: 12626587 DOI: 10.4049/jimmunol.170.6.3279] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Secretory phospholipases A(2) (sPLA(2)s) are released in large amounts in the blood of patients with systemic inflammatory diseases and accumulate at sites of chronic inflammation, such as the airways of patients with bronchial asthma. Blood eosinophils or eosinophils recruited in inflammatory areas therefore can be exposed in vivo to high concentrations of sPLA(2). We have examined the effects of two structurally different sPLA(2)s (group IA and group IIA) on several functions of eosinophils isolated from normal donors and patients with hypereosinophilia. Both group IA and IIA sPLA(2) induced a concentration-dependent release of beta-glucuronidase, IL-6, and IL-8. Release of the two cytokines was associated with the accumulation of their specific mRNA. In addition, sPLA(2)s induced the surface expression of CD44 and CD69, two major activation markers of eosinophils. In contrast, none of the sPLA(2)s examined induced the production of IL-5, the de novo synthesis of leukotriene C(4) and platelet-activating factor, or the generation of superoxide anion from human eosinophils. Incubation of eosinophils with the major enzymatic products of the sPLA(2)s (arachidonic acid, lysophosphatidylcholine, or lysophosphatidic acid) did not reproduce any of the enzymes' effects. In addition, inactivation of sPLA(2) enzymatic activity by bromophenacyl bromide did not influence the release of beta-glucuronidase or of cytokines. Stimulation of eosinophils by sPLA(2)s was associated with activation of extracellular signal-regulated kinases 1/2. These results indicate that sPLA(2)s selectively activate certain proinflammatory and immunoregulatory functions of human eosinophils through mechanism(s) independent from enzymatic activity and from the generation of arachidonic acid.
Collapse
Affiliation(s)
- Massimo Triggiani
- Division of Clinical Immunology and Allergy, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
70
|
Apáti A, Jánossy J, Brózik A, Bauer PI, Magócsi M. Calcium induces cell survival and proliferation through the activation of the MAPK pathway in a human hormone-dependent leukemia cell line, TF-1. J Biol Chem 2003; 278:9235-43. [PMID: 12643264 DOI: 10.1074/jbc.m205528200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Survival and proliferation of cells of a human myelo-erythroid CD34+ leukemia cell line (TF-1) depend on the presence of granulocyte-macrophage colony-stimulating factor or interleukin-3. Upon hormone withdrawal these cells stop proliferating and undergo apoptotic process. In this report we demonstrate that a controlled increase in [Ca2+]i induces hormone-independent survival and proliferation of TF-1 cells. We found that moderate elevation of [Ca2+]i by the addition of cyclopiasonic-acid protected TF1 cells from apoptosis. Furthermore, a higher, but transient elevation of [Ca2+]i by ionomycin treatment induced cell proliferation. In both cases caspase-3 activity was reduced, and Bcl-2 was up-regulated. Higher elevation of [Ca2+]i by ionomycin induced MEK-dependent biphasic ERK1/2 activation, sufficient to move the cells from G0/G1 to S/M phases. Meanwhile, activation of ERK1/2, phosphorylation of the Elk-1 transcription factor, and, consequently, a substantial elevation of Egr-1 and c-Fos levels and AP-1 DNA binding were observed. Moderate elevation of [Ca2+]i, on the other hand, caused a delayed monophasic activation of ERK1/2 and Elk-1 that was accompanied with only a small increase of Egr-1 and c-Fos levels and AP-1 DNA binding. The specific MEK-1 kinase inhibitor, PD98059, inhibited all the effects of increasing [Ca2+]i, indicating that the MAPK/ERK pathway activation is essential for TF-1 cell survival and proliferation. Based on these results we suggest that the elevation of the [Ca2+]i may influence the cytokine dependence of hemopoietic progenitors and may contribute to pathological hematopoiesis.
