51
|
Kindler V. Postnatal stem cell survival: does the niche, a rare harbor where to resist the ebb tide of differentiation, also provide lineage-specific instructions? J Leukoc Biol 2006; 78:836-44. [PMID: 16199730 DOI: 10.1189/jlb.0505272] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Postnatal stem cells regulate the homeostasis of the majority of our tissues. They continuously generate new progenitors and mature, functional cells to replace old cells, which cannot assume the tissue function anymore and are eliminated. Blood, skin, gut mucosa, muscle, cartilage, nerves, cornea, retina, liver, and many other structures are regulated by stem cells. As a result of their ability to produce large numbers of functionally mature cells, postnatal stem cells represent a promising tool for regenerative therapy. Indeed, unmanipulated stem cells or their progeny amplified in vitro are already used in some clinical applications to restore the function of injured or genetically deficient tissues. However, despite our cumulating understanding concerning postnatal stem cells, many aspects of their functionality remain unclear. For instance, in most tissues, we cannot reliably define the phenotype of the postnatal stem cells sustaining its survival. We do not know to which extent the environment surrounding the stem cell-the niche-which is a key actor insuring stem cell self-maintenance, is also implicated in the maintenance of stem cell lineage specificity. Moreover, we have to clarify whether postnatal stem cells are capable of undertaking "transdifferentiation", that is, the conversion of one cell type into another under physiological conditions. Answering these questions should help us to draw a more accurate picture of postnatal stem cell biology and should lead to the design of safe, effective therapies.
Collapse
Affiliation(s)
- Vincent Kindler
- Geneva University Hospital, 25, Micheli-du-Crest, 1211 Geneva 14, Switzerland.
| |
Collapse
|
52
|
Panoskaltsis N, Mantalaris A, Wu JHD. Engineering a mimicry of bone marrow tissue ex vivo. J Biosci Bioeng 2005; 100:28-35. [PMID: 16233847 DOI: 10.1263/jbb.100.28] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 05/30/2005] [Indexed: 11/17/2022]
Abstract
Hematopoietic stem cells reside in specific niches in the bone marrow and give rise to either more stem cells or maturing hematopoietic progeny depending on the signals provided in the bone marrow microenvironment. This microenvironment is comprised of cellular components as well as soluble constituents called cytokines. The use of cytokines alone for the ex vivo expansion of stem cells in flat, two-dimensional culture flasks, dishes or bags is inadequate and, given the three-dimensionality of the in vivo bone marrow microenvironment, inappropriate. Three-dimensional culture conditions can therefore provide an ex vivo mimicry of bone marrow, recapitulate the desired niche, and provide a suitable environment for stem cell expansion and differentiation. Choice of scaffold, manipulation and reproducibility of the scaffold properties and directed structuring of the niche, by choosing pore size and porosity may inform the resident stem cells of their fate in a directed fashion. The use of bioreactors for cultivation of hematopoietic cells will allow for culture control, optimization, standardization, scale-up, and a "hands-off" operation making the end-product dependable, predictable and free of contaminants, and therefore suitable for human use and therapeutic applications.
Collapse
Affiliation(s)
- Nicki Panoskaltsis
- Department of Haematology, Imperial College London, Northwick Park & St. Mark's Campus, Harrow HA1 3UJ, UK
| | | | | |
Collapse
|
53
|
Larrivée B, Pollet I, Karsan A. Activation of vascular endothelial growth factor receptor-2 in bone marrow leads to accumulation of myeloid cells: role of granulocyte-macrophage colony-stimulating factor. THE JOURNAL OF IMMUNOLOGY 2005; 175:3015-24. [PMID: 16116189 DOI: 10.4049/jimmunol.175.5.3015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a secreted cytokine that plays a major role in the formation and maintenance of the hemopoietic and vascular compartments. VEGF and its receptors, VEGFR-1 and VEGFR-2, have been found to be expressed on subsets of normal and malignant hemopoietic cells, but the role of the individual receptors in hemopoiesis requires further study. Using a VEGFR-2 fusion protein that can be dimerized with a synthetic drug, we were able to specifically examine the effects of VEGFR-2 signaling in hemopoietic cells in vivo. Mice transplanted with bone marrow transduced with this inducible VEGFR-2 fusion protein demonstrated expansion of myeloid cells (Gr-1+, CD11b+). Levels of myeloid progenitors were also increased following VEGFR-2 activation, through autocrine and paracrine mechanisms, as measured by clonogenic progenitor assays. VEGFR-2 activation induced expression of GM-CSF and increased serum levels in vivo. Abrogation of GM-CSF activity, either with neutralizing Abs or by using GM-CSF-null hemopoietic cells, inhibited VEGFR-2-mediated myeloid progenitor activity. Our findings indicate that VEGF signaling through VEGFR-2 promotes myelopoiesis through GM-CSF-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Bruno Larrivée
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
54
|
Abstract
The canonical Wnt cascade has emerged as a critical regulator of stem cells. In many tissues, activation of Wnt signalling has also been associated with cancer. This has raised the possibility that the tightly regulated self-renewal mediated by Wnt signalling in stem and progenitor cells is subverted in cancer cells to allow malignant proliferation. Insights gained from understanding how the Wnt pathway is integrally involved in both stem cell and cancer cell maintenance and growth in the intestinal, epidermal and haematopoietic systems may serve as a paradigm for understanding the dual nature of self-renewal signals.
