51
|
Chauhan AK, Moore TL, Bi Y, Chen C. FcγRIIIa-Syk Co-signal Modulates CD4+ T-cell Response and Up-regulates Toll-like Receptor (TLR) Expression. J Biol Chem 2015; 291:1368-86. [PMID: 26582197 DOI: 10.1074/jbc.m115.684795] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
CD4(+) T-cells in systemic lupus erythematosus (SLE) patients show altered T-cell receptor signaling, which utilizes Fc-receptor γ-chain FcRγ-Syk. A role for FcγRIIIa activation from immune complex (IC) ligation and sublytic terminal complement complex (C5b-9) in CD4(+) T-cell responses is not investigated. In this study, we show that the ICs present in SLE patients by ligating to FcγRIIIa on CD4(+) T-cells phosphorylate Syk and provide a co-stimulatory signal to CD4(+) T-cells in the absence of CD28 signal. This led to the development of pathogenic IL-17A(+) and IFN-γ(high) CD4(+) T-cells in vitro. Cytokines IL-1β, IL-6, TGF-β1, and IL-23 were the only requirement for the development of both populations. SLE patients CD4(+) T-cells that expressed CD25, CD69, and CD98 bound to ICs showed pSyk and produced IFN-γ and IL-17A. This FcγRIIIa-mediated co-signal differentially up-regulated the expression of IFN pathway genes compared with CD28 co-signal. FcγRIIIa-pSyk up-regulated several toll-like receptor genes as well as the HMGB1 and MyD88 gene transcripts. ICs co-localized with these toll-like receptor pathway proteins. These results suggest a role for the FcγRIIIa-pSyk signal in modulating adaptive immune responses.
Collapse
Affiliation(s)
- Anil K Chauhan
- From the Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Terry L Moore
- From the Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Ye Bi
- From the Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Chen Chen
- From the Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
52
|
Wigren M, Nilsson J, Kaplan MJ. Pathogenic immunity in systemic lupus erythematosus and atherosclerosis: common mechanisms and possible targets for intervention. J Intern Med 2015; 278:494-506. [PMID: 25720452 PMCID: PMC4550575 DOI: 10.1111/joim.12357] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder that primarily affects young women and is characterized by inflammation in several organs including kidneys, skin, joints, blood and nervous system. Abnormal immune cellular and humoral responses play important roles in the development of the disease process. Impaired clearance of apoptotic material is a key factor contributing to the activation of self-reactive immune cells. The incidence of atherosclerotic cardiovascular disease (CVD) is increased up to 50-fold in patients with SLE compared to age- and gender-matched controls, and this can only partly be explained by traditional risk factors for CVD. Currently, there is no effective treatment to prevent CVD complications in SLE. Traditional preventive CVD therapies have not been found to significantly lower the incidence of CVD in SLE; therefore, there is a need for novel treatment strategies and increased understanding of the mechanisms involved in the pathogenesis of CVD complications in SLE. The pathogenic immune responses in SLE and development of atherosclerotic plaques share some characteristics, such as impaired efferocytosis and skewed T-cell activation, suggesting the possibility of identifying novel targets for intervention. As novel immune-based therapies for CVD are being developed, it is possible that some of these may be effective for the prevention of CVD and for immunomodulation in SLE. However, further understanding of the mechanisms leading to an increased prevalence of cardiovascular events in SLE is critical for the development of such therapies.
Collapse
Affiliation(s)
- M Wigren
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - J Nilsson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - M J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
53
|
Tselios K, Koumaras C, Gladman DD, Urowitz MB. Dyslipidemia in systemic lupus erythematosus: just another comorbidity? Semin Arthritis Rheum 2015; 45:604-10. [PMID: 26711309 DOI: 10.1016/j.semarthrit.2015.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/13/2015] [Accepted: 10/23/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Among traditional atherosclerotic risk factors, dyslipidemia is believed to decisively affect the long-term prognosis of lupus patients, not only with regard to cardiovascular events but also by influencing other manifestations, such as lupus nephritis. The aim of this study was to review the epidemiology, pathogenesis, evidence for its impact on atherosclerosis manifestations and management of dyslipidemia in lupus patients. METHODS English-restricted MEDLINE database search (Medical Subject Headings: lupus or systemic lupus erythematosus and dyslipidemia or hyperlipidemia). RESULTS The prevalence of dyslipidemia in systemic lupus erythematosus (SLE) ranges from 36% at diagnosis to 60% or even higher after 3 years, depending on definition. Multiple pathogenetic mechanisms are implicated, including antibodies against lipoprotein lipase and cytokines affecting the balance between pro- and anti-atherogenic lipoproteins. Dyslipidemia has a clear impact on clinical cardiovascular disease and surrogate markers for subclinical atherosclerosis. Moreover, it negatively affects end-organ damage (kidneys and brain). Treatment with statins yielded contradictory results as per minimizing cardiovascular risk. CONCLUSIONS Dyslipidemia is a significant comorbidity of lupus patients with multiple negative effects in the long term. Its treatment represents a modifiable risk factor; prompt and adequate treatment can minimize unnecessary burden in lupus patients, thus reducing hospitalizations and their overall morbidity and mortality.
Collapse
Affiliation(s)
- Konstantinos Tselios
- Centre for Prognosis Studies in Rheumatic Diseases, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Charalambos Koumaras
- 1st Department of Internal Medicine, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - Dafna D Gladman
- Centre for Prognosis Studies in Rheumatic Diseases, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Murray B Urowitz
- Centre for Prognosis Studies in Rheumatic Diseases, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
54
|
Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism. Curr Allergy Asthma Rep 2015; 15:48. [PMID: 26149587 DOI: 10.1007/s11882-015-0548-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science.
Collapse
|
55
|
Yu HH, Chen PC, Yang YH, Wang LC, Lee JH, Lin YT, Chiang BL. Statin reduces mortality and morbidity in systemic lupus erythematosus patients with hyperlipidemia: A nationwide population-based cohort study. Atherosclerosis 2015; 243:11-8. [PMID: 26342937 DOI: 10.1016/j.atherosclerosis.2015.08.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/10/2015] [Accepted: 08/22/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The anti-inflammatory and cardiovascular protective effects of statin for patients with systemic lupus erythematosus (SLE) are not clear. We tested the hypothesis that statin use is associated with reduced mortality and morbidity in SLE patients with hyperlipidemia. METHODS We included 4095 patients with SLE and hyperlipidemia from the entire population using the Taiwan National Health Insurance Research Database between 1997 and 2008. A total of 935 matching sets (1:2) of patients who had never used lipid-lowering medications and statin users were included in the nested matched cohort. Cox proportional hazards regression was used to calculate the hazard ratios (HR) and 95% confidence intervals (CI) for the association between statin and all-cause mortality, coronary artery disease (CAD), cerebrovascular disease (CVD) and end-stage renal disease (ESRD), conditional for matching sets in the matched cohort. RESULTS The multivariate adjusted hazard ratios (HR) for statin users, as compared with patients had never used lipid-lowering medications, were 0.67 (95% CI, 0.54 to 0.83) for death from any cause. High-dose statins (>365 cumulative defined daily dose) significantly reduced risk of all-cause mortality (HR 0.44, 95% CI 0.32 to 0.60); CAD (HR 0.20, 95% CI 0.13 to 0.31); CVD (HR 0.14, 95% CI 0.08 to 0.25); and ESRD (HR 0.22, 95% CI, 0.16 to 0.29), with similar results in the nested matched study. CONCLUSION Statin therapy in SLE patients with hyperlipidemia may reduce the risk of mortality, cardiovascular disease and ESRD. The effect of statins needs to be demonstrated in large prospective studies with long-term follow-up.
