51
|
He K, Jia S, Lou Y, Liu P, Xu LX. Cryo-thermal therapy induces macrophage polarization for durable anti-tumor immunity. Cell Death Dis 2019; 10:216. [PMID: 30833570 PMCID: PMC6399266 DOI: 10.1038/s41419-019-1459-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
Many cancer therapies are being developed for the induction of durable anti-tumor immunity, especially for malignant tumors. The activation of antigen-presenting cells (APCs), including macrophages and dendritic cells (DCs), can bridge innate and adaptive immune responses against tumors. However, APCs have an immunosuppressive phenotype and reversing it for effective tumor-specific antigen presenting is critical in developing new cancer treatment strategies. We previously developed a novel cryo-thermal therapy to treat malignant melanoma in a mouse model; long-term survival and durable anti-tumor immunity were achieved, but the mechanism involved was unclear. This study revealed cryo-thermal therapy-induced macrophage polarization to the M1 phenotype and modulated the phenotypic and functional maturation of DCs with high expression of co-stimulatory molecules, increased pro-inflammatory cytokine production, and downregulated immuno-inhibitory molecule expression. Further, we observed CD4+ T-cell differentiation into Th1 and cytotoxic T-cell sub-lineages and generation of cytotoxic CD8+ T cells, in which M1 macrophage polarization had a direct, important role. The results indicated that cryo-thermal-induced macrophage polarization to the M1 phenotype was essential to mediate durable anti-tumor immunity, leading to long-term survival. Thus, cryo-thermal therapy is a promising strategy to reshape host immunosuppression, trigger persistent memory immunity for tumor eradication, and inhibit metastasis in the long term.
Collapse
Affiliation(s)
- Kun He
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Shengguo Jia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Lou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Lisa X Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
52
|
Luna JI, Grossenbacher SK, Sturgill IR, Ames E, Judge SJ, Bouzid LA, Darrow MA, Murphy WJ, Canter RJ. Bortezomib Augments Natural Killer Cell Targeting of Stem-Like Tumor Cells. Cancers (Basel) 2019; 11:cancers11010085. [PMID: 30646520 PMCID: PMC6356940 DOI: 10.3390/cancers11010085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells harboring stem-like/cancer stem cell (CSC) properties have been identified and isolated from numerous hematological and solid malignancies. These stem-like tumor cells can persist following conventional cytoreductive therapies, such as chemotherapy and radiotherapy, thereby repopulating the tumor and seeding relapse and/or metastasis. We have previously shown that natural killer (NK) cells preferentially target stem-like tumor cells via non- major histocompatibility complex (MHC) restricted mechanisms. Here, we demonstrated that the proteasome inhibitor, bortezomib, augments NK cell targeting of stem cell-like tumor cells against multiple solid human tumor-derived cancer lines and primary tissue samples. Mechanistically, this was mediated by the upregulation of cell surface NK ligands MHC class I chain-related protein A and B (MICA and MICB) on aldehyde dehydrogenases (ALDH)-positive CSCs. The increased expression of MICA and MICB on CSC targets thereby enhanced NK cell mediated killing in vitro and ex vivo from both human primary tumor and patient-derived xenograft samples. In vivo, the combination of bortezomib and allogeneic NK cell adoptive transfer in immunodeficient mice led to increased elimination of CSCs as well as tumor growth delay of orthotopic glioblastoma tumors. Taken together, our data support the combination bortezomib and NK transfer as a strategy for both CSC targeting and potentially improved outcomes in clinical cancer patients.
Collapse
Affiliation(s)
- Jesus I Luna
- Department of Dermatology, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | - Steven K Grossenbacher
- Department of Dermatology, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | - Ian R Sturgill
- Department of Dermatology, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | - Erik Ames
- Department of Dermatology, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | - Sean J Judge
- Department of Surgery, Division of Surgical Oncology, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | - Lyes A Bouzid
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA 95817, USA.
| | - Morgan A Darrow
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | - William J Murphy
- Department of Dermatology, University of California Davis Medical Center, Sacramento, CA 95817, USA.