Collapse
Affiliation(s)
- Tannishtha Reya
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
55
|
Chiba H, Kobune M, Kato J, Kawano Y, Ito Y, Nakamura K, Asakura S, Hamada H, Niitsu Y. Wnt3 modulates the characteristics and cobblestone area-supporting activity of human stromal cells. Exp Hematol 2005; 32:1194-203. [PMID: 15588944 DOI: 10.1016/j.exphem.2004.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 08/06/2004] [Accepted: 08/09/2004] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Our objective was to investigate the expression and significance of Wnt proteins in adult human hematopoietic-supporting stromal cells. METHODS Degenerate reverse transcription-polymerase chain reaction was performed to screen telomerized human stromal cells (hTERT-stromal cells) and multipotent mesenchymal cells (hTERT-MSCs) for expression of Wnt genes. We studied the actions of Wnt proteins by overexpressing them in stromal cells and MSCs by retrovirus-mediated gene transfer. RESULTS The hTERT-stromal and primary stromal cells expressed Wnt5A, while hTERT-MSCs and primary MSCs expressed Wnt3 and Wnt5A. Gene transfer of Wnt5A slightly reduced the growth rate of hTERT-stromal cells, but did not affect their morphology. In contrast, gene transfer of Wnt3 into both hTERT-stromal cells and hTERT-MSCs enhanced Wnt-betacatenin signaling, and caused remarkable morphological changes and growth retardation. Upon 2-week co-culture, expansion of clonogenic cells on Wnt5A-stromal cells was superior to that on control stromal cells. However, expansion of CD34+ cells on Wnt3-stromal cells did not differ from that on control stromal cells. Moreover, there was a drastic reduction in the formation of cobblestone area (CA) underneath Wnt3-stromal cells compared with that underneath control stromal cells. CONCLUSION These results suggest that Wnt3 plays an important role in regulating characteristics and CA support activity of stromal cells.
Collapse
Affiliation(s)
- Hiroki Chiba
- Forth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Tsuneto M, Tominaga A, Yamazaki H, Yoshino M, Orkin SH, Hayashi SI. Enforced Expression of PU.1 Rescues Osteoclastogenesis from Embryonic Stem Cells Lacking Tal-1. Stem Cells 2005; 23:134-43. [PMID: 15625130 DOI: 10.1634/stemcells.2004-0154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transcription factor T-cell acute lymphocytic leukemia 1 (Tal-1) is essential for the specification of hematopoietic development. Mice lacking Tal1 fail to generate any hematopoietic precursors. Using our co-culture system with stromal cells, we demonstrate that enforced expression of the transcription factor PU.1 under tetracycline control in Tal1-null embryonic stem (ES) cells rescues the development of osteoclasts and macrophage-like phagocytes. It was low efficiency compared with wild-type ES cells; other hematopoietic lineage cells of granulocytes, B cells, mast cells, megakaryocytes, and erythroid cells were not generated. Osteoclasts developed in this culture were multinucleated and competent for bone resorption. Their development depended on macrophage colony-stimulating factor and receptor activator of nuclear factor kappaB ligand. The majority of cells with the potential to differentiate into osteoclasts expressed fetal liver kinase 1 (Flk-1) and could be isolated using anti-Flk-1 antibody. These results suggest that the expression of PU.1 is a critical event for osteoclastogenesis and that Tal-1 may lie upstream of PU.1 in a regulatory hierarchy during osteoclastogenesis.
