51
|
Haas JD, Ravens S, Düber S, Sandrock I, Oberdörfer L, Kashani E, Chennupati V, Föhse L, Naumann R, Weiss S, Krueger A, Förster R, Prinz I. Development of interleukin-17-producing γδ T cells is restricted to a functional embryonic wave. Immunity 2012; 37:48-59. [PMID: 22770884 DOI: 10.1016/j.immuni.2012.06.003] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 03/07/2012] [Accepted: 06/07/2012] [Indexed: 12/21/2022]
Abstract
γδ T cells are an important innate source of interleukin-17 (IL-17). In contrast to T helper 17 (Th17) cell differentiation, which occurs in the periphery, IL-17-producing γδ T cells (γδT17 cells) are probably committed during thymic development. To study when γδT17 cells arise during ontogeny, we used TcrdH2BeGFP reporter mice to monitor T cell receptor (TCR) rearrangement and IL-17 production in the embryonic thymus. We observed that several populations such as innate lymphoid cells and early T cell precursors were able to produce IL-17 prior to (and thus independent of) TCR recombination. γδT17 cells were absent after transplantation of IL-17-sufficient bone marrow into mice lacking both Il17a and Il17f. Also, γδT17 cells were not generated after genetic restoration of defective Rag1 function in adult mice. Together, these data suggested that these cells developed exclusively before birth and subsequently persisted in adult mice as self-renewing, long-lived cells.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Chimerism
- Homeostasis/immunology
- Immunity, Innate
- Interleukin-17/biosynthesis
- Interleukin-17/deficiency
- Interleukin-17/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, CCR6/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymocytes/cytology
- Thymocytes/immunology
- Thymocytes/metabolism
- Thymus Gland/embryology
- Thymus Gland/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
Collapse
Affiliation(s)
- Jan D Haas
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Vidlak D, Kielian T. Differential effects of interleukin-17 receptor signaling on innate and adaptive immunity during central nervous system bacterial infection. J Neuroinflammation 2012; 9:128. [PMID: 22704602 PMCID: PMC3411413 DOI: 10.1186/1742-2094-9-128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 06/15/2012] [Indexed: 01/13/2023] Open
Abstract
Although IL-17A (commonly referred to as IL-17) has been implicated in the pathogenesis of central nervous system (CNS) autoimmune disease, its role during CNS bacterial infections remains unclear. To evaluate the broader impact of IL-17 family members in the context of CNS infection, we utilized IL-17 receptor (IL-17R) knockout (KO) mice that lack the ability to respond to IL-17, IL-17F and IL-17E (IL-25). In this article, we demonstrate that IL-17R signaling regulates bacterial clearance as well as natural killer T (NKT) cell and gamma-delta (γδ) T cell infiltrates during Staphylococcus aureus-induced brain abscess formation. Specifically, when compared with wild-type (WT) animals, IL-17R KO mice exhibited elevated bacterial burdens at days 7 and 14 following S. aureus infection. Additionally, IL-17R KO animals displayed elevated neutrophil chemokine production, revealing the ability to compensate for the lack of IL-17R activity. Despite these differences, innate immune cell recruitment into brain abscesses was similar in IL-17R KO and WT mice, whereas IL-17R signaling exerted a greater influence on adaptive immune cell recruitment. In particular, γδ T cell influx was increased in IL-17R KO mice at day 7 post-infection. In addition, NK1.1high infiltrates were absent in brain abscesses of IL-17R KO animals and, surprisingly, were rarely detected in the livers of uninfected IL-17R KO mice. Although IL-17 is a key regulator of neutrophils in other infection models, our data implicate an important role for IL-17R signaling in regulating adaptive immunity during CNS bacterial infection.
Collapse
Affiliation(s)
- Debbie Vidlak
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198, USA
| | | |
Collapse
|
53
|
Humoral and cellular immune responses in atherosclerosis: Spotlight on B- and T-cells. Vascul Pharmacol 2012; 56:193-203. [DOI: 10.1016/j.vph.2012.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/17/2012] [Accepted: 01/28/2012] [Indexed: 01/20/2023]
|
54
|
Papp KA, Leonardi C, Menter A, Ortonne JP, Krueger JG, Kricorian G, Aras G, Li J, Russell CB, Thompson EHZ, Baumgartner S. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med 2012; 366:1181-9. [PMID: 22455412 DOI: 10.1056/nejmoa1109017] [Citation(s) in RCA: 720] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND In this phase 2, randomized, double-blind, placebo-controlled, dose-ranging study, we assessed the efficacy and safety of brodalumab (AMG 827), a human anti-interleukin-17-receptor monoclonal antibody, for the treatment of moderate-to-severe plaque psoriasis. METHODS We randomly assigned patients with a score of 12 or higher on the psoriasis area-and-severity index (PASI, on which scores range from 0 to 72, with higher scores indicating more severe disease) and with 10% or more of their body-surface area affected by psoriasis to receive brodalumab (70 mg, 140 mg, or 210 mg at day 1 and weeks 1, 2, 4, 6, 8, and 10 or 280 mg monthly) or placebo. The primary end point was the percentage improvement from baseline in the PASI score at week 12. Secondary end points included improvement of at least 75% and at least 90% in the PASI score and the score on the static physician's global assessment at week 12. RESULTS A total of 198 patients underwent randomization. At week 12, the mean percentage improvements in the PASI score were 45.0% among patients receiving 70 mg of brodalumab, 85.9% among those receiving 140 mg, 86.3% among those receiving 210 mg, 76.0% among those receiving 280 mg, and 16.0% among those receiving placebo (P<0.001 for all comparisons with placebo). An improvement of at least 75% and at least 90% in the PASI score at week 12 was seen in 77% and 72%, respectively, of the patients in the 140-mg brodalumab group and in 82% and 75%, respectively, of the patients in the 210-mg group, as compared with 0% in the placebo group (P<0.001 for all comparisons). The percentage of patients with a static physician's global assessment of clear or minimal disease was 26%, 85%, 80%, and 69% with the 70-mg, 140-mg, 210-mg, and 280-mg doses, respectively, of brodalumab, as compared with 3% with placebo (P<0.01 for all comparisons with placebo). Two cases of grade 3 neutropenia were reported in the 210-mg brodalumab group. The most commonly reported adverse events in the combined brodalumab groups were nasopharyngitis (8%), upper respiratory tract infection (8%), and injection-site erythema (6%). CONCLUSIONS Brodalumab significantly improved plaque psoriasis in this 12-week, phase 2 study. (Funded by Amgen; ClinicalTrials.gov number, NCT00975637.).