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | - Robert J Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| |
Collapse
|
53
|
Tu Y, Pan M, Song S, Hua J, Liu R, Li L. CD3 +CD56 + natural killer T cell infiltration is increased in cervical cancer and negatively correlated with tumour progression. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1669489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Yunxia Tu
- Medical College, Nanchang University, Nanchang, PR China
- Department of Oncology, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, PR China
| | - Mei Pan
- Department of Oncology, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, PR China
| | - Shuhong Song
- Department of Obstetrics and Gynecology, Jishui People's Hospital, Ji'an, PR China
| | - Jinren Hua
- Department of Oncology, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, PR China
| | - Rongfang Liu
- Department of Oncology, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, PR China
| | - Longyu Li
- Medical College, Nanchang University, Nanchang, PR China
- Department of Oncology, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, PR China
| |
Collapse
|
54
|
Lin A, Zhang X, Zhang RL, Zhang JG, Zhou WJ, Yan WH. Clinical Significance of Potential Unidentified HLA-G Isoforms Without α1 Domain but Containing Intron 4 in Colorectal Cancer Patients. Front Oncol 2018; 8:361. [PMID: 30234020 PMCID: PMC6131604 DOI: 10.3389/fonc.2018.00361] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
The ectopic HLA-G expression in malignancies has been extensively explored and clinical significance of the molecule was widely acknowledged. Besides previously well-documented seven isoforms (HLA-G1~-G7), other novel isoforms of HLA-G have been reported but their clinical relavenace remians evaluated. In this study, lesion HLA-G expression in 379 case-matched serial section primary colorectal cancers (CRC) were evaluated with mAb 4H84 (recognizing an epitope in HLA-G α1 domain), and mAb 5A6G7 (recognizing an epitope encoded by intron 4), respectively. Data showed that HLA-G positive staining with mAbs 4H84 and 5A6G7 was 70.7 and 60.4%, respectively. When percentage of HLA-G expression detected with mAb 4H84 subtracted that with mAb 5A6G7, the difference (ΔHLA-G) with negative (ΔHLA-Gneg), comparable (ΔHLA-Gcom) and positive (ΔHLA-Gpos) were observed in 64 (16.9%), 159 (42.0%), and 156 (41.2%) cases, respectively. Noteworthy, unexpected immunostaining was observed in 44 (11.6%) lesions that no staining was detected with mAb 4H84 but positive with mAb 5A6G7 (4H84neg5A6G7pos). This staining pattern was unpredictable because all seven known HLA-G isoforms containing the α 1 domain could be recognized by the mAb 4H84. Moreover, patients with ΔHLA-Gneg had obviously better survival than those with ΔHLA-Gcom and ΔHLA-Gpos (p = 0.017), and ΔHLA-G could be an independent prognostic factor for CRC patients (p = 0.008). Our findings provides the first report that potential unidentified HLA-G isoforms is of distinct clinical significance in CRC patients.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Xia Zhang
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Rui-Li Zhang
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Jian-Gang Zhang
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Wen-Jun Zhou
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
55
|
Zhang R, Liang Y, Wei S. M2 macrophages are closely associated with accelerated clavicle fracture healing in patients with traumatic brain injury: a retrospective cohort study. J Orthop Surg Res 2018; 13:213. [PMID: 30157885 PMCID: PMC6114273 DOI: 10.1186/s13018-018-0926-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/22/2018] [Indexed: 01/29/2023] Open
Abstract
Background Mounting evidence indicate patients with traumatic brain injury (TBI) have an accelerated fracture healing. The healing process of bone fractures is greatly dependent on infiltrated macrophages. The macrophages are categorized into M1 or M2 phenotypes with different functions. This study is aimed to address the potential role of subtypes of macrophages in the process of fracture healing in patients with TBI. Methods Twenty-five cases of clavicle fracture alone (CF group) and 22 cases of clavicle fracture concomitant with TBI (CFT group) were retrospectively analyzed in this study. Callus tissues were harvested during operations. The expressions of COX-2, CD206, and CD68 were measured with immunohistochemistry. Results The percentages of M2 macrophages in total macrophages increased after bone fracture in both groups, while the percentages of M1-type macrophages are decreased. Interestingly, the increased percentages of M2 macrophages are significantly higher in CFT group than in CF group. Compared to CF group, the fracture callus volume was much larger (21.9 vs 8.5 cm3) and the fracture healing time was much shorter (82.2 vs 127.0 days) in CFT group. The percentage of M2 macrophages was negatively correlated with fracture healing time in patients (r = − 0.575, p < 0.01). Conclusions The findings suggest that the percentages of M2 macrophages in callus tissues increased dramatically during the repairing stage in both CF and CFT group. Percentages of M2 macrophages are associated with accelerated fracture healing in patients with TBI. M2 macrophage polarization during the stage of bone regeneration may play a vital role in promoting bone fracture healing.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Orthopedics, Liuzhou General Hospital, 8 Wenchang Rd, Liuzhou, 545006, Guangxi, China. .,Guangxi University of Technology, Liuzhou, 545006, Guangxi, China.
| | - Yi Liang
- Department of Orthopedics, Liuzhou General Hospital, 8 Wenchang Rd, Liuzhou, 545006, Guangxi, China
| | - Shuxiang Wei
- Department of Orthopedics, Liuzhou General Hospital, 8 Wenchang Rd, Liuzhou, 545006, Guangxi, China
| |
Collapse
|