Collapse
Affiliation(s)
- Motokazu Tsuneto
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Machi, Yonago, Tottori, 683-8503, Japan.
| | | | | | | | | | | |
Collapse
|
57
|
Serinsöz E, Neusch M, Büsche G, Wasielewski R, Kreipe H, Bock O. Aberrant expression of beta-catenin discriminates acute myeloid leukaemia from acute lymphoblastic leukaemia. Br J Haematol 2004; 126:313-9. [PMID: 15257703 DOI: 10.1111/j.1365-2141.2004.05049.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of beta-catenin in epithelial neoplasms has been widely studied whereas current knowledge regarding beta-catenin gene and protein expression in bone marrow cells derived from normal haematopoiesis and clonal haematological disorders is lacking. beta-Catenin gene expression was quantitatively investigated in bone marrow cells derived from clonal haematological disorders [acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL), Philadelphia chromosome-positive chronic myeloid leukaemia (Ph+ CML], Ph- myeloproliferative disorders, n = 96) compared with non-neoplastic haematopoiesis (n = 33) by real-time reverse transcription polymerase chain reaction. Cellular localization of beta-catenin protein was detected by immunocytochemistry. beta-Catenin gene expression was significantly increased in AML compared with ALL cases (P < 0.0001), Ph+ CML (P < 0.0001) and non-neoplastic haematopoiesis (P = 0.019). Immunocytochemistry revealed that, in non-neoplastic haematopoiesis, the granulopoietic lineage as well as megakaryocytes showed membranous and cytoplasmic staining to various degrees along with unlabelled nuclei. Besides haematopoiesis, beta-catenin prominently marked bone marrow vascularity and diverse stroma cells. beta-Catenin gene was inversely expressed in AML and ALL with a lack of protein expression in neoplastic cells in ALL. In contrast, the other haematological disorders under study, except for Ph+ CML, did not show significant alterations of overall beta-catenin gene expression compared with normal bone marrow. These data suggest different regulatory mechanisms in the expression and function of beta-catenin in haematopoietic cells.
Collapse
Affiliation(s)
- Ebru Serinsöz
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
58
|
de Boer J, Siddappa R, Gaspar C, van Apeldoorn A, Fodde R, van Blitterswijk C. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 2004; 34:818-26. [PMID: 15121013 DOI: 10.1016/j.bone.2004.01.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 12/24/2003] [Accepted: 01/22/2004] [Indexed: 11/29/2022]
Abstract
Human mesenchymal stem cells (hMSCs) from the bone marrow represent a potential source of pluripotent cells for autologous bone tissue engineering. We previously discovered that over activation of the Wnt signal transduction pathway by either lithium or Wnt3A stimulates hMSC proliferation while retaining pluripotency. Release of Wnt3A or lithium from porous calcium phosphate scaffolds, which we use for bone tissue engineering, could provide a mitogenic stimulus to implanted hMSCs. To define the proper release profile, we first assessed the effect of Wnt over activation on osteogenic differentiation of hMSCs. Here, we report that both lithium and Wnt3A strongly inhibit dexamethasone-induced expression of the osteogenic marker alkaline phosphatase (ALP). Moreover, lithium partly inhibited mineralization of hMSCs whereas Wnt3A completely blocked it. Time course analysis during osteogenic differentiation revealed that 4 days of Wnt3A exposure before the onset of mineralization is sufficient to block mineralization completely. Gene expression profiling in Wnt3A and lithium-exposed hMSCs showed that many osteogenic and chondrogenic markers, normally expressed in proliferating hMSCs, are downregulated upon Wnt stimulation. We conclude that Wnt signaling inhibits dexamethasone-induced osteogenesis in hMSCs. In future studies, we will try to limit release of lithium or Wnt3A from calcium phosphate scaffolds to the proliferative phase of osteogenesis.