Collapse
Affiliation(s)
- Kim A Papp
- Probity Medical Research, Waterloo, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol 2012; 13:465-73. [PMID: 22447028 DOI: 10.1038/ni.2260] [Citation(s) in RCA: 333] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/10/2012] [Indexed: 12/14/2022]
Abstract
Aging is linked to greater susceptibility to chronic inflammatory diseases, several of which, including periodontitis, involve neutrophil-mediated tissue injury. Here we found that aging-associated periodontitis was accompanied by lower expression of Del-1, an endogenous inhibitor of neutrophil adhesion dependent on the integrin LFA-1, and by reciprocal higher expression of interleukin 17 (IL-17). Consistent with that, IL-17 inhibited gingival endothelial cell expression of Del-1, thereby promoting LFA-1-dependent recruitment of neutrophils. Young Del-1-deficient mice developed spontaneous periodontitis that featured excessive neutrophil infiltration and IL-17 expression; disease was prevented in mice doubly deficient in Del-1 and LFA-1 or in Del-1 and the IL-17 receptor. Locally administered Del-1 inhibited IL-17 production, neutrophil accumulation and bone loss. Therefore, Del-1 suppressed LFA-1-dependent recruitment of neutrophils and IL-17-triggered inflammatory pathology and may thus be a promising therapeutic agent for inflammatory diseases.
Collapse
|
56
|
Glatigny S, Fert I, Blaton MA, Lories RJ, Araujo LM, Chiocchia G, Breban M. Proinflammatory Th17 cells are expanded and induced by dendritic cells in spondylarthritis-prone HLA-B27-transgenic rats. ACTA ACUST UNITED AC 2012; 64:110-20. [PMID: 21905004 DOI: 10.1002/art.33321] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE HLA-B27/human β2-microglobulin-transgenic (B27-transgenic) rats, a model of spondylarthritis (SpA), develop spontaneous colitis and arthritis under conventional conditions. CD4+ T cells are pivotal in the development of inflammation in B27-transgenic rats. This study was undertaken to characterize the phenotype of CD4+ T cells in this model and to determine whether dendritic cells (DCs) induce proinflammatory T cells. METHODS The phenotype of CD4+ T cells from rat lymph nodes (LNs) draining the sites of inflammation was analyzed by flow cytometry. Immunostaining was used to detect interleukin-17 (IL-17)-producing cells in the rat joints. DCs from B27-transgenic or control rats (transgenic for HLA-B7 or nontransgenic) were cocultured with control CD4+ T cells and stimulated with anti-T cell receptor α/β. RESULTS IL-17A- and tumor necrosis factor α (TNFα)-producing CD4+ T cells were expanded in mesenteric and popliteal LNs from B27-transgenic rats. The accumulation of Th17 cells correlated with disease development, in contrast to Th1 or Treg cells. IL-17-positive mononuclear cells were detected in the arthritic joints of B27-transgenic rats but not in the joints of control rats. Finally, in vitro cocultures demonstrated that Th17 cells were preferentially induced and expanded by DCs from B27-transgenic rats, by a process that may involve defective engagement of costimulatory molecules. CONCLUSION Our findings indicate that expanded CD4+ T cells in B27-transgenic rats exhibit a proinflammatory Th17 phenotype characterized by IL-17A and TNFα production. Furthermore, this population is preferentially induced by DCs from B27-transgenic rats. These data point toward an induction of Th17 cells as a possible pathogenic mechanism in this model of SpA. However, their pathogenic role still needs to be shown.
Collapse
Affiliation(s)
- Simon Glatigny
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), and INSERM U1016, Paris, France
| | | | | | | | | | | | | |
Collapse
|
57
|
Hildebrand JM, Yi Z, Buchta CM, Poovassery J, Stunz LL, Bishop GA. Roles of tumor necrosis factor receptor associated factor 3 (TRAF3) and TRAF5 in immune cell functions. Immunol Rev 2012; 244:55-74. [PMID: 22017431 DOI: 10.1111/j.1600-065x.2011.01055.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A large and diverse group of receptors utilizes the family of cytoplasmic signaling proteins known as tumor necrosis factor receptor (TNFR)-associated factors (TRAFs). In recent years, there has been a resurgence of interest and exploration of the roles played by TRAF3 and TRAF5 in cellular regulation, particularly in cells of the immune system, the cell types of focus in this review. This work has revealed that TRAF3 and TRAF5 can play diverse roles for different receptors even in the same cell type, as well as distinct roles in different cell types. Evidence indicates that TRAF3 and TRAF5 play important roles beyond the TNFR-superfamily (SF) and viral mimics of its members, mediating certain innate immune receptor and cytokine receptor signals, and most recently, signals delivered by the T-cell receptor (TCR) signaling complex. Additionally, much research has demonstrated the importance of TRAF3-mediated cellular regulation via its cytoplasmic interactions with additional signaling proteins. In particular, we discuss below evidence for the participation by TRAF3 in a number of the regulatory post-translational modifications involving ubiquitin that are important in various signaling pathways.
Collapse
Affiliation(s)
- Joanne M Hildebrand
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
58
|
Bian Z, Guo Y, Ha B, Zen K, Liu Y. Regulation of the inflammatory response: enhancing neutrophil infiltration under chronic inflammatory conditions. THE JOURNAL OF IMMUNOLOGY 2011; 188:844-53. [PMID: 22156344 DOI: 10.4049/jimmunol.1101736] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neutrophil (polymorphonuclear leukocytes [PMN]) infiltration plays a central role in inflammation and is also a major cause of tissue damage. Thus, PMN infiltration must be tightly controlled. Using zymosan-induced peritonitis as an in vivo PMN infiltration model, we show in this study that PMN response and infiltration were significantly enhanced in mice experiencing various types of systemic inflammation, including colitis and diabetes. Adoptive transfer of leukocytes from mice with inflammation into healthy recipients or from healthy into inflammatory recipients followed by inducing peritonitis demonstrated that both circulating PMN and tissue macrophages were altered under inflammatory conditions and that they collectively contributed to enhanced PMN infiltration. Detailed analyses of dextran sulfate sodium-elicited colitis revealed that enhancement of PMN infiltration and macrophage function occurred only at the postacute/chronic phase of inflammation and was associated with markedly increased IL-17A in serum. In vitro and ex vivo treatment of isolated PMN and macrophages confirmed that IL-17A directly modulates these cells and significantly enhances their inflammatory responses. Neutralization of IL-17A eliminated the enhancement of PMN infiltration and IL-6 production and also prevented severe tissue damage in dextran sulfate sodium-treated mice. Thus, IL-17A produced at the chronic stage of colitis serves as an essential feedback signal that enhances PMN infiltration and promotes inflammation.