Collapse
Affiliation(s)
- Agota Apáti
- Department of Cell Metabolism, National Medical Centre, Institute of Haematology and Immunology, Diószegi út 64, Budapest H-1113, Hungary
| | | | | | | | | |
Collapse
|
71
|
Choi EN, Choi MK, Park CS, Chung IY. A parallel signal-transduction pathway for eotaxin- and interleukin-5-induced eosinophil shape change. Immunology 2003; 108:245-56. [PMID: 12562334 PMCID: PMC1782875 DOI: 10.1046/j.1365-2567.2003.01565.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-5 (IL-5) and eotaxin are the most important cytokines/chemokines responsible for regulating eosinophil locomotion and are known to play a co-operative role in the selective recruitment of eosinophils to inflamed tissues. Following exposure to chemoattractants, eosinophils undergo a series of events, including reorganization of actin filaments and subsequent rapid shape changes, culminating in chemotaxis. In this study we examined the signalling pathways for eosinophil shape change regulated by eotaxin and IL-5, primarily using a gated autofluorescence/forward-scatter assay. Eotaxin and IL-5 were able to elicit shape change with peaks at 10 and 60 min, respectively, and IL-5 triggered the shape change more efficiently than eotaxin. The pharmacological inhibitors of mitogen-activated protein kinase (MAP kinase) and p38 blocked both eotaxin- and IL-5-induced eosinophil shape change in a dose-dependent manner. In addition, depletion of intracellular Ca2+ and inhibition of protein kinase A (PKA) strongly reduced eosinophil shape change. In contrast, even when used at high concentrations, protein tyrosine kinase (PTK) inhibitors caused only a slight reduction in the ability to change shape. However, treatment with protein kinase C (PKC) inhibitors, such as GF109203X and staurosporine, resulted in a striking inhibition of eosinophil shape change by IL-5, but not eotaxin. Data from the inhibition of activation and chemotaxis of the extracellular signal-regulated kinases (ERK1/2) by the PKC inhibitors were also consistent with findings from the experiments on shape change. Collectively, two eosinophil-selective cytokines/chemokines probably regulate eosinophil shape change via a largely overlapping signalling pathway, with involvement of PKC restricted to the IL-5 signal alone.
Collapse
Affiliation(s)
- Eun Nam Choi
- Department of Biochemistry and Molecular Biology, Hanyang UniversityAnsan, South Korea
| | - Moon Kyung Choi
- Department of Biochemistry and Molecular Biology, Hanyang UniversityAnsan, South Korea
| | - Choon-Sik Park
- Division of Allergy and Respiratory Medicine, Soonchunhyang University HospitalBucheon, South Korea
| | - Il Yup Chung
- Department of Biochemistry and Molecular Biology, Hanyang UniversityAnsan, South Korea
- Department of Internal Medicine, Soonchunhyang University HospitalBucheon, South Korea
| |
Collapse
|
72
|
Esnault S, Malter JS. Extracellular signal-regulated kinase mediates granulocyte-macrophage colony-stimulating factor messenger RNA stabilization in tumor necrosis factor-alpha plus fibronectin-activated peripheral blood eosinophils. Blood 2002; 99:4048-52. [PMID: 12010806 DOI: 10.1182/blood.v99.11.4048] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is critical for promoting the long-term survival of lung- or airway-based eosinophils. Previously, we have shown that fibronectin and tumor necrosis factor alpha induced autocrine production of GM-CSF that markedly enhanced eosinophil survival. Cytokine release was preceded by and dependent on messenger RNA (mRNA) stabilization. Here, we show that mitogen-activated protein kinase (MAPK) activation is responsible for GM-CSF mRNA stabilization in peripheral blood eosinophils (pbeos). Activation of extracellular signal-regulated kinase (ERK) but not p38 correlated with GM-CSF mRNA stability. Although ERK inhibition completely prevented GM-CSF mRNA stabilization, p38 inhibition had a partial effect. To establish which MAPK was crucial, we transduced pbeos with dominant-active TatMEK1(E) or TatMKK3b(E) proteins that selectively phosphorylate ERK or p38, respectively. These studies showed that ERK but not p38 was sufficient for GM-CSF mRNA stabilization. These data are in contradistinction to the c-Jun NH(2)-terminal kinase-mediated regulation of interleukin 2 and 3 mRNAs and suggest unique regulatory features for GM-CSF mRNA in eosinophils.