Collapse
Affiliation(s)
- Jan de Boer
- Institute for Biomedical Technology, University of Twente, Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
59
|
Hayashi SI, Yamada T, Tsuneto M, Yamane T, Takahashi M, Shultz LD, Yamazaki H. Distinct osteoclast precursors in the bone marrow and extramedullary organs characterized by responsiveness to Toll-like receptor ligands and TNF-alpha. THE JOURNAL OF IMMUNOLOGY 2004; 171:5130-9. [PMID: 14607912 DOI: 10.4049/jimmunol.171.10.5130] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteoclasts are derived from hemopoietic stem cells and play critical roles in bone resorption and remodeling. Multinucleated osteoclasts are attached tightly to bone matrix, whereas precursor cells with the potential to differentiate into osteoclasts in culture are widely distributed. In this study, we assessed the characteristics of osteoclast precursors in bone marrow (BM) and in extramedullary organs as indicated by their responsiveness to ligands for Toll-like receptors (TLRs) and to TNF-alpha. Development of osteoclasts from precursor cells in the BM was inhibited by CpG oligonucleotides, a ligand for TLR9, but not by LPS, a ligand for TLR4. BM osteoclasts were induced by TNF-alpha as well as receptor activator of NF-kappaB ligand in the presence of M-CSF. Splenic osteoclast precursors, even in osteoclast-deficient osteopetrotic mice, differentiated into mature osteoclasts following exposure to TNF-alpha or receptor activator of NF-kappaB ligand. However, splenic osteoclastogenesis was inhibited by both LPS and CpG. Osteoclastogenesis from peritoneal precursors was inhibited by not only these TLR ligands but also TNF-alpha. The effects of peptidoglycan, a ligand for TLR2, were similar to those of LPS. BM cells precultured with M-CSF were characterized with intermediate characteristics between those of splenic and peritoneal cavity precursors. Taken together, these findings demonstrate that osteoclast precursors are not identical in the tissues examined. To address the question of why mature osteoclasts occur only in association with bone, we may characterize not only the microenvironment for osteoclastogenesis, but also the osteoclast precursor itself in intramedullary and extramedullary tissues.
Collapse
MESH Headings
- Animals
- Ascitic Fluid/cytology
- Ascitic Fluid/immunology
- Ascitic Fluid/metabolism
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/metabolism
- Carrier Proteins/pharmacology
- Cell Differentiation/immunology
- Cell Line
- Cells, Cultured
- Clone Cells
- Glycoproteins/metabolism
- Growth Inhibitors/pharmacology
- Immune Tolerance/immunology
- Injections, Intravenous
- Ligands
- Lipopolysaccharides/pharmacology
- Macrophage Colony-Stimulating Factor/metabolism
- Macrophage Colony-Stimulating Factor/pharmacology
- Macrophages/cytology
- Macrophages/immunology
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/pharmacology
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/metabolism
- Osteoclasts/cytology
- Osteoclasts/immunology
- Osteoclasts/metabolism
- Osteopetrosis/genetics
- Osteopetrosis/pathology
- Osteoprotegerin
- RANK Ligand
- Receptor Activator of Nuclear Factor-kappa B
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Tumor Necrosis Factor
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Stem Cells/cytology
- Stem Cells/immunology
- Stem Cells/metabolism
- Stromal Cells/cytology
- Stromal Cells/immunology
- Toll-Like Receptor 2
- Toll-Like Receptor 4
- Toll-Like Receptors
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Shin-Ichi Hayashi
- Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan.
| | | | | | | | | | | | | |
Collapse
|
60
|
Coletta PL, Müller AM, Jones EA, Mühl B, Holwell S, Clarke D, Meade JL, Cook GP, Hawcroft G, Ponchel F, Lam WK, MacLennan KA, Hull MA, Bonifer C, Markham AF. Lymphodepletion in the ApcMin/+ mouse model of intestinal tumorigenesis. Blood 2004; 103:1050-8. [PMID: 14525778 DOI: 10.1182/blood-2003-03-0707] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractGerm line mutations in the Adenomatous polyposis coli tumor suppressor gene cause a hereditary form of intestinal tumorigenesis in both mice and man. Here we show that in ApcMin/+ mice, which carry a heterozygous germ line mutation at codon 850 of Apc, there is progressive loss of immature and mature thymocytes from approximately 80 days of age with complete regression of the thymus by 120 days. In addition, ApcMin/+ mice show parallel depletion of splenic natural killer (NK) cells, immature B cells, and B progenitor cells in bone marrow due to complete loss of interleukin 7 (IL-7)-dependent B-cell progenitors. Using bone marrow transplantation experiments into wild-type recipients, we have shown that the capacity of transplanted ApcMin/+ bone marrow cells for T- and B-cell development appears normal. In contrast, although the ApcMin/+ bone marrow microenvironment supported short-term reconstitution with wild-type bone marrow, ApcMin/+ animals that received transplants subsequently underwent lymphodepletion. Fibroblast colony-forming unit (CFU-F) colony assays revealed a significant reduction in colony-forming mesenchymal progenitor cells in the bone marrow of ApcMin/+ mice compared with wild-type animals prior to the onset of lymphodepletion. This suggests that an altered bone marrow microenvironment may account for the selective lymphocyte depletion observed in this model of familial adenomatous polyposis. (Blood. 2004;103:1050-1058)