Collapse
Affiliation(s)
- Hsin-Hui Yu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Chieh Wang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jyh-Hong Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Tsan Lin
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
56
|
Manipulating membrane lipid profiles to restore T-cell function in autoimmunity. Biochem Soc Trans 2015; 43:745-51. [PMID: 26551723 DOI: 10.1042/bst20150111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 01/08/2023]
Abstract
Plasma membrane lipid rafts are heterogeneous cholesterol and glycosphingolipid (GSL)-enriched microdomains, within which the tight packing of cholesterol with the saturated-acyl chains of GSLs creates a region of liquid-order relative to the surrounding disordered membrane. Thus lipid rafts govern the lateral mobility and interaction of membrane proteins and regulate a plethora of signal transduction events, including T-cell antigen receptor (TCR) signalling. The pathways regulating homoeostasis of membrane cholesterol and GSLs are tightly controlled and alteration of these metabolic processes coincides with immune cell dysfunction as is evident in atherosclerosis, cancer and autoimmunity. Indeed, membrane lipid composition is emerging as an important factor influencing the ability of cells to respond appropriately to microenvironmental stimuli. Consequently, there is increasing interest in targeting membrane lipids or their metabolic control as a novel therapeutic approach to modulate immune cell behaviour and our recent work demonstrates that this is a promising strategy in T-cells from patients with the autoimmune disease systemic lupus erythematosus (SLE).
Collapse
|
57
|
Moulton VR, Tsokos GC. T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J Clin Invest 2015; 125:2220-7. [PMID: 25961450 DOI: 10.1172/jci78087] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype systemic autoimmune disease that results from a break in immune tolerance to self-antigens, leading to multi-organ destruction. Autoantibody deposition and inflammatory cell infiltration in target organs such as kidneys and brain lead to complications of this disease. Dysregulation of cellular and humoral immune response elements, along with organ-defined molecular aberrations, form the basis of SLE pathogenesis. Aberrant T lymphocyte activation due to signaling abnormalities, linked to defective gene transcription and altered cytokine production, are important contributors to SLE pathophysiology. A better understanding of signaling and gene regulation defects in SLE T cells will lead to the identification of specific novel molecular targets and predictive biomarkers for therapy.
Collapse
|
58
|
Montecucco F, Favari E, Norata GD, Ronda N, Nofer JR, Vuilleumier N. Impact of systemic inflammation and autoimmune diseases on apoA-I and HDL plasma levels and functions. Handb Exp Pharmacol 2015; 224:455-82. [PMID: 25522998 DOI: 10.1007/978-3-319-09665-0_14] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cholesterol of high-density lipoproteins (HDLs) and its major proteic component, apoA-I, have been widely investigated as potential predictors of acute cardiovascular (CV) events. In particular, HDL cholesterol levels were shown to be inversely and independently associated with the risk of acute CV diseases in different patient populations, including autoimmune and chronic inflammatory disorders. Some relevant and direct anti-inflammatory activities of HDL have been also recently identified targeting both immune and vascular cell subsets. These studies recently highlighted the improvement of HDL function (instead of circulating levels) as a promising treatment strategy to reduce inflammation and associated CV risk in several diseases, such as systemic lupus erythematosus and rheumatoid arthritis. In these diseases, anti-inflammatory treatments targeting HDL function might improve both disease activity and CV risk. In this narrative review, we will focus on the pathophysiological relevance of HDL and apoA-I levels/functions in different acute and chronic inflammatory pathophysiological conditions.
Collapse
Affiliation(s)
- Fabrizio Montecucco
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1211, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
59
|
Barrera-Vargas A, Gómez-Martín D, Alcocer-Varela J. T cell receptor-associated protein tyrosine kinases: the dynamics of tolerance regulation by phosphorylation and its role in systemic lupus erythematosus. Hum Immunol 2014; 75:945-52. [PMID: 25173412 DOI: 10.1016/j.humimm.2014.08.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/10/2014] [Accepted: 08/21/2014] [Indexed: 01/27/2023]
Abstract
There are different abnormalities that lead to the autoreactive phenotype in T cells from systemic lupus erythematosus (SLE) patients. Proximal signaling, involving the T-cell receptor (TCR) and its associated protein tyrosine kinases (PTKs), is significantly affected in SLE. This ultimately leads to aberrant responses, which include enhanced tyrosine phosphorylation and calcium release, as well as decreased IL-2 secretion. Lck, ZAP70 and Syk, which are PTKs with a major role in proximal signaling, all present abnormal functioning that contributes to an altered T cell response in these patients. A number of other molecules, especially regulatory proteins, are also involved. This review will focus on the PTKs that participate in proximal signaling, with specific emphasis on their relevance in maintaining peripheral tolerance, their abnormalities in SLE and how these contribute to an altered T cell response.
Collapse
Affiliation(s)
- Ana Barrera-Vargas
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| | - Jorge Alcocer-Varela
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| |
Collapse
|
60
|
Abstract
During infections or acute conditions high-density lipoproteins cholesterol (HDL-C) levels decrease very rapidly and HDL particles undergo profound changes in their composition and function. These changes are associated with poor prognosis following endotoxemia or sepsis and data from genetically modified animal models support a protective role for HDL. The same is true for some parasitic infections, where the key player appears to be a specific and minor component of HDL, namely apoL-1. The ability of HDL to influence cholesterol availability in lipid rafts in immune cells results in the modulation of toll-like receptors, MHC-II complex, as well as B- and T-cell receptors, while specific molecules shuttled by HDL such as sphingosine-1-phosphate (S1P) contribute to immune cells trafficking. Animal models with defects associated with HDL metabolism and/or influencing cell cholesterol efflux present features related to immune disorders. All these functions point to HDL as a platform integrating innate and adaptive immunity. The aim of this review is to provide an overview of the connection between HDL and immunity in atherosclerosis and beyond.
Collapse
Affiliation(s)
- Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy IRCCS Multimedica, Milan, Italy
| | - Angela Pirillo
- IRCCS Multimedica, Milan, Italy Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy The Blizard Institute, Centre for Diabetes, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, UK
| |
Collapse
|
61
|
Fatemi A, Moosavi M, Sayedbonakdar Z, Farajzadegan Z, Kazemi M, Smiley A. Atorvastatin effect on systemic lupus erythematosus disease activity: a double-blind randomized clinical trial. Clin Rheumatol 2014; 33:1273-8. [PMID: 24820145 DOI: 10.1007/s10067-014-2654-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/24/2014] [Accepted: 04/26/2014] [Indexed: 01/17/2023]
Abstract
We aimed to evaluate the therapeutic effects of atorvastatin on systemic lupus erythematosus disease activity index (SLEDAI). Ninety patients with SLE were consented and randomized to receive either atorvastatin, 20 mg/day, or placebo for 3 months. The primary outcome was change in SLEDAI. Lipids, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) were assessed as secondary end points. Analysis was done by "intention to treat" (ITT) as the primary analysis and "treatment completed analysis" (TCA) as the supplementary analysis. Demographic features, baseline characteristics, and distribution of medications were not significantly different between the two groups. Mean SLEDAI score at baseline in both groups was 3 ± 0.5. By TCA and ITT, mean SLEDAI scores decreased to 1.7 ± 0.4 and 2.7 ± 0.5, respectively, in the atorvastatin group and 3 ± 0.4 and 3 ± 0.5, respectively, in the control group. The difference between the two groups after intervention was significant by TCA (P < 0.05) and nonsignificant by ITT analysis (P = 0.1). The effect of atorvastatin therapy on lupus activity was inconclusive.
