51
|
Grebinoski S, Vignali DA. Inhibitory receptor agonists: the future of autoimmune disease therapeutics? Curr Opin Immunol 2020; 67:1-9. [PMID: 32619929 DOI: 10.1016/j.coi.2020.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Central and peripheral tolerance both contribute to protection against autoimmunity. The pathogenesis of autoimmunity, however, can result from critical deficits or limitations in peripheral and/or central tolerance mechanisms, presenting an opportunity for therapeutic intervention. Recent advances highlight the substantial impact of inhibitory receptors (IRs), which mediate peripheral tolerance, in autoimmunity. Deletion and blockade studies in mice, IR disruption in humans, and correlation with positive disease outcomes all highlight potential clinical benefits of enhancing IR signaling (agonism)-specifically CTLA4, PD1, LAG3, TIM3 and TIGIT-to treat autoimmune disease. Although critical questions remain, IR agonists represent an unappreciated and untapped opportunity for the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Stephanie Grebinoski
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA; Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15213, USA
| | - Dario Aa Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
52
|
Kwiatkowski AJ, Stewart JM, Cho JJ, Avram D, Keselowsky BG. Nano and Microparticle Emerging Strategies for Treatment of Autoimmune Diseases: Multiple Sclerosis and Type 1 Diabetes. Adv Healthc Mater 2020; 9:e2000164. [PMID: 32519501 DOI: 10.1002/adhm.202000164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Autoimmune diseases affect 10% of the world's population, and 1 in 200 people worldwide suffer from either multiple sclerosis (MS) or type 1 diabetes (T1D). While the targeted organ systems are different, MS and T1D share similarities in terms of autoreactive immune cells playing a critical role in pathogenesis. Both diseases can be managed only symptomatically without curative remission, and treatment options are limited and non-specific. Most current therapies cause some degree of systemic immune suppression, leaving the patients susceptible to opportunistic infections and other complications. Thus, there is considerable interest in the development of immunotherapies not associated with generalized immune suppression for these diseases. This review presents current and preclinical strategies for MS and T1D treatment, emphasizing those aimed to modulate the immune response, including the most recent strategies for tolerance induction. A central focus is on the emerging approaches using nano- and microparticle platforms, their evolution as immunotherapeutic carriers, including those incorporating specific antigens to induce tolerance and reduce unwanted generalized immune suppression.
Collapse
Affiliation(s)
- Alexander J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Joshua M Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Jonathan J Cho
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
53
|
Mann SE, Zhou Z, Landry LG, Anderson AM, Alkanani AK, Fischer J, Peakman M, Mallone R, Campbell K, Michels AW, Nakayama M. Multiplex T Cell Stimulation Assay Utilizing a T Cell Activation Reporter-Based Detection System. Front Immunol 2020; 11:633. [PMID: 32328071 PMCID: PMC7160884 DOI: 10.3389/fimmu.2020.00633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advancements in single cell sequencing technologies allow for identification of numerous immune-receptors expressed by T cells such as tumor-specific and autoimmune T cells. Determining antigen specificity of those cells holds immense therapeutic promise. Therefore, the purpose of this study was to develop a method that can efficiently test antigen reactivity of multiple T cell receptors (TCRs) with limited cost, time, and labor. Nuclear factor of activated T cells (NFAT) is a transcription factor involved in producing cytokines and is often utilized as a reporter system for T cell activation. Using a NFAT-based fluorescent reporter system, we generated T-hybridoma cell lines that express intensely fluorescent proteins in response to antigen stimulation and constitutively express additional fluorescent proteins, which serve as identifiers of each T-hybridoma expressing a unique TCR. This allows for the combination of multiple T-hybridoma lines within a single reaction. Sensitivity to stimulation is not decreased by adding fluorescent proteins or multiplexing T cells. In multiplexed reactions, response by one cell line does not induce response in others, thus preserving specificity. This multiplex assay system will be a useful tool for antigen discovery research in a variety of contexts, including using combinatorial peptide libraries to determine T cell epitopes.
Collapse
Affiliation(s)
- Sarah E. Mann
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Zhicheng Zhou
- CNRS, INSERM, Institut Cochin, Université de Paris, Paris, France
| | - Laurie G. Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Amanda M. Anderson
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aimon K. Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jeremy Fischer
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Mark Peakman
- Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roberto Mallone
- CNRS, INSERM, Institut Cochin, Université de Paris, Paris, France
- Assistance Publique - Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Kristen Campbell
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron W. Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
54
|
Carballido JM, Regairaz C, Rauld C, Raad L, Picard D, Kammüller M. The Emerging Jamboree of Transformative Therapies for Autoimmune Diseases. Front Immunol 2020; 11:472. [PMID: 32296421 PMCID: PMC7137386 DOI: 10.3389/fimmu.2020.00472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Standard treatments for autoimmune and autoinflammatory disorders rely mainly on immunosuppression. These are predominantly symptomatic remedies that do not affect the root cause of the disease and are associated with multiple side effects. Immunotherapies are being developed during the last decades as more specific and safer alternatives to small molecules with broad immunosuppressive activity, but they still do not distinguish between disease-causing and protective cell targets and thus, they still have considerable risks of increasing susceptibility to infections and/or malignancy. Antigen-specific approaches inducing immune tolerance represent an emerging trend carrying the potential to be curative without inducing broad immunosuppression. These therapies are based on antigenic epitopes derived from the same proteins that are targeted by the autoreactive T and B cells, and which are administered to patients together with precise instructions to induce regulatory responses capable to restore homeostasis. They are not personalized medicines, and they do not need to be. They are precision therapies exquisitely targeting the disease-causing cells that drive pathology in defined patient populations. Immune tolerance approaches are truly transformative options for people suffering from autoimmune diseases.