Collapse
Affiliation(s)
- P Louise Coletta
- Molecular Medicine Unit, Clinical Sciences Building, St James's University Hospital, Leeds LS9 7TF, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Shaughnessy JD, Barlogie B. Interpreting the molecular biology and clinical behavior of multiple myeloma in the context of global gene expression profiling. Immunol Rev 2003; 194:140-63. [PMID: 12846813 DOI: 10.1034/j.1600-065x.2003.00054.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Multiple myeloma (MM) is a rare but uniformly fatal malignancy of antibody-secreting plasma cells (PCs). Although several key molecular events in disease initiation or progression have been confirmed (e.g. FGFR3/MMSET activation) or implicated (e.g. chromosome 13 deletion), the mechanisms of MM development remain enigmatic. Importantly, although generally being indistinguishable morphologically, MM exhibits a tremendous degree of variability in clinical course, with some patients surviving only months and others many years. However, current laboratory parameters can account for no more than 20% of this outcome variability. Furthermore, the means by which current drugs impart their anti-MM effect are also mostly unknown. In addition, the mechanisms by which MM cells contribute to serious comorbidities, such as osteopenia and/or focal lytic lesions of bone, are also poorly understood. Finally, very little knowledge exists concerning the molecular events leading to benign hyperplasia and/or overt malignancy of PCs. Given that abnormal gene expression lies at the heart of most, if not all, cancers, high-throughput global gene expression profiling has become a powerful tool for investigating molecular biology and clinical behavior of diseases. Here, we discuss recent progress made in addressing many of the above issues through the molecular dissection of the transcriptome of normal PCs and MM.
Collapse
Affiliation(s)
- John D Shaughnessy
- Lambert Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
62
|
Gregory CA, Singh H, Perry AS, Prockop DJ. The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem 2003; 278:28067-78. [PMID: 12740383 DOI: 10.1074/jbc.m300373200] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adult human mesenchymal stem cells from bone marrow stroma (hMSCs) differentiate into numerous mesenchymal tissue lineages and are attractive candidates for cell and gene therapy. When early passage hMSCs are plated or replated at low density, the cultures display a lag phase of 3-5 days, a phase of rapid exponential growth, and then enter a stationary phase without the cultures reaching confluence. We found that as the cultures leave the lag phase, they secrete high levels of dickkopf-1 (Dkk-1), an inhibitor of the canonical Wnt signaling pathway. The addition of recombinant Dkk-1 toward the end of the lag period increased proliferation and decreased the cellular concentration of beta-catenin. The addition of antibodies to Dkk-1 in the early log phase decreased proliferation. Also, expression of Dkk-1 in hMSCs decreased during cell cycle arrest induced by serum starvation. The results indicated that high levels of Dkk-1 allow the cells to reenter the cell cycle by inhibiting the canonical Wnt/beta-catenin signaling pathway. Since antibodies to Dkk-1 also increased the lag phase of an osteosarcoma line that expressed the gene, Dkk-1 may have a similar role in some other cell systems.
Collapse
Affiliation(s)
- Carl A Gregory
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
63
|
Masinde GL, Wergedal J, Davidson H, Mohan S, Li R, Li X, Baylink DJ. Quantitative trait loci for periosteal circumference (PC): identification of single loci and epistatic effects in F2 MRL/SJL mice. Bone 2003; 32:554-60. [PMID: 12753872 DOI: 10.1016/s8756-3282(03)00063-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To test the hypothesis that periosteal circumference (PC), which is associated with bone size through cross-sectional moment of inertia (CMI), has heritable components, we performed a linkage analysis using 633 MRL/SJL F(2) mice that have 14% difference in mean PC. PC was determined in femurs by use of peripheral quantitative computerized tomography (pQCT). The genome-wide scan identified nine QTL for PC adjusted by body weight on chromosomes 1 (2 QTL), 2 (2 QTL), 8, 11, 15, 17, and X, which accounted for 38.6% of phenotype variance. QTL on chromosomes 1 (D1Mit33), 8 (D8Mit125), 15 (D15Mit 62), 17 (D17Mit176), and X (DXMit208) were unique for PC adjusted by body weight and femur length, while the remaining PC QTL were shared with body weight but not femur length. Four epistatic interactions were identified which accounted for 37.6% of phenotype variance. There was also evidence of pleiotropic effects on chromosome 11 among four size phenotypes (PC, body length, body weight, bone mineral density, and muscle size), which may represent a common genetic mechanism that may regulate bone size and body size.