Collapse
Affiliation(s)
- Alimohammad Fatemi
- Department of Rheumatology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, 8174675731, Iran,
| | | | | | | | | | | |
Collapse
|
62
|
Shao WH, Cohen PL. The role of tyrosine kinases in systemic lupus erythematosus and their potential as therapeutic targets. Expert Rev Clin Immunol 2014; 10:573-82. [PMID: 24678775 DOI: 10.1586/1744666x.2014.893827] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The autoimmune disease systemic lupus erythematosus is characterized by loss of tolerance to nuclear antigens. Breakdown of tolerance is associated with alterations in T-cell and B-cell receptor signal transduction, including increased protein phosphorylation that may underlie pathogenesis and explain the characteristic hyperactivity of T and B cells and other immune cells in active disease. Tyrosine kinases play a central role in signaling processes in cells known to be important in the pathogenesis of autoimmune diseases. Considerable progress has been made in understanding the function of tyrosine kinases in immune cell signaling pathways. In this review, we will summarize the function of tyrosine kinases and their novel inhibitors from studies made in animal lupus models and systemic lupus erythematosus patients.
Collapse
Affiliation(s)
- Wen-Hai Shao
- Department of Medicine and Temple Autoimmunity Center, Section of Rheumatology, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
63
|
McDonald G, Deepak S, Miguel L, Hall CJ, Isenberg DA, Magee AI, Butters T, Jury EC. Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients. J Clin Invest 2014; 124:712-24. [PMID: 24463447 DOI: 10.1172/jci69571] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 10/24/2013] [Indexed: 11/17/2022] Open
Abstract
Patients with the autoimmune rheumatic disease systemic lupus erythematosus (SLE) have multiple defects in lymphocyte signaling and function that contribute to disease pathogenesis. Such defects could be attributed to alterations in metabolic processes, including abnormal control of lipid biosynthesis pathways. Here, we reveal that CD4+ T cells from SLE patients displayed an altered profile of lipid raft-associated glycosphingolipids (GSLs) compared with that of healthy controls. In particular, lactosylceramide, globotriaosylceramide (Gb3), and monosialotetrahexosylganglioside (GM1) levels were markedly increased. Elevated GSLs in SLE patients were associated with increased expression of liver X receptor β (LXRβ), a nuclear receptor that controls cellular lipid metabolism and trafficking and influences acquired immune responses. Stimulation of CD4+ T cells isolated from healthy donors with synthetic and endogenous LXR agonists promoted GSL expression, which was blocked by an LXR antagonist. Increased GSL expression in CD4+ T cells was associated with intracellular accumulation and accelerated trafficking of GSL, reminiscent of cells from patients with glycolipid storage diseases. Inhibition of GSL biosynthesis in vitro with a clinically approved inhibitor (N-butyldeoxynojirimycin) normalized GSL metabolism, corrected CD4+ T cell signaling and functional defects, and decreased anti-dsDNA antibody production by autologous B cells in SLE patients. Our data demonstrate that lipid metabolism defects contribute to SLE pathogenesis and suggest that targeting GSL biosynthesis restores T cell function in SLE.
Collapse
|
64
|
Kidani Y, Bensinger SJ. Lipids rule: resetting lipid metabolism restores T cell function in systemic lupus erythematosus. J Clin Invest 2014; 124:482-5. [PMID: 24463443 DOI: 10.1172/jci74141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a devastating autoimmune disease characterized by chronic inflammation and systemic destruction of host organs or tissue. A key feature of SLE is T cell dysfunction characterized by hyperresponsive antigen receptor signaling. In this issue of the JCI, McDonald and colleagues provide evidence that homeostasis of a subset of lipids, the glycosphingolipids (GSLs), is severely perturbed in the membranes of T cells from SLE patients. Furthermore, normalization of GSLs restored TCR signaling and ameliorated T cell dysfunction. These data suggest that targeting host metabolism may be an effective means of reinforcing self-tolerance and attenuating autoimmunity.
Collapse
|
65
|
Abstract
Tyrosine phosphorylation is one of the key covalent modifications that occur in multicellular organisms. Since its discovery more than 30 years ago, tyrosine phosphorylation has come to be understood as a fundamentally important mechanism of signal transduction and regulation in all eukaryotic cells. The tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase) plays a crucial role in the T-cell response by transducing early activation signals triggered by TCR (T-cell receptor) engagement. These signals result in the phosphorylation of immunoreceptor tyrosine-based activation motifs present within the cytosolic tails of the TCR-associated CD3 subunits that, once phosphorylated, serve as scaffolds for the assembly of a large supramolecular signalling complex responsible for T-cell activation. The existence of membrane nano- or micro-domains or rafts as specialized platforms for protein transport and cell signalling has been proposed. The present review discusses the signals that target Lck to membrane rafts and the importance of these specialized membranes in the transport of Lck to the plasma membrane, the regulation of Lck activity and the phosphorylation of the TCR.
Collapse
|
66
|
Statin Modulation of Human T-Cell Proliferation, IL-1β and IL-17 Production, and IFN-γ T Cell Expression: Synergy with Conventional Immunosuppressive Agents. Int J Inflam 2013; 2013:434586. [PMID: 24159421 PMCID: PMC3789401 DOI: 10.1155/2013/434586] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/09/2013] [Indexed: 12/13/2022] Open
Abstract
HMG-CoA reductase inhibitors (statins) have been demonstrated to be immunomodulatory for human immune-mediated disease and in experimental models. The aim of this study was to compare statin-mediated immunosuppressive effects on human T-cell responses in vitro with those of conventional immunosuppressives (dexamethasone, cyclosporin A (CsA), mycophenolate, and rapamycin). Statins (atorvastatin, lovastatin, and simvastatin) were investigated for their modulatory effects on human PBMC viability, cytokine profiles, and T-cell proliferation. At concentrations that inhibited anti-CD3/28-stimulated T-cell proliferation (P < 0.01), simvastatin significantly decreased intracellular CD4(+) T-cell expression of IFN-γ (P < 0.01) to levels similar to those induced by conventional immunosuppressives. Atorvastatin and lovastatin also decreased IFN-γ expression, although to a lesser degree (P < 0.05). All three statins reduced levels of IL-17 production (P < 0.01). However, in response to anti-CD3/28 stimulation, simvastatin significantly upregulated IL-1β production (P < 0.05). The profile of cytokines produced in response to anti-CD3/28 stimulation was similar when both atorvastatin and dexamethasone were added as compared with dexamethasone alone, suggesting that atorvastatin can synergise with dexamethasone with respect to immunomodulation of cytokines. This data supports the hypothesis of selective statin-mediated immunomodulatory effects on human immune cells.
Collapse
|
67
|
Liu CC, Kao AH, Manzi S, Ahearn JM. Biomarkers in systemic lupus erythematosus: challenges and prospects for the future. Ther Adv Musculoskelet Dis 2013; 5:210-33. [PMID: 23904865 DOI: 10.1177/1759720x13485503] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The search for lupus biomarkers to diagnose, monitor, stratify, and predict individual response to therapy is currently more intense than ever before. This effort is essential for several reasons. First, epidemic overdiagnosis and underdiagnosis of lupus, even by certified rheumatologists, leads to errors in therapy with concomitant side effects which may be more serious than the disease itself. Second, identification of lupus flares remains as much an art as it is a science. Third, the capacity to stratify patients so as to predict those who will develop specific patterns of organ involvement is not currently possible but would potentially lead to preventive therapeutic strategies. Fourth, only one new drug for the treatment of lupus has been approved by the US Food and Drug Administration in over 50 years. A major obstacle in this pipeline is the dearth of biomarkers available to prove a patient has responded to an experimental therapeutic intervention. This review will summarize the challenges faced in the discovery and validation of lupus biomarkers, the most promising lupus biomarkers identified to date, and the promise of future directions.