Collapse
Affiliation(s)
- Stéphane Esnault
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison 53792, USA
| | | |
Collapse
|
73
|
Stafford S, Lowell C, Sur S, Alam R. Lyn tyrosine kinase is important for IL-5-stimulated eosinophil differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1978-83. [PMID: 11823534 DOI: 10.4049/jimmunol.168.4.1978] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-5 plays a pivotal role in growth and differentiation of eosinophils. The signal transduction mechanism of IL-5Ralpha is largely unknown. We have demonstrated that IL-5 induces tyrosine phosphorylation of IL-5Ralpha in eosinophils. To identify IL-5Ralpha-associated tyrosine kinases, we have examined the expression of Src family tyrosine kinases in eosinophils. Among the Src family members, Lyn, Hck, Fgr, and Lck are present in eosinophils, and, among these four kinases, only Lyn is associated with the IL-5Ralpha under basal conditions. We also confirm the association of Janus kinase (Jak)2 with IL-5Ralpha. Lyn kinase phosphorylates both IL-5Ralpha and betacR in vitro. The importance of Lyn kinase for eosinophil differentiation was studied using antisense oligodeoxynucleotides. Lyn antisense oligodeoxynucleotide blocks eosinophil differentiation from stem cells in a dose-dependent manner. The Jak2 inhibitor tyrphostin AG490 also inhibits eosinophil differentiation. The importance of Lyn for eosinophil differentiation was further studied using Lyn knockout mice. The IL-5-stimulated eosinophil differentiation from bone marrow cells is significantly inhibited in Lyn(-/-) mice as compared with that in control mice. We conclude that both Lyn and Jak2 play an essential role in IL-5Ralpha signaling, leading to eosinophil differentiation. The effect of Lyn appears to be relatively specific for the eosinophilic lineage.
Collapse
Affiliation(s)
- Susan Stafford
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555. Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | | | | | | |
Collapse
|
74
|
Abstract
Recently, known eosinophil functions have been extended considerably: previously the cells were thought to have an exclusive role in the release of cytotoxic mediators; now they are known to have roles in antigen presentation and immunoregulation through the release of cytokines. Although questionable, animal models indicate a rather beneficial role of eosinophils in parasitic infections but a detrimental one, together with other cells, in allergy.
Collapse
Affiliation(s)
- D Dombrowicz
- Institut National de la Santé et de la Recherche Médicale (INSERM) U547, Institut Pasteur de Lille 1, Rue du Professeur Calmette BP245, 59019 Cedex, Lille, France
| | | |
Collapse
|
75
|
Yuo A. Differentiation, apoptosis, and function of human immature and mature myeloid cells: intracellular signaling mechanism. Int J Hematol 2001; 73:438-452. [PMID: 11503957 DOI: 10.1007/bf02994005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Human myeloid cells include hematopoietic cells at various stages of differentiation, from immature myeloid cells to mature phagocytes. Normal immature myeloid cells undergo differentiation concomitantly with proliferation in response to hematopoietic growth factors, and terminally differentiated cells, ie, mature phagocytes, exert their effector functions and then die a natural death via apoptosis. However, leukemic myeloid cells are induced to differentiate with growth suppression by several inducers, such as retinoic acid. This review describes differentiation, apoptosis, and functionality of human myeloid cells. mainly focusing on the intracellular signaling mechanism. The signal transduction system for these biological events of the life cycle of myeloid cells has recently been studied, and several characteristics have been elucidated. First, the signaling pathway for myeloid differentiation is mainly focused in the mitogen-activated protein kinases, such as extracellular signal-regulated kinase and p38, and transcriptional factors such as the signal transducers and activators of transcription PU.1 and CCAAT enhancer binding protein. Second, the signaling mechanism for myeloid cell apoptosis is fundamentally identical to that found in other cells. Caspases, caspase-activated DNase, and mitochondrial molecules such as apoptosis-inducing factor have been reported to be important, and mitogen-activated protein kinases such as p38 appear to be less important. Finally, p38 and phosphatidylinositol 3-kinase play critical roles in the signaling cascade for functional activation of mature phagocytes. The reasons why the same signaling molecules play distinct roles according to the differentiation stage and biological event await future clarification.
Collapse
Affiliation(s)
- Akira Yuo
- Department of Hematology, Research Institute, International Medical Center of Japan, Tokyo, Japan.
| |
Collapse
|
76
|
Affiliation(s)
- L Koenderman
- Department of Pulmonary Diseases, University Medical Center, Utrecht, The Netherlands
| | | |
Collapse
|
77
|
|