Collapse
Affiliation(s)
- José M. Carballido
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Camille Regairaz
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Celine Rauld
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Layla Raad
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Damien Picard
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Michael Kammüller
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
55
|
Bergot AS, Buckle I, Cikaluru S, Naranjo JL, Wright CM, Zheng G, Talekar M, Hamilton-Williams EE, Thomas R. Regulatory T Cells Induced by Single-Peptide Liposome Immunotherapy Suppress Islet-Specific T Cell Responses to Multiple Antigens and Protect from Autoimmune Diabetes. THE JOURNAL OF IMMUNOLOGY 2020; 204:1787-1797. [PMID: 32111734 DOI: 10.4049/jimmunol.1901128] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Ag-specific tolerizing immunotherapy is considered the optimal strategy to control type 1 diabetes, a childhood disease involving autoimmunity toward multiple islet antigenic peptides. To understand whether tolerizing immunotherapy with a single peptide could control diabetes driven by multiple Ags, we coencapsulated the high-affinity CD4+ mimotope (BDC2.5mim) of islet autoantigen chromogranin A (ChgA) with or without calcitriol (1α,25-dihydroxyvitamin D3) into liposomes. After liposome administration, we followed the endogenous ChgA-specific immune response with specific tetramers. Liposome administration s.c., but not i.v., induced ChgA-specific Foxp3+ and Foxp3- PD1+ CD73+ ICOS+ IL-10+ peripheral regulatory T cells in prediabetic mice, and liposome administration at the onset of hyperglycemia significantly delayed diabetes progression. After BDC2.5mim/calcitriol liposome administration, adoptive transfer of CD4+ T cells suppressed the development of diabetes in NOD severe combined immunodeficiency mice receiving diabetogenic splenocytes. After BDC2.5mim/calcitriol liposome treatment and expansion of ChgA-specific peripheral regulatory T cells. IFN-γ production and expansion of islet-specific glucose-6-phosphatase catalytic subunit-related protein-specific CD8+ T cells were also suppressed in pancreatic draining lymph node, demonstrating bystander tolerance at the site of Ag presentation. Thus, liposomes encapsulating the single CD4+ peptide, BDC2.5mim, and calcitriol induce ChgA-specific CD4+ T cells that regulate CD4+ and CD8+ self-antigen specificities and autoimmune diabetes in NOD mice.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Irina Buckle
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Sumana Cikaluru
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Jennifer Loaiza Naranjo
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Casey Maree Wright
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Guoliang Zheng
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Meghna Talekar
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
56
|
Warshauer JT, Bluestone JA, Anderson MS. New Frontiers in the Treatment of Type 1 Diabetes. Cell Metab 2020; 31:46-61. [PMID: 31839487 PMCID: PMC6986815 DOI: 10.1016/j.cmet.2019.11.017] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022]
Abstract
Type 1 diabetes is an autoimmune disease caused by the immune-mediated destruction of pancreatic β cells that results in lifelong absolute insulin deficiency. For nearly a century, insulin replacement has been the only therapy for most people living with this disease. Recent advances in technology and our understanding of β cell development, glucose metabolism, and the underlying immune pathogenesis of the disease have led to innovative therapeutic and preventative approaches. A paradigm shift in immunotherapy development toward the targeting of islet-specific immune pathways involved in tolerance has driven the development of therapies that may allow for the prevention or reversal of this disease while avoiding toxicities associated with historical approaches that were broadly immunosuppressive. In this review, we discuss successes, failures, and emerging pharmacological therapies for type 1 diabetes that are changing how we approach this disease, from improving glycemic control to developing the "holy grail" of disease prevention.
Collapse
Affiliation(s)
- Jeremy T Warshauer
- Endocrine Division, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Mark S Anderson
- Endocrine Division, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
57
|
Baker RL, Jamison BL, Haskins K. Hybrid insulin peptides are neo-epitopes for CD4 T cells in autoimmune diabetes. Curr Opin Endocrinol Diabetes Obes 2019; 26:195-200. [PMID: 31166225 PMCID: PMC6830731 DOI: 10.1097/med.0000000000000490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The current review covers recent advances in our knowledge of the newest autoantigen neo-epitopes in type 1 diabetes (T1D): hybrid insulin peptides or HIPs. These ligands for autoreactive T cells are formed by peptide fusion, a novel posttranslational modification process that we first reported in 2016. RECENT FINDINGS Two major HIPs in the nonobese diabetic mouse model, ligands for diabetogenic CD4 T-cell clones, have been incorporated into tetramers and used to track HIP-reactive T cells during progression of disease. HIPs have also been used in strategies for induction of antigen-specific tolerance and show promise for delaying or reversing disease in the nonobese diabetic mouse. Importantly, CD4 T cells reactive to various HIPs have been detected in the islets and peripheral blood mononuclear cell of T1D patients and newly developed human T-cell clones are being employed to gather more data on the phenotype and function of HIP-reactive T cells in patients. SUMMARY These new hybrid insulin peptide epitopes may provide the basis for establishing autoreactive T cells as biomarkers of disease and as potential tolerogens for treatment of T1D.
Collapse
|