Collapse
Affiliation(s)
- Chau-Ching Liu
- Allegheny Singer Research Institute,Temple University School of Medicine,320 East North Avenue Pittsburgh, PA 15212, USA
| | | | | | | |
Collapse
|
68
|
A deficient translocation of CD3ζ, ZAP-70 and Grb2 to lipid raft, as a hallmark of defective adaptive immune response during chronic hepatitis B infection. Cell Immunol 2013; 284:9-19. [PMID: 23916875 DOI: 10.1016/j.cellimm.2013.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 05/24/2013] [Accepted: 05/30/2013] [Indexed: 01/28/2023]
Abstract
Hepatitis B is considered to be a worldwide public health problem. An immunosuppressor microenvironment has been proposed to contribute to viral persistence during chronic disease. Understanding the intracellular signaling cascade in T-cells from HBV-infected patients, will contribute to unravel the mechanisms that control the development of immune response during hepatitis B. We analyze lipid rafts formation and early activation signals in chronic HBV infected patients, compared to naturally immune subjects (NIS). Patients show: (1) diminished GM1 clustering, (2) A deficient lipid rafts recruitment of CD3ζ/ZAP-70/Grb2, and (3) these proteins do not merge with GM1 within the lipid rafts. Finally, immunoprecipitation assays proved that ZAP-70 does not associate to CD3ζ. These results show for the first time, defects regarding early key events in T-cell activation, in chronically infected HBV patients, which may contribute not only to understand HBV immune tolerance, but to reveal new potential therapeutic targets to control the infection.
Collapse
|
69
|
Soubrier M, Mathieu S, Hermet M, Makarawiez C, Bruckert E. Do all lupus patients need statins? Joint Bone Spine 2012; 80:244-9. [PMID: 23098926 DOI: 10.1016/j.jbspin.2012.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2012] [Indexed: 01/12/2023]
Abstract
Statin therapy decreases cardiovascular morbidity and mortality rates when used as either primary or secondary prevention. An immunomodulating effect of statins has been suggested. Incontrovertible evidence of accelerated atheroma has been obtained in patients with systemic lupus erythematosus (SLE). Routine statin therapy in SLE patients might therefore produce both cardiovascular and immunological benefits. However, routine statin therapy is inappropriate in SLE patients, the main reason being the absence of a vast interventional study done specifically in this population. An immunomodulating role for statins in SLE has not been convincingly established. The effect of statin therapy on markers for subclinical atheroma (intima-media thickness changes over time) is unclear, and there are no studies proving that statins are effective when used for primary or secondary cardiovascular prevention. Nevertheless, we believe that a serum lipid profile should be obtained once a year in all SLE patients. There is a sound rationale for classifying all SLE patients as being at high cardiovascular risk and those receiving secondary prevention as at very high risk. Consequently, the serum LDL-cholesterol level must be kept below 100 mg/dL and 70 mg/dL in these two populations, respectively. Statins are the only widely recommended drugs for achieving these treatment targets. Statin therapy requires specific monitoring precautions (transaminase levels) given the high prevalence of comorbidities and use of concomitant medications in SLE patients.
Collapse
Affiliation(s)
- Martin Soubrier
- Service de rhumatologie, hôpital G.-Montpied, place H.-Dunant, BP 69, 63003 Clermont-Ferrand, France.
| | | | | | | | | |
Collapse
|
70
|
Surls J, Nazarov-Stoica C, Kehl M, Olsen C, Casares S, Brumeanu TD. Increased membrane cholesterol in lymphocytes diverts T-cells toward an inflammatory response. PLoS One 2012; 7:e38733. [PMID: 22723880 PMCID: PMC3378591 DOI: 10.1371/journal.pone.0038733] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/11/2012] [Indexed: 11/23/2022] Open
Abstract
Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40–50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4+Foxp3+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response.
Collapse
Affiliation(s)
- Jacqueline Surls
- Department of Medicine, Division of Immunology and the Biostatistics Counseling Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Cristina Nazarov-Stoica
- Department of Medicine, Division of Immunology and the Biostatistics Counseling Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Margaret Kehl
- Department of Medicine, Division of Immunology and the Biostatistics Counseling Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Cara Olsen
- Department of Medicine, Division of Immunology and the Biostatistics Counseling Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Sofia Casares
- Department of Medicine, Division of Immunology and the Biostatistics Counseling Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Infectious Diseases Directorate–Malaria Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Teodor-D. Brumeanu
- Department of Medicine, Division of Immunology and the Biostatistics Counseling Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
71
|
Nyakeriga AM, Garg H, Joshi A. TCR-induced T cell activation leads to simultaneous phosphorylation at Y505 and Y394 of p56(lck) residues. Cytometry A 2012; 81:797-805. [PMID: 22674786 DOI: 10.1002/cyto.a.22070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/12/2012] [Accepted: 04/23/2012] [Indexed: 11/11/2022]
Abstract
Biochemical studies have demonstrated that phosphorylation of lymphocyte cell kinase (p56(lck) ) is crucial for activation of signaling cascades following T cell receptor (TCR) stimulation. However, whether phosphorylation/dephosphorylation of the activating or inhibitory tyrosine residues occurs upon activation is controversial. Recent advances in intracellular staining of phospho-epitopes and cytometric analysis, requiring few cells, have opened up novel avenues for the field of immunological signaling. Here, we assessed p56(lck) phosphorylation, using a multiparameter flow-cytometric based detection method following T cell stimulation. Fixation and permeabilization in conjunction with zenon labeling technology and/or fluorescently labeled antibodies against total p56(lck) or cognate phospho-tyrosine (pY) residues or surface receptors were used for detection purposes. Our observations showed that activation of Jurkat or primary human T cells using H(2) O(2) or TCR-induced stimulation led to simultaneous phosphorylation of the activating tyrosine residue, Y394 and the inhibitory tyrosine residue, Y505 of p56(lck) . This was followed by downstream calcium flux and expression of T cell activation markers; CD69 and CD40 ligand (CD40L). However, the extent of measurable activation readouts depended on the optimal stimulatory conditions (temperature and/or stimuli combinations). Treatment of cells with a p56(lck) -specific inhibitor, PP2, abolished phosphorylation at either residue in a dose-dependent manner. Taken together, these observations show that TCR-induced stimulation of T cells led to simultaneous phosphorylation of p56(lck) residues. This implies that dephosphorylation of Y505 is not crucial for p56(lck) activity. Also, it is clear that cytometric analysis provides for a rapid, sensitive, and quantitative method to supplement biochemical studies on p56(lck) signaling pathways in T cells at single cell level.
Collapse
Affiliation(s)
- Alice M Nyakeriga
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, Texas 79905, USA.
| | | | | |
Collapse
|
72
|
McGraw KL, Fuhler GM, Johnson JO, Clark JA, Caceres GC, Sokol L, List AF. Erythropoietin receptor signaling is membrane raft dependent. PLoS One 2012; 7:e34477. [PMID: 22509308 PMCID: PMC3317978 DOI: 10.1371/journal.pone.0034477] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/05/2012] [Indexed: 01/30/2023] Open
Abstract
Upon erythropoietin (Epo) engagement, Epo-receptor (R) homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling receptor signal fidelity. Here we show a critical role for membrane raft (MR) microdomains in creation of discrete signaling platforms essential for Epo-R signaling. Treatment of UT7 cells with Epo induced MR assembly and coalescence. Confocal microscopy showed that raft aggregates significantly increased after Epo stimulation (mean, 4.3±1.4(SE) vs. 25.6±3.2 aggregates/cell; p≤0.001), accompanied by a >3-fold increase in cluster size (p≤0.001). Raft fraction immunoblotting showed Epo-R translocation to MR after Epo stimulation and was confirmed by fluorescence microscopy in Epo stimulated UT7 cells and primary erythroid bursts. Receptor recruitment into MR was accompanied by incorporation of JAK2, Lyn, and STAT5 and their activated forms. Raft disruption by cholesterol depletion extinguished Epo induced Jak2, STAT5, Akt and MAPK phosphorylation in UT7 cells and erythroid progenitors. Furthermore, inhibition of the Rho GTPases Rac1 or RhoA blocked receptor recruitment into raft fractions, indicating a role for these GTPases in receptor trafficking. These data establish a critical role for MR in recruitment and assembly of Epo-R and signal intermediates into discrete membrane signaling units.