Collapse
Affiliation(s)
- Zhen Bian
- Program of Cellular Biology and Immunology, Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | |
Collapse
|
59
|
Affiliation(s)
- Ian N Crispe
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, WA 98109, USA.
| |
Collapse
|
60
|
Takahashi R, Nishimoto S, Muto G, Sekiya T, Tamiya T, Kimura A, Morita R, Asakawa M, Chinen T, Yoshimura A. SOCS1 is essential for regulatory T cell functions by preventing loss of Foxp3 expression as well as IFN-{gamma} and IL-17A production. ACTA ACUST UNITED AC 2011; 208:2055-67. [PMID: 21893603 PMCID: PMC3182063 DOI: 10.1084/jem.20110428] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SOCS1 is required to restrict IFN-γ and IL-17 expression and maintain Foxp3 expression in and function of regulatory T cells. Regulatory T cells (Treg cells) maintain immune homeostasis by limiting inflammatory responses. SOCS1 (suppressor of cytokine signaling 1), a negative regulator of cytokine signaling, is necessary for the suppressor functions of Treg cells in vivo, yet detailed mechanisms remain to be clarified. We found that Socs1−/− Treg cells produced high levels of IFN-γ and rapidly lost Foxp3 when transferred into Rag2−/− mice or cultured in vitro, even though the CNS2 (conserved noncoding DNA sequence 2) in the Foxp3 enhancer region was fully demethylated. Socs1−/− Treg cells showed hyperactivation of STAT1 and STAT3. Because Foxp3 expression was stable and STAT1 activation was at normal levels in Ifnγ−/−Socs1−/− Treg cells, the restriction of IFN-γ–STAT1 signaling by SOCS1 is suggested to be necessary for stable Foxp3 expression. However, Ifnγ−/−Socs1−/− Treg cells had hyperactivated STAT3 and higher IL-17A (IL-17) production compared with Ifnγ−/−Socs1+/+ Treg cells and could not suppress colitis induced by naive T cells in Rag2−/− mice. In vitro experiments suggested that cytokines produced by Socs1−/− Treg cells and Ifnγ−/−Socs1−/− Treg cells modulated antigen-presenting cells for preferential Th1 and Th17 induction, respectively. We propose that SOCS1 plays important roles in Treg cell integrity and function by maintaining Foxp3 expression and by suppressing IFN-γ and IL-17 production driven by STAT1 and STAT3, respectively.
Collapse
Affiliation(s)
- Reiko Takahashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjyuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Dubin PJ, Kolls JK. IL-17 in Cystic Fibrosis: More Than Just Th17 Cells. Am J Respir Crit Care Med 2011; 184:155-7. [DOI: 10.1164/rccm.201104-0617ed] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
62
|
Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31:969-79. [PMID: 21508343 DOI: 10.1161/atvbaha.110.207415] [Citation(s) in RCA: 402] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall driven by innate and adaptive immune responses. Inflammation controls the development and the destabilization of arterial plaque. Cells involved in the atherosclerotic process secrete and are activated by soluble factors, known as cytokines. Important recent advances in the comprehension of the mechanisms of atherosclerosis have provided evidence for a dual role of cytokines: proinflammatory and T helper-1-related cytokines promote the development and progression of the disease, whereas antiinflammatory and regulatory T cell-related cytokines exert clear antiatherogenic activities. This review focuses on recent advances regarding the role of cytokines, with the exception of chemokines, in the development, progression, and complications of atherosclerosis.
Collapse
|
63
|
Yan S, Wang L, Liu N, Wang Y, Chu Y. Critical role of interleukin-17/interleukin-17 receptor axis in mediating Con A-induced hepatitis. Immunol Cell Biol 2011; 90:421-8. [PMID: 21691280 DOI: 10.1038/icb.2011.59] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Concanavalin A (Con A)-induced hepatitis is thought to be a T-cell-mediated disease with active destruction of liver cells. Interleukin (IL)-17 is a cytokine produced principally by CD4(+) T cells. However, whether IL-17/IL-17 receptor (IL-17/IL-17R)-mediated responses are involved in T-cell-mediated Con A-induced liver injury remains unclear. In this study, we found that IL-17 expression was highly elevated in liver tissues during Con A-induced hepatitis. The increased levels of IL-17 were paralleled with the severity of liver injury reflected by Alanine aminotransaminase and histological assay as well as the secretion of tumor necrosis factor (TNF)-α and IL-6. Blockage of IL-17 significantly ameliorated Con A-induced hepatitis, while overexpression of IL-17 systemically resulted in massive hepatocyte necrosis in mice. Furthermore, overexpression of an IL-17R immunoglobulin G1 fusion protein significantly attenuated liver inflammation after acute Con A treatment. High expression of IL-17R on Kupffer cells was also observed along with the production of cytokines including TNF-α and IL-6. Inhibition of Kupffer cells by gadolinium chloride completely prevented Con A-induced liver injury and cytokine release. Finally, IL-17-expressing CD4(+) T and natural killer T cells were greatly increased in Con A-injected mice compared with that in controls. Overall, our results indicate that IL-17R signaling is critically involved in the pathogenesis in Con A-induced hepatitis, and blockade of IL-17/IL-17R signaling pathway may represent a novel therapeutic intervention in human autoimmune-related hepatitis.
Collapse
Affiliation(s)
- Shu Yan
- Department of Immunology, Shanghai Medical College, Key Laboratory of Molecular Medicine of Ministry of Education, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
64
|
Chen L, Li DQ, Zhong J, Wu XL, Chen Q, Peng H, Liu SQ. IL-17RA aptamer-mediated repression of IL-6 inhibits synovium inflammation in a murine model of osteoarthritis. Osteoarthritis Cartilage 2011; 19:711-8. [PMID: 21310253 DOI: 10.1016/j.joca.2011.01.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Generate DNA aptamers to inhibit IL-17RA-mediated synovial inflammation in an experimental mouse model of osteoarthritis (OA). METHODS A novel cell-SELEX method was applied to obtain DNA aptamers specific for IL-17RA. A single-stranded (ss) DNA library with four(30) probes was synthesised. By incubating this library with NIH3T3 cells, we collected DNA ligands that could bind the cell surface. The collected ligands were incubated with IL-17RA-deficient NIH3T3 cells, and unbound ssDNA was harvested from the supernatant for the next round of selection. After 12 cycles, specific aptamers against IL-17RA were generated. For animal experiments, a meniscectomy was performed on Balb/C mice to generate an animal model of OA. Mice received weekly intra-articular (i.a.) injections of aptamers or control treatments for 6 weeks. Synovial membranes were evaluated by histomorphology and the mRNAs of critical inflammatory cytokines were measured by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS An aptamer termed RA10-6 was obtained that could efficiently block IL-17 binding to IL-17RA in a dose-dependent manner in vitro. Histological examination and quantitative RT-PCR results showed that OA mice that injected with RA10-6, especially in combination with celecoxib demonstrated inhibition of synovial thickening and reduction in IL-6 levels in the synovial tissue. CONCLUSION Our results suggest that RA10-6 can inhibit synovial inflammation by blocking IL-17/IL-17RA-mediated IL-6 expression. RA10-6 acted synergistically with celecoxib to inhibit IL-6 expression in synovial tissues. Thus, aptamers targeting IL-17RA might serve as potent adjunctive agents for the early treatment of OA.