Collapse
Affiliation(s)
- G L Masinde
- Molecular Genetics Division, Musculoskeletal Disease Center, J.L. Pettis VA Medical Center and Loma Linda University, Loma Linda, CA 92357, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Considerable progress has been made over the past few years in determining the key molecular players that regulate the commitment and development of early B-lineage cells in mouse bone marrow (transcription factors, cytokines and their receptors). However, confusion remains as to the precise stages, surface phenotypes and lineage restrictions that are observed early in B-cell development. Increasingly powerful flow cytometry analysis of genetically altered animals (knockouts and transgenics) combined with sensitive functional assays may provide an answer, a "scorecard" for the cell stages.
Collapse
Affiliation(s)
- Richard R Hardy
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
65
|
Yamada T, Yamazaki H, Yamane T, Yoshino M, Okuyama H, Tsuneto M, Kurino T, Hayashi SI, Sakano S. Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood 2003; 101:2227-34. [PMID: 12411305 DOI: 10.1182/blood-2002-06-1740] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Osteoclasts are derived from hematopoietic precursor cells belonging to the monocyte/macrophage lineage. Osteoclast development has been reported to be regulated by several molecules such as macrophage colony-stimulating factor (M-CSF), receptor activator of nuclear factor (NF)-kappaB ligand (RANKL), and a decoy receptor of RANKL, osteoprotegerin (OPG). Recently, it was demonstrated that the Notch signaling pathway regulates myeloid differentiation and antagonizes cell fate determination, however, the effect of Notch signaling on the osteoclast lineage has not been reported. In this study, we examined the effect of signaling via Notch receptors on the differentiation into osteoclasts by using cells from the bone marrow, spleen, and peritoneal cavity, and a cloned macrophagelike cell line. Osteoclastogenesis was inhibited by an immobilized Notch ligand, Delta-1. The dish-adherent bone marrow cells precultured with M-CSF expressed both Mac-1 and M-CSF receptors, c-Fms; osteoclastogenesis of these cells was efficiently inhibited. The immobilized Delta-1 also down-regulated the surface c-Fms expression, while the c-Fms gene expression was not changed. Genes for Notch receptors and Notch ligands are expressed in not only hematopoietic cells but also stromal cells that support osteoclast development. Constitutively active Notch1-transfected stromal cells showed increased expression of RANKL and OPG genes, and strong inhibition of M-CSF gene expression, resulting in reduction of their ability to support osteoclast development. Taken together, these findings indicate that Notch signaling affects both osteoclast precursors and stromal cells and thereby negatively regulates osteoclastogenesis.
Collapse
Affiliation(s)
- Takayuki Yamada
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Wnts comprise a family of secreted proteins that interact with receptors consisting of a Frizzled (Fz) family member alone or complexed with LDL receptor-related proteins (LRP5/6). Wnt signaling plays a crucial role in both development and differentiation, and activation of a 'canonical' Wnt pathway resulting in beta-catenin stabilization is associated with several types of human cancers. To date, little is known about potential Wnt signaling in mature lymphocytes or lymphoid neoplasia. Herein, we have analysed Wnt signaling in mature B cells (lymphomas) and plasma cells (multiple myeloma). Both Fz and LRP5/6 mRNAs were expressed in myeloma lines, but LRP5/6 were not observed in lymphomas. In myelomas, a canonical Wnt signaling pathway was activated following treatment with Wnt-3a as assessed by accumulation of beta-catenin, but beta-catenin levels actually decreased in lymphoma cells. Wnt-3a treatment further led to striking morphological changes in myeloma cells accompanied by rearrangement of the actin cytoskeleton. Morphological changes were associated with a second Wnt pathway dependent on Rho activation. These results suggest that Wnt responsiveness is a stage-specific phenomenon in B-cell development and that the morphological changes associated with Wnt signaling may play a role in the motility and metastatic potential of myeloma cells.
Collapse
Affiliation(s)
- Ya-Wei Qiang
- Laboratory of Cellular and Molecular Biology, national Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|