Collapse
Affiliation(s)
- Kathy L. McGraw
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, United States of America
| | - Gwenny M. Fuhler
- Department of Gasteroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joseph O. Johnson
- Analytic Microscopy Core Facility, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Justine A. Clark
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Gisela C. Caceres
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Lubomir Sokol
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Alan F. List
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
73
|
Linker for activation of T cells is displaced from lipid rafts and decreases in lupus T cells after activation via the TCR/CD3 pathway. Clin Immunol 2011; 142:243-51. [PMID: 22285373 DOI: 10.1016/j.clim.2011.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/23/2022]
Abstract
Systemic lupus erythematosus (SLE) is characterized by abnormal signal transduction mechanisms in T lymphocytes. Linker for activation of T cells (LAT) couples TCR/CD3 activation with downstream signaling pathways. We reported diminished ERK 1/2 kinase activity in TCR/CD3 stimulated lupus T cells. In this study we evaluated the expression, phosphorylation, lipid raft and immunological synapse (IS) localization and colocalization of LAT with key signalosome molecules. We observed a diminished expression and an abnormal localization of LAT in lipid rafts and at the IS in activated lupus T cells. LAT phosphorylation, capture by GST-Grb2 fusion protein, and coupling to Grb2 and PLCγ1, was similar in healthy control and lupus T cells. Our results suggest that an abnormal localization of LAT within lipid rafts and its accelerated degradation after TCR/CD3 activation may compromise the assembly of the LAT signalosome and downstream signaling pathways required for full MAPK activation in lupus T cells.
Collapse
|
74
|
Ren G, Jacob RF, Kaulin Y, DiMuzio P, Xie Y, Mason RP, Tint GS, Steiner RD, Roulett JB, Merkens L, Whitaker-Mendez D, Frank PG, Lisanti M, Cox RH, Tulenko TN. Alterations in membrane caveolae and BKCa channel activity in skin fibroblasts in Smith-Lemli-Opitz syndrome. Mol Genet Metab 2011; 104:346-55. [PMID: 21724437 PMCID: PMC3365561 DOI: 10.1016/j.ymgme.2011.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 04/30/2011] [Indexed: 12/20/2022]
Abstract
The Smith-Lemli-Opitz syndrome (SLOS) is an inherited disorder of cholesterol synthesis caused by mutations in DHCR7 which encodes the final enzyme in the cholesterol synthesis pathway. The immediate precursor to cholesterol synthesis, 7-dehydrocholesterol (7-DHC) accumulates in the plasma and cells of SLOS patients which has led to the idea that the accumulation of abnormal sterols and/or reduction in cholesterol underlies the phenotypic abnormalities of SLOS. We tested the hypothesis that 7-DHC accumulates in membrane caveolae where it disturbs caveolar bilayer structure-function. Membrane caveolae from skin fibroblasts obtained from SLOS patients were isolated and found to accumulate 7-DHC. In caveolar-like model membranes containing 7-DHC, subtle, but complex alterations in intermolecular packing, lipid order and membrane width were observed. In addition, the BK(Ca) K(+) channel, which co-migrates with caveolin-1 in a membrane fraction enriched with cholesterol, was impaired in SLOS cells as reflected by reduced single channel conductance and a 50 mV rightward shift in the channel activation voltage. In addition, a marked decrease in BK(Ca) protein but not mRNA expression levels was seen suggesting post-translational alterations. Accompanying these changes was a reduction in caveolin-1 protein and mRNA levels, but membrane caveolar structure was not altered. These results are consistent with the hypothesis that 7-DHC accumulation in the caveolar membrane results in defective caveolar signaling. However, additional cellular alterations beyond mere changes associated with abnormal sterols in the membrane likely contribute to the pathogenesis of SLOS.
Collapse
Affiliation(s)
- Gongyi Ren
- Department of Surgery, Cooper University Hospital, Camden, NJ
| | - Robert F. Jacob
- Elucida Research LLC, Beverly, MA, Department of Surgery, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Yuri Kaulin
- Department of Anatomy and Cell Biology, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Paul DiMuzio
- Elucida Research LLC, Beverly, MA, Department of Surgery, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Yi Xie
- Department of Surgery, Cooper University Hospital, Camden, NJ
| | - R. Preston Mason
- Elucida Research LLC, Beverly, MA, Department of Surgery, Thomas Jefferson University College of Medicine, Philadelphia, PA
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | - G. Stephen Tint
- Research Service, Department of Veterans Affairs Medical Center, East Orange, NJ and Department of Medicine, UMDNJ-New Jersey Medical School, Newark, NJ
| | - Robert D. Steiner
- Departments of Pediatrics and Molecular & Medical Genetics, Child Development and Rehabilitation Center, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR
| | - Jean-Baptiste Roulett
- Departments of Pediatrics and Molecular & Medical Genetics, Child Development and Rehabilitation Center, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR
| | - Louise Merkens
- Departments of Pediatrics and Molecular & Medical Genetics, Child Development and Rehabilitation Center, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR
| | - Diana Whitaker-Mendez
- Department of Stem Cell Biology & Regenerative Medicine, and Cancer Biology, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Phillipe G. Frank
- Department of Stem Cell Biology & Regenerative Medicine, and Cancer Biology, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Michael Lisanti
- Department of Stem Cell Biology & Regenerative Medicine, and Cancer Biology, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Robert H. Cox
- Lankenau Institute for Medical Research, Wynnewood, PA
| | | |
Collapse
|
75
|
Mihos CG, Artola RT, Santana O. The pleiotropic effects of the hydroxy-methyl-glutaryl-CoA reductase inhibitors in rheumatologic disorders: a comprehensive review. Rheumatol Int 2011; 32:287-94. [PMID: 21805349 DOI: 10.1007/s00296-011-2008-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 07/10/2011] [Indexed: 01/22/2023]
Abstract
The hydroxy-methyl-glutaryl-CoA reductase inhibitors (statins) are used extensively in the treatment for hyperlipidemia. They have also demonstrated a benefit in a variety of other disease processes, including a wide range of rheumatologic disorders. These secondary actions are known as pleiotropic effects. Our paper serves as a focused and updated discussion on the pleiotropic effects of statins in rheumatologic disorders and emphasizes the importance of randomized, placebo-controlled trials to further elucidate this interesting phenomenon.