Collapse
Affiliation(s)
- L Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | | | | | | | | | | | | |
Collapse
|
65
|
Li Z, Burns AR, Han L, Rumbaut RE, Smith CW. IL-17 and VEGF are necessary for efficient corneal nerve regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1106-16. [PMID: 21356362 DOI: 10.1016/j.ajpath.2010.12.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/23/2010] [Accepted: 12/01/2010] [Indexed: 01/19/2023]
Abstract
The contribution of acute inflammation to sensory nerve regeneration was investigated in the murine cornea using a model of corneal abrasion that removes the stratified epithelium and subbasal nerve plexus. Abrasion induced accumulation of IL-17(+) CCR6(+) γδ T cells, neutrophils, and platelets in the cornea followed by full restoration of the epithelium and ∼19% regeneration of sensory nerves within 96 hours. Mice deficient in γδ T cells (TCRδ(-/-)) or wild-type mice treated systemically with anti-IL-17 had >50% reduction in leukocyte and platelet infiltration and >50% reduction in nerve regeneration. Strategies used to prevent neutrophil and platelet accumulation (eg, wild-type mice treated with anti-Ly6G or anti-GP1bα antibody to deplete neutrophils or platelets) also resulted in >50% reductions in corneal nerve density. Infiltrating neutrophils and platelets stained positively for VEGF-A, tissue levels of VEGF-A peaked coincidentally with peak tissue levels of neutrophils and platelets, depletion of neutrophils before injury reduced tissue VEGF-A levels by >70%, and wild-type mice treated systemically with anti-VEGF-A antibody exhibited >80% reduction in corneal nerve regeneration. Given the known trophic effects of VEGF-A for neurite growth, the results in this report demonstrate a previously unrecognized beneficial role for the γδ T cell-dependent inflammatory cascade involving IL-17, neutrophils, platelets, and VEGF-A in corneal nerve regeneration.
Collapse
Affiliation(s)
- Zhijie Li
- Section of Leukocyte Biology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
66
|
Besnard AG, Sabat R, Dumoutier L, Renauld JC, Willart M, Lambrecht B, Teixeira MM, Charron S, Fick L, Erard F, Warszawska K, Wolk K, Quesniaux V, Ryffel B, Togbe D. Dual Role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A. Am J Respir Crit Care Med 2011; 183:1153-63. [PMID: 21297073 DOI: 10.1164/rccm.201008-1383oc] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RATIONALE IL-22 has both proinflammatory and antiinflammatory properties. Its role in allergic lung inflammation has not been explored. OBJECTIVES To investigate the expression and roles of IL-22 in the onset and resolution of experimental allergic asthma and its cross-talk with IL-17A. METHODS IL-22 expression was assessed in patient samples and in the lung of mice immunized and challenged with ovalbumin. IL-22 functions in allergic airway inflammation were evaluated using mice deficient in IL-22 or anti-IL-22 neutralizing antibodies. Moreover, the effects of recombinant IL-22 and IL-17A neutralizing antibodies were investigated. MEASUREMENTS AND MAIN RESULTS Increased pulmonary IL-22 expression is found in the serum of patients with asthma and mice immunized and challenged with ovalbumin. Allergic lung inflammation is IL-22 dependent because eosinophil recruitment, Th2 cytokine including IL-13 and IL-33, chemokine production, airway hyperreactivity, and mucus production are drastically reduced in mice deficient in IL-22 or by IL-22 antibody neutralization during immunization of wild-type mice. By contrast, IL-22 neutralization during antigen challenge enhanced allergic lung inflammation with increased Th2 cytokines. Consistent with this, recombinant IL-22 given with allergen challenge protects mice from lung inflammation. Finally, IL-22 may regulate the expression and proinflammatory properties of IL-17A in allergic lung inflammation. CONCLUSIONS IL-22 is required for the onset of allergic asthma, but functions as a negative regulator of established allergic inflammation. Our study reveals that IL-22 contributes to the proinflammatory properties of IL-17A in experimental allergic asthma.
Collapse
Affiliation(s)
- Anne-Gaelle Besnard
- Université de Orléans and CNRS-UMR6218, Molecular Immunology and Embryology, 3B Rue de la Férollerie, 45071 Orléans Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Lahoute C, Herbin O, Mallat Z, Tedgui A. Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets. Nat Rev Cardiol 2011; 8:348-58. [PMID: 21502963 DOI: 10.1038/nrcardio.2011.62] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic inflammation drives the development of atherosclerosis, and adaptive immunity is deeply involved in this process. Initial studies attributed a pathogenic role to T cells in atherosclerosis, mainly owing to the proatherogenic role of the T-helper (T(H))-1 cell subset, whereas the influence of T(H)2 and T(H)17 subsets is still debated. Today we know that T regulatory cells play a critical role in the protection against atherosclerotic lesion development and inflammation. In contrast to T cells, B cells were initially considered to be protective in atherosclerosis, assumingly through the production of protective antibodies against oxidized LDL. This concept has now been refined and proatherogenic roles of certain mature B cell subsets have been identified. We review the current knowledge about the role of various lymphocyte subsets in the development and progression of atherosclerosis and highlight future targets for immunomodulatory therapy.
Collapse
Affiliation(s)
- Charlotte Lahoute
- French National Institute of Health and Medical Research, Paris Cardiovascular Research Center, Université Paris Descartes, 56 rue Leblanc, Paris, France
| | | | | | | |
Collapse
|
68
|
Wozniak KL, Hardison SE, Kolls JK, Wormley FL. Role of IL-17A on resolution of pulmonary C. neoformans infection. PLoS One 2011; 6:e17204. [PMID: 21359196 PMCID: PMC3040760 DOI: 10.1371/journal.pone.0017204] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 01/25/2011] [Indexed: 12/13/2022] Open
Abstract
The current studies evaluated the role of interleukin (IL)-17A in the induction of protective immunity against pulmonary cryptococcosis in mice. Protection against pulmonary infection with C. neoformans strain H99γ was associated with increased IL-17A production. Signaling through the IFN-γ receptor (R) was required for increased IL-17A production, however, a Th17-type cytokine profile was not observed. Neutrophils were found to be the predominant leukocytic source of IL-17A, rather than T cells, suggesting that the IL-17A produced was not part of a T cell-mediated Th17-type immune response. Depletion of IL-17A in mice during pulmonary infection with C. neoformans strain H99γ resulted in an initial increase in pulmonary fungal burden, but had no effect on cryptococcal burden at later time points. Also, depletion of IL-17A did not affect the local production of other cytokines. IL-17RA⁻/⁻ mice infected with C. neoformans strain H99γ survived the primary infection as well as a secondary challenge with wild-type cryptococci. However, dissemination of the wild-type strain to the brain was noted in the surviving IL-17RA⁻/⁻ mice. Altogether, our results suggested that IL-17A may be important for optimal protective immune responsiveness during pulmonary C. neoformans infection, but protective Th1-type immune responses are sufficient for protection against cryptococcal infection.
Collapse
Affiliation(s)
- Karen L Wozniak
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America.
| | | | | | | |
Collapse
|
69
|
Salgado M, López-Romero P, Callejas S, López M, Labarga P, Dopazo A, Soriano V, Rodés B. Characterization of host genetic expression patterns in HIV-infected individuals with divergent disease progression. Virology 2011; 411:103-12. [PMID: 21239032 DOI: 10.1016/j.virol.2010.12.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/31/2010] [Accepted: 12/19/2010] [Indexed: 02/01/2023]
Abstract
The course of HIV-1 infection shows a variety of clinical phenotypes with an important involvement of host factors. We compare host gene expression patterns in CD3+ T cells from two of these phenotypes: long-term non-progressor patients (LTNP) and matched control patients with standard HIV disease progression. Array analysis revealed over-expression of 322 genes in progressors and 136 in LTNP. Up-regulated genes in progressors were mainly implicated in the regulation of DNA replication, cell cycle and DNA damage stimulus and mostly localized into cellular organelles. In contrast, most up-regulated genes in LTNP were located at the plasmatic membrane and involved in cytokine-cytokine receptor interaction, negative control of apoptosis or regulation of actin cytoskeleton. Regarding gene interactions, a higher number of viral genes interacting with cellular factors were seen in progressors. Our study offers new comparative insights related to disease status and can distinguish differentiated patterns of gene expression among clinical phenotypes.
Collapse
Affiliation(s)
- María Salgado
- Infectious Diseases Department, Hospital Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Effects of early IL-17A neutralization on disease induction in a primate model of experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 2010; 6:341-53. [PMID: 20700661 PMCID: PMC3128270 DOI: 10.1007/s11481-010-9238-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/28/2010] [Indexed: 11/24/2022]
Abstract
We report on the effect of antibody-mediated neutralization of interleukin (IL)-17A in a non-human primate experimental autoimmune encephalomyelitis (EAE) model induced with recombinant human myelin oligodendrocyte glycoprotein (rhMOG). We tested a human-anti-human IL-17A-antibody in two doses (3 and 30 mg/kg) against placebo (PBS). The treatment was started 1 day before EAE induction and continued throughout the experiment. Although all monkeys developed clinically evident EAE, the onset of neurological signs was delayed in some monkeys from both treatment groups. Total CNS lesion volumes, demyelination, or inflammation did not differ between the different groups. Immune profiling revealed an altered distribution of IL-17A producing cells in the lymphoid organs of antibody-treated monkeys. Comparable numbers of IL-17A producing cells were observed in the brain. RhMOG-induced T cell proliferation in the lymph nodes was slightly reduced after anti-IL-17A antibody treatment. To summarize, we found that anti-IL-17A antibody as a single treatment from disease induction effects a trend towards delayed neurological disease progression in the marmoset EAE model, although the effect did not reach statistical significance. This suggests a role of IL-17A in late stage disease in the marmoset EAE model, but IL-17A may not be the dominant pathogenic cytokine.
Collapse
|
71
|
Sonnenberg GF, Nair MG, Kirn TJ, Zaph C, Fouser LA, Artis D. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. THE JOURNAL OF EXPERIMENTAL MEDICINE 2010. [PMID: 20498020 DOI: 10.1084/jem-20092054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-22 has both proinflammatory and tissue-protective properties depending on the context in which it is expressed. However, the factors that influence the functional outcomes of IL-22 expression remain poorly defined. We demonstrate that after administration of a high dose of bleomycin that induces acute tissue damage and airway inflammation and is lethal to wild-type (WT) mice, Th17 cell-derived IL-22 and IL-17A are expressed in the lung. Bleomycin-induced disease was ameliorated in Il22-/- mice or after anti-IL-22 monoclonal antibody (mAb) treatment of WT mice, indicating a proinflammatory/pathological role for IL-22 in airway inflammation. However, despite increased bleomycin-induced IL-22 production, Il17a-/- mice were protected from airway inflammation, suggesting that IL-17A may regulate the expression and/or proinflammatory properties of IL-22. Consistent with this, IL-17A inhibited IL-22 production by Th17 cells, and exogenous administration of IL-22 could only promote airway inflammation in vivo by acting in synergy with IL-17A. Anti-IL-22 mAb was delivered to Il17a-/- mice and was found to exacerbate bleomycin-induced airway inflammation, indicating that IL-22 is tissue protective in the absence of IL-17A. Finally, in an in vitro culture system, IL-22 administration protected airway epithelial cells from bleomycin-induced apoptosis, and this protection was reversed after coadministration of IL-17A. These data identify that IL-17A can regulate the expression, proinflammatory properties, and tissue-protective functions of IL-22, and indicate that the presence or absence of IL-17A governs the proinflammatory versus tissue-protective properties of IL-22 in a model of airway damage and inflammation.
Collapse
Affiliation(s)
- Gregory F Sonnenberg
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
72
|
Sonnenberg GF, Nair MG, Kirn TJ, Zaph C, Fouser LA, Artis D. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. J Exp Med 2010; 207:1293-305. [PMID: 20498020 PMCID: PMC2882840 DOI: 10.1084/jem.20092054] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 04/08/2010] [Indexed: 12/11/2022] Open
Abstract
IL-22 has both proinflammatory and tissue-protective properties depending on the context in which it is expressed. However, the factors that influence the functional outcomes of IL-22 expression remain poorly defined. We demonstrate that after administration of a high dose of bleomycin that induces acute tissue damage and airway inflammation and is lethal to wild-type (WT) mice, Th17 cell-derived IL-22 and IL-17A are expressed in the lung. Bleomycin-induced disease was ameliorated in Il22-/- mice or after anti-IL-22 monoclonal antibody (mAb) treatment of WT mice, indicating a proinflammatory/pathological role for IL-22 in airway inflammation. However, despite increased bleomycin-induced IL-22 production, Il17a-/- mice were protected from airway inflammation, suggesting that IL-17A may regulate the expression and/or proinflammatory properties of IL-22. Consistent with this, IL-17A inhibited IL-22 production by Th17 cells, and exogenous administration of IL-22 could only promote airway inflammation in vivo by acting in synergy with IL-17A. Anti-IL-22 mAb was delivered to Il17a-/- mice and was found to exacerbate bleomycin-induced airway inflammation, indicating that IL-22 is tissue protective in the absence of IL-17A. Finally, in an in vitro culture system, IL-22 administration protected airway epithelial cells from bleomycin-induced apoptosis, and this protection was reversed after coadministration of IL-17A. These data identify that IL-17A can regulate the expression, proinflammatory properties, and tissue-protective functions of IL-22, and indicate that the presence or absence of IL-17A governs the proinflammatory versus tissue-protective properties of IL-22 in a model of airway damage and inflammation.