Collapse
Affiliation(s)
- Christos G Mihos
- Division of Cardiology, Mount Sinai Heart Institute, Columbia University, 4300 Alton Road, Miami Beach, FL 33140, USA
| | | | | |
Collapse
|
76
|
Emerging role of high density lipoproteins as a player in the immune system. Atherosclerosis 2011; 220:11-21. [PMID: 21783193 DOI: 10.1016/j.atherosclerosis.2011.06.045] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/08/2011] [Accepted: 06/24/2011] [Indexed: 11/23/2022]
Abstract
High density lipoproteins (HDL) possess a number of physiological activities. The most studied and, perhaps, better understood is the ability of HDL to promote excess cholesterol efflux from peripheral tissues and transport to the liver for excretion, a mechanism believed to confer protection against atherosclerotic cardiovascular disease. The ability of HDL to modulate cholesterol bioavailability in the lipid rafts, membrane microdomains enriched in glycosphingolipids and cholesterol, is evolutionary conserved and affects the properties of cells involved in the innate and adaptive immune response, tuning inflammatory response and antigen presentation functions in macrophages as well as B and T cell activation. Also sphingosine-1 phosphate (S1P), a major active sphingolipid carried by HDL, is of relevance in the pathogenesis of several immuno-inflammatory disorders through the modulation of macrophage and lymphocyte functions. Furthermore, HDL influence the humoral innate immunity by modulating the activation of the complement system and the expression of pentraxin 3 (PTX3). Finally, in humans, HDL levels and functions are altered in several immune-mediated disorders, such as rheumatoid arthritis, systemic lupus eritematosus, Crohn's disease and multiple sclerosis as well as during inflammatory responses. Altogether these observations suggest that the effects of HDL in immunity could be related, to either the ability of HDL to modulate cholesterol content in immune cell lipid rafts and to their role as reservoir for several biologically active substances that may impact the immune system.
Collapse
|
77
|
|
78
|
Mok CC, Wong CK, To CH, Lai JPS, Lam CS. Effects of rosuvastatin on vascular biomarkers and carotid atherosclerosis in lupus: A randomized, double-blind, placebo-controlled trial. Arthritis Care Res (Hoboken) 2011; 63:875-83. [DOI: 10.1002/acr.20440] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
79
|
He M, Kratz LE, Michel JJ, Vallejo AN, Ferris L, Kelley RI, Hoover JJ, Jukic D, Gibson KM, Wolfe LA, Ramachandran D, Zwick ME, Vockley J. Mutations in the human SC4MOL gene encoding a methyl sterol oxidase cause psoriasiform dermatitis, microcephaly, and developmental delay. J Clin Invest 2011; 121:976-84. [PMID: 21285510 DOI: 10.1172/jci42650] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 12/08/2010] [Indexed: 01/10/2023] Open
Abstract
Defects in cholesterol synthesis result in a wide variety of symptoms, from neonatal lethality to the relatively mild dysmorphic features and developmental delay found in individuals with Smith-Lemli-Opitz syndrome. We report here the identification of mutations in sterol-C4-methyl oxidase–like gene (SC4MOL) as the cause of an autosomal recessive syndrome in a human patient with psoriasiform dermatitis, arthralgias, congenital cataracts, microcephaly, and developmental delay. This gene encodes a sterol-C4-methyl oxidase (SMO), which catalyzes demethylation of C4-methylsterols in the cholesterol synthesis pathway. C4-Methylsterols are meiosis-activating sterols (MASs). They exist at high concentrations in the testis and ovary and play roles in meiosis activation. In this study, we found that an accumulation of MASs in the patient led to cell overproliferation in both skin and blood. SMO deficiency also substantially altered immunocyte phenotype and in vitro function. MASs serve as ligands for liver X receptors α and β(LXRα and LXRβ), which are important in regulating not only lipid transport in the epidermis, but also innate and adaptive immunity. Deficiency of SMO represents a biochemical defect in the cholesterol synthesis pathway, the clinical spectrum of which remains to be defined.
Collapse
Affiliation(s)
- Miao He
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Cardiovascular disease, a leading cause of mortality worldwide, is caused mainly by atherosclerosis, a chronic inflammatory disease of blood vessels. Lesions of atherosclerosis contain macrophages, T cells and other cells of the immune response, together with cholesterol that infiltrates from the blood. Targeted deletion of genes encoding costimulatory factors and proinflammatory cytokines results in less disease in mouse models, whereas interference with regulatory immunity accelerates it. Innate as well as adaptive immune responses have been identified in atherosclerosis, with components of cholesterol-carrying low-density lipoprotein triggering inflammation, T cell activation and antibody production during the course of disease. Studies are now under way to develop new therapies based on these concepts of the involvement of the immune system in atherosclerosis.
Collapse
|
81
|
Moulton VR, Tsokos GC. Abnormalities of T cell signaling in systemic lupus erythematosus. Arthritis Res Ther 2011; 13:207. [PMID: 21457530 PMCID: PMC3132009 DOI: 10.1186/ar3251] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease resulting from a loss of tolerance to multiple self antigens, and characterized by autoantibody production and inflammatory cell infiltration in target organs, such as the kidneys and brain. T cells are critical players in SLE pathophysiology as they regulate B cell responses and also infiltrate target tissues, leading to tissue damage. Abnormal signaling events link to defective gene transcription and altered cytokine production, contributing to the aberrant phenotype of T cells in SLE. Study of signaling and gene transcription abnormalities in SLE T cells has led to the identification of novel targets for therapy.
Collapse
Affiliation(s)
- Vaishali R Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
82
|
Zhu Y, Gumlaw N, Karman J, Zhao H, Zhang J, Jiang JL, Maniatis P, Edling A, Chuang WL, Siegel C, Shayman JA, Kaplan J, Jiang C, Cheng SH. Lowering glycosphingolipid levels in CD4+ T cells attenuates T cell receptor signaling, cytokine production, and differentiation to the Th17 lineage. J Biol Chem 2011; 286:14787-94. [PMID: 21402703 DOI: 10.1074/jbc.m111.218610] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lipid rafts reportedly have a role in coalescing key signaling molecules into the immunological synapse during T cell activation, thereby modulating T cell receptor (TCR) signaling activity. Recent findings suggest that a correlation may exist between increased levels of glycosphingolipids (GSLs) in the lipid rafts of T cells and a heightened response of those T cells toward activation. Here, we show that lowering the levels of GSLs in CD4(+) T cells using a potent inhibitor of glucosylceramide synthase (Genz-122346) led to a moderation of the T cell response toward activation. TCR proximal signaling events, such as phosphorylation of Lck, Zap70 and LAT, as well as early Ca(2+) mobilization, were attenuated by treatment with Genz-122346. Concomitant with these events were significant reductions in IL-2 production and T cell proliferation. Similar findings were obtained with CD4(+) T cells isolated from transgenic mice genetically deficient in GM3 synthase activity. Interestingly, lowering the GSL levels in CD4(+) T cells by either pharmacological inhibition or disruption of the gene for GM3 synthase also specifically inhibited the differentiation of T cells to the Th(17) lineage but not to other Th subsets in vitro. Taken together with the recently reported effects of Raftlin deficiency on Th(17) differentiation, these results strongly suggest that altering the GSL composition of lipid rafts modulates TCR signaling activity and affects Th(17) differentiation.
Collapse
Affiliation(s)
- Yunxiang Zhu
- Genzyme Corporation, Framingham, Massachusetts 01701-9322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Rogasevskaia TP, Coorssen JR. A new approach to the molecular analysis of docking, priming, and regulated membrane fusion. J Chem Biol 2011; 4:117-36. [PMID: 22315653 DOI: 10.1007/s12154-011-0056-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/23/2010] [Indexed: 12/12/2022] Open
Abstract
Studies using isolated sea urchin cortical vesicles have proven invaluable in dissecting mechanisms of Ca(2+)-triggered membrane fusion. However, only acute molecular manipulations are possible in vitro. Here, using selective pharmacological manipulations of sea urchin eggs ex vivo, we test the hypothesis that specific lipidic components of the membrane matrix selectively affect defined late stages of exocytosis, particularly the Ca(2+)-triggered steps of fast membrane fusion. Egg treatments with cholesterol-lowering drugs resulted in the inhibition of vesicle fusion. Exogenous cholesterol recovered fusion extent and efficiency in cholesterol-depleted membranes; α-tocopherol, a structurally dissimilar curvature analogue, selectively restored fusion extent. Inhibition of phospholipase C reduced vesicle phosphatidylethanolamine and suppressed both the extent and kinetics of fusion. Although phosphatidylinositol-3-kinase inhibition altered levels of polyphosphoinositide species and reduced all fusion parameters, sequestering polyphosphoinositides selectively inhibited fusion kinetics. Thus, cholesterol and phosphatidylethanolamine play direct roles in the fusion pathway, contributing negative curvature. Cholesterol also organizes the physiological fusion site, defining fusion efficiency. A selective influence of phosphatidylethanolamine on fusion kinetics sheds light on the local microdomain structure at the site of docking/fusion. Polyphosphoinositides have modulatory upstream roles in priming: alterations in specific polyphosphoinositides likely represent the terminal priming steps defining fully docked, release-ready vesicles. Thus, this pharmacological approach has the potential to be a robust high-throughput platform to identify molecular components of the physiological fusion machine critical to docking, priming, and triggered fusion.
Collapse
|
84
|
Doria A, Zen M, Canova M, Bettio S, Bassi N, Nalotto L, Rampudda M, Ghirardello A, Iaccarino L. SLE diagnosis and treatment: when early is early. Autoimmun Rev 2010; 10:55-60. [PMID: 20813207 DOI: 10.1016/j.autrev.2010.08.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Around 1980 antinuclear antibody testing became widely used in routine laboratory practice leading to a tapering in the lag time between SLE onset and diagnosis. Since then nothing relevant has been introduced which could help us in making the diagnosis of SLE earlier than now. Notably, there is increasing evidence that early diagnosis and treatment could increase SLE remission rate and improve patient prognosis. Although it has been shown that autoantibodies appear before clinical manifestations in SLE patients, currently we cannot predict which autoantibody positive subjects will eventually develop the disease. Thus, great effort should be made in order to identify new biomarkers able to improve our diagnostic potential. B lymphocyte stimulator (BLyS), anti-ribosomal P protein and anti-C1q antibodies are among the most promising. In recent years, some therapeutic options have emerged as appropriate interventions for early SLE treatment, including antimalarials, vitamin D, statins and vaccination with self-derived peptides. All these immune modulators seem to be particularly useful when introduced in an early stage of the disease.
Collapse
Affiliation(s)
- Andrea Doria
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Torres A, Askari AD, Malemud CJ. Cardiovascular disease complications in systemic lupus erythematosus. Biomark Med 2010; 3:239-52. [PMID: 20477476 DOI: 10.2217/bmm.09.14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a highly variable autoimmune disease characterized by aberrant host-immune responses and chronic inflammation. Recently, a strong association between cardiovascular (CV) disease and SLE has emerged. Thus, low serum, high-density lipoprotein strongly correlated with elevated erythrocyte sedimentation rate, IL-6, TNF-alpha and the SLE disease activity index after adjusting for age, gender, race, BMI, insulin sensitivity and any concurrent drug use. In SLE, CV disease is characterized by increased VEGF, which may alter vascular hemostasis and promote neoangiogenesis. Increased low-density lipoprotein-cholesterol and proinflammatory high-density lipoprotein-cholesterol uptake by monocytes together with enhanced low-density lipoprotein-cholesterol oxidation results in the deposition of altered cholesterol forms into the vascular wall. This contributes to precocious and accelerated development of coronary artery plaques. Cholesterol-reducing drugs should be considered in the standard of care of SLE patients, especially in those with an unfavorable CV disease risk profile, which could reduce the probability of atherosclerosis progressing to CV disease or stroke in these patients.
Collapse
Affiliation(s)
- Alexander Torres
- Department of Medicine, Division of Rheumatic Diseases, University Hospitals Case Medical Center, 2061 Cornell Road, Cleveland, OH 44106-5076, USA
| | | | | |
Collapse
|
86
|
Chansrichavala P, Chantharaksri U, Sritara P, Ngaosuwankul N, Chaiyaroj SC. Atorvastatin affects TLR4 clustering via lipid raft modulation. Int Immunopharmacol 2010; 10:892-9. [PMID: 20472098 DOI: 10.1016/j.intimp.2010.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/30/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Statins, HMG-CoA reductase inhibitors, are used widely in the treatment of hypercholesterolemia. Apart from lowering lipid levels, statins have been shown to have anti-inflammatory effects. Previously we showed that atorvastatin inhibits NF-kappaB activation, dose and time dependently, in LPS-TLR4 signaling pathway. In this study, we investigated the anti-inflammatory mechanism of atorvastatin via Toll-like receptor 4 (TLR4) in murine pro-B cell lines transfected with TLR4. Co-treatment of LPS-stimulated cells with both atorvastatin and mevalonate rescued NF-kappaB activation and TLR4 blockade demonstrated that atorvastatin does not exert its inhibitory effect via TLR4 receptor-ligand binding mechanism. Further investigation into the anti-inflammatory mechanism has shown that atorvastatin causes an impairment of TLR4 recruitment into the lipid raft thereby affecting anti-inflammatory responses. In contrast, mevalonate repaired lipid raft function leading to TLR4 clustering in the lipid raft. Together, these data suggest that atorvastatin exerts its anti-inflammatory effect via lipid raft modification. This novel finding offers another insight into the pleiotropic effects of atorvastatin and may be applicable to other pattern recognition receptors that utilize membrane lipid raft as a platform for signal transduction.
Collapse
Affiliation(s)
- Praveen Chansrichavala
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand
| | | | | | | | | |
Collapse
|
87
|
Abstract
T cells contribute to the initiation and perpetuation of autoimmunity in systemic lupus erythematosus (SLE), and seem to be directly involved in the development of related organ pathology. Defects associated with CD8(+) and T-regulatory (T(REG)) cell function manifest in parallel with the expanded CD3(+)CD4(-)CD8(-) T cell lineage. The cytokine expression pattern is uniquely characterized by decreased expression of interleukin (IL)-2 and increased production of IL-17 and related cytokines. Therapeutic approaches that limit the cognate interaction between T cells and B cells, prevent inappropriate tissue homing and restore T(REG) cell function and the normal cytokine milieu have been entertained. Biochemical characterization of SLE T cells has revealed distinct early and late signaling aberrations, and has enabled the identification of novel molecular targets that can be corrected with small molecules, and biomarkers that may foretell disease activity and predict organ damage.
Collapse
|
88
|
Jury EC, Flores-Borja F, Kalsi HS, Lazarus M, Isenberg DA, Mauri C, Ehrenstein MR. Abnormal CTLA-4 function in T cells from patients with systemic lupus erythematosus. Eur J Immunol 2010; 40:569-78. [PMID: 19950182 DOI: 10.1002/eji.200939781] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CTLA-4 is a critical gatekeeper of T-cell activation and immunological tolerance and has been implicated in patients with a variety of autoimmune diseases through genetic association. Since T cells from patients with the autoimmune disease systemic lupus erythematosus (SLE) display a characteristic hyperactive phenotype, we investigated the function of CTLA-4 in SLE. Our results reveal increased CTLA-4 expression in FOXP3(-) responder T cells from patients with SLE compared with other autoimmune rheumatic diseases and healthy controls. However, CTLA-4 was unable to regulate T-cell proliferation, lipid microdomain formation and phosphorylation of TCR-zeta following CD3/CD28 co-stimulation, in contrast to healthy T cells. Although lupus T cells responded in vitro to CD3/CD28 co-stimulation, there was no parallel increase in CTLA-4 expression, which would normally provide a break on T-cell proliferation. These defects were associated with exclusion of CTLA-4 from lipid microdomains providing an anatomical basis for its loss of function. Collectively our data identify CTLA-4 dysfunction as a potential cause for abnormal T-cell activation in patients with SLE, which could be targeted for therapy.