Collapse
Affiliation(s)
| | - Meera G. Nair
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Thomas J. Kirn
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Colby Zaph
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Lynette A. Fouser
- Inflammation and Immunology–Pfizer BioTherapeutics Research and Development, Cambridge, MA 02140
| | - David Artis
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
73
|
Chen S, Crother TR, Arditi M. Emerging role of IL-17 in atherosclerosis. J Innate Immun 2010; 2:325-33. [PMID: 20505315 DOI: 10.1159/000314626] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 03/13/2010] [Indexed: 12/14/2022] Open
Abstract
The IL-23-IL-17 axis is emerging as a critical regulatory system that bridges the innate and adaptive arms of the immune system. Th17 cells have been linked to the pathogenesis of several chronic inflammatory and autoimmune diseases. However, the role of Th17 cells and IL-17 in various stages of atherogenesis remains poorly understood and is only beginning to be elucidated. While IL-17 is a predominantly proinflammatory cytokine, it has a pleiotropic function and it has been implicated both as an instigator in the pathogenesis of several inflammatory disorders as well as being protective in certain inflammatory disease models. Therefore, it is not surprising that the current literature is conflicting on the role of IL-17 during atherosclerotic lesion development. Various approaches have been used by several groups to discern the involvement of IL-17 in atherosclerosis. While one study found that IL-17 is protective against atherosclerosis, several other recent studies have suggested that IL-17 plays a proatherogenic role. Thus, the function of IL-17 remains controversial and awaits more direct studies to address the issue. In this review, we will highlight all the latest studies involving IL-17 and atherosclerosis, including both clinical and experimental research.
Collapse
Affiliation(s)
- Shuang Chen
- Division of Pediatric Infectious Diseases and Immunology, Burns and Allen Research Institute, Cedars-Sinai Medical Center and David Geffen School of Medicine at UCLA, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
74
|
Mycophenolic acid suppresses granulopoiesis by inhibition of interleukin-17 production. Kidney Int 2010; 78:79-88. [PMID: 20375992 DOI: 10.1038/ki.2010.84] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mycophenolic acid is a commonly used immunosuppressant after organ transplantation and in autoimmune diseases; however, myelosuppression is a major complication despite its largely favorable side-effect profile. Mycophenolic acid targets inosine monophosphate dehydrogenase, which is essential for T-cell proliferation. The T-cell cytokine interleukin-17 (IL-17 or IL-17A) and its receptor maintain normal neutrophilic granulocyte numbers in mice by induction of granulocyte-colony-stimulating factor. To test whether mycophenolic acid induces neutropenia by inhibiting IL-17-producing T cells, we treated C57Bl/6 mice with mycophenolate-mofetil (the orally available pro-drug) and found a dose-dependent decrease in blood neutrophils. This myelosuppressive effect was completely abolished in mice that lack the IL-17 receptor. Mycophenolic acid delayed myeloid recovery after bone marrow transplantation and decreased the percentage of IL-17-producing T cells in the spleen and thymus, and inhibited IL-17 production in human and mouse T cells in vitro. Injection of IL-17 during mycophenolic acid treatment overcame the suppression of the circulating neutrophil levels. Our study shows that mycophenolic acid suppresses neutrophil production by inhibiting IL-17 expression, suggesting that measurement of this interleukin might be useful in estimating the risk of neutropenia in clinical settings.
Collapse
|
75
|
Erbel C, Chen L, Bea F, Wangler S, Celik S, Lasitschka F, Wang Y, Böckler D, Katus HA, Dengler TJ. Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. THE JOURNAL OF IMMUNOLOGY 2010; 183:8167-75. [PMID: 20007582 DOI: 10.4049/jimmunol.0901126] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The importance of an (auto)immune response in atherogenesis is becoming increasingly well understood. IL-17A-expressing T cells modulate immune cell trafficking, initiating inflammation and cytokine production in (auto)immune diseases. In human carotid artery plaques, we previously showed the presence of IL-17A-producing T cells and IL-23; however, IL-17A effects on atherogenesis have not been studied. Aortic root sections from 8-wk-old apolipoprotein E-deficient mice fed a standard chow diet were examined after 12 wk for lesion area, plaque composition, cellular infiltration, cytokine expression, and apoptosis. The treatment group (n = 15) received anti-IL-17A Ab and the controls (n = 10) received irrelevant Abs. Inhibition of IL-17A markedly reduced atherosclerotic lesion area (p < 0.001), maximal stenosis (p < 0.001), and vulnerability of the lesion. IL-17A mAb-treated mice showed reduced cellular infiltration, down-regulation of activation markers on endothelium and immune cells (e.g., VCAM-1), and reduced cytokine/chemokine secretion (e.g., IL6, TNFalpha, CCL5). To investigate possible mechanisms, different atherogenic cell types (e.g., macrophages, dendritic cells, HUVECs, vascular smooth muscle cells) were stimulated with IL-17A in addition to TNF-alpha, IFN-gamma, or LPS to induce cellular activation or apoptosis in vitro. Stimulation with IL-17A induced proinflammatory changes in several atherogenic cell types and apoptotic cell death in murine cells. Functional blockade of IL-17A reduces atherosclerotic lesion development and decreases plaque vulnerability, cellular infiltration, and tissue activation in apolipoprotein E-deficient mice. The present data support a pathogenic role of IL-17A in the development of atherosclerosis by way of its widespread proinflammatory and proapoptotic effects on atherogenic cells.
Collapse
Affiliation(s)
- Christian Erbel
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Initiation and progression of axonopathy in experimental autoimmune encephalomyelitis. J Neurosci 2010; 29:14965-79. [PMID: 19940192 DOI: 10.1523/jneurosci.3794-09.2009] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Axonal loss is the principal cause of chronic disability in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). In C57BL/6 mice with EAE induced by immunization with myelin oligodendrocyte glycoprotein peptide 35-55, the first evidences of axonal damage in spinal cord were in acute subpial and perivascular foci of infiltrating neutrophils and lymphocytes and included intra-axonal accumulations of the endovesicular Toll-like receptor TLR8, and the inflammasome protein NAcht leucine-rich repeat protein 1 (NALP1). Later in the course of this illness, focal inflammatory infiltrates disappeared from the spinal cord, but there was persistent activation of spinal cord innate immunity and progressive, bilaterally symmetric loss of small-diameter corticospinal tract axons. These results support the hypothesis that both contact-dependent and paracrine interactions of systemic inflammatory cells with axons and an innate immune-mediated neurodegenerative process contribute to axonal loss in this multiple sclerosis model.