Collapse
Affiliation(s)
- Elizabeth C Jury
- Department of Medicine, Centre for Rheumatology, University College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
89
|
Contin-Bordes C, Lazaro E, Pellegrin JL, Viallard JF, Moreau JF, Blanco P. Lupus érythémateux systémique : de la physiopathologie au traitement. Rev Med Interne 2009; 30:H9-13. [DOI: 10.1016/s0248-8663(09)73167-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
90
|
Sánchez-Wandelmer J, Dávalos A, Herrera E, Giera M, Cano S, de la Peña G, Lasunción MA, Busto R. Inhibition of cholesterol biosynthesis disrupts lipid raft/caveolae and affects insulin receptor activation in 3T3-L1 preadipocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1731-9. [DOI: 10.1016/j.bbamem.2009.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 04/08/2009] [Accepted: 05/04/2009] [Indexed: 01/08/2023]
|
91
|
Renaudineau Y, Garaud S, Le Dantec C, Alonso-Ramirez R, Daridon C, Youinou P. Autoreactive B Cells and Epigenetics. Clin Rev Allergy Immunol 2009; 39:85-94. [DOI: 10.1007/s12016-009-8174-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
92
|
Yeo DSY, Chan R, Brown G, Ying L, Sutejo R, Aitken J, Tan BH, Wenk MR, Sugrue RJ. Evidence that selective changes in the lipid composition of raft-membranes occur during respiratory syncytial virus infection. Virology 2009; 386:168-82. [DOI: 10.1016/j.virol.2008.12.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 11/19/2008] [Accepted: 12/01/2008] [Indexed: 11/27/2022]
|
93
|
Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2:2. [PMID: 19133145 PMCID: PMC2672098 DOI: 10.1186/1755-8794-2-2] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/08/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. REVIEW We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation).The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible.This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles.Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. CONCLUSION Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|
94
|
Kabouridis PS, Jury EC. Lipid rafts and T-lymphocyte function: implications for autoimmunity. FEBS Lett 2008; 582:3711-8. [PMID: 18930053 PMCID: PMC2596348 DOI: 10.1016/j.febslet.2008.10.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 12/11/2022]
Abstract
Experimental evidence indicates that the mammalian cell membrane is compartmentalized. A structural feature that supports membrane segmentation implicates assemblies of selected lipids broadly referred to as lipid rafts. In T-lymphocytes, lipid rafts are implicated in signalling from the T-cell antigen receptor (TCR) and in localization and function of proteins residing proximal to the receptor. This review summarizes the current literature that deals with lipid raft involvement in T-cell activation and places particular emphasis in recent studies investigating lipid rafts in autoimmunity. The potential of lipid rafts as targets for the development of a new class of immune-modulating compounds is discussed.
Collapse
Affiliation(s)
- Panagiotis S Kabouridis
- William Harvey Research Institute, Queen Mary's School of Medicine & Dentistry, University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | | |
Collapse
|
95
|
Mira E, León B, Barber DF, Jiménez-Baranda S, Goya I, Almonacid L, Márquez G, Zaballos A, Martínez-A C, Stein JV, Ardavín C, Mañes S. Statins induce regulatory T cell recruitment via a CCL1 dependent pathway. THE JOURNAL OF IMMUNOLOGY 2008; 181:3524-34. [PMID: 18714025 DOI: 10.4049/jimmunol.181.5.3524] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The statins, a group of inhibitors of the 3-hydroxy-3-methylglutaryl coenzyme A reductase, are reported to influence a variety of immune system activities through 3-hydroxy-3-methylglutaryl coenzyme A reductase-dependent and -independent mechanisms. How statin treatment regulates immune system function in vivo nonetheless remains to be fully defined. We analyzed the immunomodulatory effects of lovastatin in a Candida albicans-induced delayed-type hypersensitivity reaction in mice. In this model, lovastatin administration reduced the acute inflammatory response elicited by C. albicans challenge. This anti-inflammatory activity of lovastatin was associated with a shift from a Th1 to a Th2 immune response, as well as an increase in the percentage of regulatory T cells at the inflammation site and in the regional draining lymph node. The lovastatin-induced increase in regulatory T cells in the inflamed skin was dependent on expression of CCL1, a chemokine that is locally up-regulated by statin administration. The anti-inflammatory effect of lovastatin was abrogated in CCL1-deficient mice. These results suggest that local regulation of chemokine expression may be an important process in statin-induced modulation of the immune system.
Collapse
Affiliation(s)
- Emilia Mira
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Zhang X, Markovic-Plese S. Statins’ immunomodulatory potential against Th17 cell-mediated autoimmune response. Immunol Res 2008; 41:165-74. [DOI: 10.1007/s12026-008-8019-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
97
|
Datta SK, Mauri C. Signalling defects and cellular interactions (2). Lupus 2008; 17:247-50. [PMID: 18372370 DOI: 10.1177/0961203307088249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- S K Datta
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Ilinois, USA.
| | | |
Collapse
|
98
|
Markovic-Plese S, Singh AK, Singh I. Therapeutic potential of statins in multiple sclerosis: immune modulation, neuroprotection and neurorepair. FUTURE NEUROLOGY 2008; 3:153. [PMID: 20107624 DOI: 10.2217/14796708.3.2.153] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Statins as inhibitors of 3-hydroxy-3-methyl glutaryl coenzyme A reductase are widely used as cholesterol-lowering drugs. Recent studies provide evidence that the anti-inflammatory activity of statins, which is independent of their cholesterol-lowering effects, may have potential therapeutic implications for neuroinflammatory diseases such as multiple sclerosis (MS), Alzheimer's disease and brain tumors, as well as traumatic spinal cord and brain injuries. Studies with animal models of MS suggest that, in addition to immunomodulatory activities similar to the ones observed with approved MS medications, statin treatment also protects the BBB, protects against neurodegeneration and may also promote neurorepair. Although the initial human studies on statin treatment for MS are encouraging, prospective randomized clinical studies will be required to evaluate their efficacy in the larger patient population.
Collapse
Affiliation(s)
- Silva Markovic-Plese
- University of North Carolina at Chapel Hill, Department of Neurology, Department of Microbiology & Immunology, Chapel Hill, NC, USA, Tel.: +1 919 966 3701
| | | | | |
Collapse
|
99
|
Jury EC, Eldridge J, Isenberg DA, Kabouridis PS. Agrin signalling contributes to cell activation and is overexpressed in T lymphocytes from lupus patients. THE JOURNAL OF IMMUNOLOGY 2008; 179:7975-83. [PMID: 18025246 DOI: 10.4049/jimmunol.179.11.7975] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It is shown in this study that the heparan sulfate proteoglycan agrin is overexpressed in T cells isolated from patients with the autoimmune disease systemic lupus erythematosus (SLE). Freshly isolated CD4(+) and CD8(+) subpopulations both exhibited higher expression over healthy controls, which however, gradually declined when cells were cultured in vitro. Agrin expression was induced following in vitro activation of cells via their Ag receptor, or after treatment with IFN-alpha, a cytokine shown to be pathogenic in lupus. Furthermore, serum from SLE patients with active disease was able to induce agrin expression when added to T cells from healthy donors, an increase that was partially blocked by neutralizing anti-IFN-alpha Abs. Cross-linking agrin with mAbs resulted in rapid reorganization of the actin cytoskeleton, activation of the ERK MAPK cascade, and augmentation of anti-CD3-induced proliferation and IL-10 production, indicating that agrin is a functional receptor in T cells. These results demonstrate that agrin expression in human T cells is regulated by cell activation and IFN-alpha, and may have an important function during cell activation with potential implications for autoimmunity.
Collapse
Affiliation(s)
- Elizabeth C Jury
- Centre for Rheumatology, Royal Free and University College Medical School, University College London, London, UK.
| | | | | | | |
Collapse
|
100
|
|