Collapse
|
77
|
Smith E, von Vietinghoff S, Stark MA, Zarbock A, Sanders JM, Duley A, Rivera-Nieves J, Bender TP, Ley K. T-lineage cells require the thymus but not VDJ recombination to produce IL-17A and regulate granulopoiesis in vivo. THE JOURNAL OF IMMUNOLOGY 2009; 183:5685-93. [PMID: 19843951 DOI: 10.4049/jimmunol.0900887] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IL-17A and IL-17F regulate granulopoiesis and are produced by memory T cells. Rag1(-/-) recombinase-activating gene-deficient mice cannot produce mature T cells but maintain normal neutrophil counts. Athymic nude mice are neutropenic or have near-normal neutrophil counts, depending on the prevailing intestinal flora, and do not produce IL-17A. By contrast, thymi from Rag1(-/-) mice contain as much IL-17A as those from wild-type (WT) mice. IL-17A-producing cells are found in the double negative DN1 compartment of the Rag1(-/-) thymus and express intracellular CD3. These cells colonize the spleen and mesenteric lymph node and secrete IL-17A in vitro following stimulation with IL-23 at a level similar to that of WT splenocytes. Adoptively transferred Rag1(-/-) or WT thymocytes correct neutrophil counts in neutropenic nude mice. We conclude that the development of IL-17A-producing T-lineage cells requires an intact thymic epithelium, but not V(D)J recombination.
Collapse
Affiliation(s)
- Emily Smith
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Lin Y, Ritchea S, Logar A, Slight S, Messmer M, Rangel-Moreno J, Guglani L, Alcorn JF, Strawbridge H, Park SM, Onishi R, Nyugen N, Walter MJ, Pociask D, Randall TD, Gaffen SL, Iwakura Y, Kolls JK, Khader SA. Interleukin-17 is required for T helper 1 cell immunity and host resistance to the intracellular pathogen Francisella tularensis. Immunity 2009; 31:799-810. [PMID: 19853481 DOI: 10.1016/j.immuni.2009.08.025] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/28/2009] [Accepted: 08/21/2009] [Indexed: 02/06/2023]
Abstract
The importance of T helper type 1 (Th1) cell immunity in host resistance to the intracellular bacterium Francisella tularensis is well established. However, the relative roles of interleukin (IL)-12-Th1 and IL-23-Th17 cell responses in immunity to F. tularensis have not been studied. The IL-23-Th17 cell pathway is critical for protective immunity against extracellular bacterial infections. In contrast, the IL-23-Th17 cell pathway is dispensable for protection against intracellular pathogens such as Mycobacteria. Here we show that the IL-23-Th17 pathway regulates the IL-12-Th1 cell pathway and was required for protective immunity against F.tularensis live vaccine strain. We show that IL-17A, but not IL-17F or IL-22, induced IL-12 production in dendritic cells and mediated Th1 responses. Furthermore, we show that IL-17A also induced IL-12 and interferon-gamma production in macrophages and mediated bacterial killing. Together, these findings illustrate a biological function for IL-17A in regulating IL-12-Th1 cell immunity and host responses to an intracellular pathogen.
Collapse
Affiliation(s)
- Yinyao Lin
- Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Algood HMS, Allen SS, Washington MK, Peek RM, Miller GG, Cover TL. Regulation of gastric B cell recruitment is dependent on IL-17 receptor A signaling in a model of chronic bacterial infection. THE JOURNAL OF IMMUNOLOGY 2009; 183:5837-46. [PMID: 19812196 DOI: 10.4049/jimmunol.0901206] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Th17-driven immune responses contribute to the pathogenesis of many chronic inflammatory diseases. In this study, we investigated the role of IL-17 signaling in chronic gastric inflammation induced by Helicobacter pylori, a Gram-negative bacterium that persistently colonizes the human stomach. Wild-type C57BL/6 mice and mice lacking IL-17RA (IL-17RA(-/-)) were orogastrically infected with H. pylori. Differences in bacterial colonization density and gastric inflammation were not apparent at 1 mo postinfection, but by 3 mo postinfection, H. pylori colonization density was higher and mononuclear gastric inflammation more severe in infected IL-17RA(-/-) mice than in infected wild-type mice. A striking feature was a marked increase in gastric B cells, plasma cells, and lymphoid follicles, along with enhanced H. pylori-specific serum Ab responses, in infected IL-17RA(-/-) mice. Fewer gastric neutrophils and lower levels of neutrophil-recruiting chemokines were detected in infected IL-17RA(-/-) mice than in infected wild-type mice. Gastric IL-17a and IL-21 transcript levels were significantly higher in infected IL-17RA(-/-) mice than in infected wild-type mice or uninfected mice, which suggested that a negative feedback loop was impaired in the IL-17RA(-/-) mice. These results underscore an important role of IL-17RA signaling in regulating B cell recruitment. In contrast to many chronic inflammatory diseases in which IL-17RA signaling promotes an inflammatory response, IL-17RA signaling down-regulates the chronic mononuclear inflammation elicited by H. pylori infection.
Collapse
|
80
|
Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KHG. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 2009; 31:331-41. [PMID: 19682929 DOI: 10.1016/j.immuni.2009.08.001] [Citation(s) in RCA: 1243] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 05/18/2009] [Accepted: 06/23/2009] [Indexed: 02/08/2023]
Abstract
Th17 cells, CD4(+) T cells that secrete interleukin-17 (IL-17), are pathogenic in autoimmune diseases and their development and expansion is driven by the cytokines IL-6, TGF-beta, IL-21, IL-1, and IL-23. However, there are also innate sources of IL-17. Here, we show that gammadelta T cells express IL-23R and the transcription factor RORgammat and produce IL-17, IL-21, and IL-22 in response to IL-1beta and IL-23, without T cell receptor engagement. IL-17-producing gammadelta T cells were found at high frequency in the brain of mice with experimental autoimmune encephalomyelitis (EAE). gammadelta T cells activated by IL-1beta and IL-23 promoted IL-17 production by CD4(+) T cells and increased susceptibility to EAE, suggesting that gammadelta T cells act in an amplification loop for IL-17 production by Th17 cells. Our findings demonstrate that gammadelta T cells activated by IL-1beta and IL-23 are an important source of innate IL-17 and IL-21 and provide an alternative mechanism whereby IL-1 and IL-23 may mediate autoimmune inflammation.
Collapse
MESH Headings
- Animals
- Autoimmunity
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Interleukin-17/biosynthesis
- Interleukin-17/immunology
- Interleukin-1beta/immunology
- Interleukin-1beta/metabolism
- Interleukin-1beta/pharmacology
- Interleukin-23/immunology
- Interleukin-23/metabolism
- Interleukin-23/pharmacology
- Interleukins/immunology
- Interleukins/metabolism
- Lipopolysaccharides/immunology
- Mice
- Mice, Inbred C57BL
- Mycobacterium tuberculosis/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Interleukin/immunology
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/immunology
- Receptors, Interleukin-1/metabolism
- Receptors, Interleukin-17/immunology
- Receptors, Interleukin-17/metabolism
- Receptors, Retinoic Acid/immunology
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/immunology
- Receptors, Thyroid Hormone/metabolism
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Caroline E Sutton
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
81
|
van Es T, van Puijvelde GHM, Ramos OH, Segers FME, Joosten LA, van den Berg WB, Michon IM, de Vos P, van Berkel TJC, Kuiper J. Attenuated atherosclerosis upon IL-17R signaling disruption in LDLr deficient mice. Biochem Biophys Res Commun 2009; 388:261-5. [PMID: 19660432 DOI: 10.1016/j.bbrc.2009.07.152] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 07/29/2009] [Indexed: 01/08/2023]
Abstract
Atherosclerosis is an inflammatory disease characterized by the influx of macrophages and T cells and IL-17 may connect innate and adaptive immune responses involved in atherogenesis. We investigated the role of IL-17 receptor signaling in atherosclerosis and transplanted LDLr deficient recipient mice with IL-17R deficient bone marrow. Induction of atherosclerosis by Western-type diet induced a 46% reduction in lesion size in the aortic root and the plaque composition revealed no significant changes in collagen content and neutrophil counts, but a reduction in mast cell number and an increase in macrophage number. In addition, we observed a decrease in anti-oxLDL antibodies of the IgG class upon IL-17R BMT, while introduction of IL-17R deficient bone marrow resulted in a reduced IL-6 production and an increased IL-10 production. In conclusion, signaling via the IL-17 receptor in bone marrow derived cells enhances the process of atherosclerosis.
Collapse
Affiliation(s)
- T van Es
- Division of Biopharmaceutics, Leiden Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
von Vietinghoff S, Ley K. IL-17A controls IL-17F production and maintains blood neutrophil counts in mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:865-73. [PMID: 19542376 DOI: 10.4049/jimmunol.0804080] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
G-CSF, its receptor, and IL-17 receptor A (IL-17RA) are all required to maintain baseline neutrophil counts in mice. In this study, we tested whether IL-17F could compensate and maintain baseline neutrophil counts in the absence of IL-17A. Unlike the reduced neutrophil counts found in IL-17RA-deficient mice, neutrophil counts were mildly increased in IL-17A-deficient (Il17a(-/-)) animals. There was no evidence for infection or altered neutrophil function. Plasma G-CSF and IL-17F levels were elevated in Il17a(-/-) compared with wild-type mice. IL-17F was mainly produced in the spleen and mesenteric lymph nodes, but IL-23 was unaltered in Il17a(-/-) mice. Instead, Il17a(-/-) splenocytes differentiated with IL-6, TGF-beta, and IL-23 ex vivo produced significantly more IL-17F in response to IL-23 than wild-type cells. Adding rIL-17A to Il17a(-/-) splenocyte cultures reduced IL-17F mRNA and protein secretion. These effects were also observed in wild-type but not IL-17RA-deficient cells. We conclude that IL-17A mediated suppression of IL-17F production and secretion requires IL-17RA and is relevant to maintain the normal set point of blood neutrophil counts in vivo.
Collapse
Affiliation(s)
- Sibylle von Vietinghoff
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.
| | | |
Collapse
|
83
|
Emamaullee JA, Davis J, Merani S, Toso C, Elliott JF, Thiesen A, Shapiro AMJ. Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes 2009; 58:1302-11. [PMID: 19289457 PMCID: PMC2682686 DOI: 10.2337/db08-1113] [Citation(s) in RCA: 281] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The T helper 17 (Th17) population, a subset of CD4-positive T-cells that secrete interleukin (IL)-17, has been implicated in autoimmune diseases, including multiple sclerosis and lupus. Therapeutic agents that target the Th17 effector molecule IL-17 or directly inhibit the Th17 population (IL-25) have shown promise in animal models of autoimmunity. The role of Th17 cells in type 1 diabetes has been less clear. The effect of neutralizing anti-IL-17 and recombinant IL-25 on the development of diabetes in NOD mice, a model of spontaneous autoimmune diabetes, was investigated in this study. RESEARCH DESIGN AND METHODS AND RESULTS Although treatment with either anti-IL-17 or IL-25 had no effect on diabetes development in young (<5 weeks) NOD mice, either intervention prevented diabetes when treatment was started at 10 weeks of age (P < 0.001). Insulitis scoring and immunofluorescence staining revealed that both anti-IL-17 and IL-25 significantly reduced peri-islet T-cell infiltrates. Both treatments also decreased GAD65 autoantibody levels. Analysis of pancreatic lymph nodes revealed that both treatments increased the frequency of regulatory T-cells. Further investigation demonstrated that IL-25 therapy was superior to anti-IL-17 during mature diabetes because it promoted a period of remission from new-onset diabetes in 90% of treated animals. Similarly, IL-25 delayed recurrent autoimmunity after syngeneic islet transplantation, whereas anti-IL-17 was of no benefit. GAD65-specific ELISpot and CD4-positive adoptive transfer studies showed that IL-25 treatment resulted in a T-cell-mediated dominant protective effect against autoimmunity. CONCLUSIONS These studies suggest that Th17 cells are involved in the pathogenesis of autoimmune diabetes. Further development of Th17-targeted therapeutic agents may be of benefit in this disease.
Collapse
|
84
|
Nagata T, Mckinley L, Peschon JJ, Alcorn JF, Aujla SJ, Kolls JK. Requirement of IL-17RA in Con A Induced Hepatitis and Negative Regulation of IL-17 Production in Mouse T Cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:7473-9. [DOI: 10.4049/jimmunol.181.11.7473] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
85
|
von Vietinghoff S, Ley K. Homeostatic regulation of blood neutrophil counts. THE JOURNAL OF IMMUNOLOGY 2008; 181:5183-8. [PMID: 18832668 DOI: 10.4049/jimmunol.181.8.5183] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Blood neutrophil counts are determined by the differentiation and proliferation of precursor cells, the release of mature neutrophils from the bone marrow, margination, trafficking and transmigration through the endothelial lining, neutrophil apoptosis, and uptake by phagocytes. This brief review summarizes the regulation of blood neutrophil counts, which is in part controlled by G-CSF, IL-17, and IL-23. Neutrophils are retained in the bone marrow through interaction of CXCL12 with its receptor CXCR4. The relevance of this mechanism is illustrated by rare diseases in which disrupting the desensitization of CXCR4 results in failure to release mature neutrophils from bone marrow. Although blood neutrophil numbers in inbred mouse strains and individual human subjects are tightly controlled, their large variation among outbred populations suggests genetic factors. One example is benign ethnic neutropenia, which is found in some African Americans. Reduced and elevated neutrophil counts, even within the normal range, are associated with excess all-cause mortality.
Collapse
Affiliation(s)
- Sibylle von Vietinghoff
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|