51
|
Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery. Proc Natl Acad Sci U S A 2017; 114:E6231-E6239. [PMID: 28701380 DOI: 10.1073/pnas.1701848114] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inadequate target exposure is a major cause of high attrition in drug discovery. Here, we show that a label-free method for quantifying the intracellular bioavailability (Fic) of drug molecules predicts drug access to intracellular targets and hence, pharmacological effect. We determined Fic in multiple cellular assays and cell types representing different targets from a number of therapeutic areas, including cancer, inflammation, and dementia. Both cytosolic targets and targets localized in subcellular compartments were investigated. Fic gives insights on membrane-permeable compounds in terms of cellular potency and intracellular target engagement, compared with biochemical potency measurements alone. Knowledge of the amount of drug that is locally available to bind intracellular targets provides a powerful tool for compound selection in early drug discovery.
Collapse
|
52
|
Bergstrom M. The Use of Microdosing in the Development of Small Organic and Protein Therapeutics. J Nucl Med 2017; 58:1188-1195. [PMID: 28546333 DOI: 10.2967/jnumed.116.188037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Microdosing as a regulatory concept was introduced to facilitate exploratory studies in humans. The concept involves the use of very low doses of a radionuclide-labeled compound for imaging studies or for assessing plasma pharmacokinetics using equipment that has a highly sensitive readout. The supporting principle is that use of these low doses for a limited time in well-controlled, small populations will limit exposure and have a low risk of adverse effects. Microdosing regulations specify a reduced preclinical toxicology-assessment package in order to shorten the route to human studies and reduce its cost. However, for extrapolation to therapeutically relevant doses and plasma concentrations, there are specific aspects of the use of these low doses and low plasma concentrations that require special attention. These specific aspects are reviewed in this article, with separate attention being paid to small organic molecules and protein therapeutics. The indications for microdosing in drug development are discussed in terms of the 3 pillars of survival in drug development, the first of which is characterization of tissue distribution and access to the site of action; the second, engagement of the target; and the third, induction of tissue responses relevant to a therapeutic response.
Collapse
Affiliation(s)
- Mats Bergstrom
- Department of Pharmacology and PET Centre, Uppsala University, Uppsala, Sweden [retired]
| |
Collapse
|
53
|
Kuzu OF, Toprak M, Noory MA, Robertson GP. Effect of lysosomotropic molecules on cellular homeostasis. Pharmacol Res 2017; 117:177-184. [DOI: 10.1016/j.phrs.2016.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/13/2016] [Indexed: 01/01/2023]
|
54
|
Ng KE, Amin MCIM, Katas H, Amjad MW, Butt AM, Kesharwani P, Iyer AK. pH-Responsive Triblock Copolymeric Micelles Decorated with a Cell-Penetrating Peptide Provide Efficient Doxorubicin Delivery. NANOSCALE RESEARCH LETTERS 2016; 11:539. [PMID: 27921280 PMCID: PMC5138181 DOI: 10.1186/s11671-016-1755-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 11/25/2016] [Indexed: 05/10/2023]
Abstract
This study developed novel triblock pH-responsive polymeric micelles (PMs) using cholic acid-polyethyleneimine-poly-L-arginine (CA-PEI-pArg) copolymers. PEI provided pH sensitivity, while the hydrophilic cell-penetrating pArg peptide promoted cellular PM internalization. The copolymers self-assembled into PMs in aqueous solution at above the critical micelle concentration (2.98 × 10-7 M) and encapsulated doxorubicin in the core region, with a 34.2% (w/w) entrapment efficiency. PMs showed pH-dependent swelling, increasing in size by almost sevenfold from pH 7.4 to 5.0. Doxorubicin release was pH-dependent, with about 65% released at pH 5.0, and 32% at pH 7.4. Cellular uptake, assessed by confocal microscopy and flow cytometry, was enhanced by using doxorubicin-loaded CA-PEI-pArg PMs, as compared to free doxorubicin and DOX-loaded CA-PEI PMs. Moreover, 24-h incubation of these PMs with a human breast cancer cell line produced greater cytotoxicity than free doxorubicin. These results indicate that pH-responsive CA-PEI-pArg micelles could provide a versatile delivery system for targeted cancer therapy using hydrophobic drugs. Graphical of CA-PEI-pArg polymeric micelles as a pH-responsive drug delivery system.
Collapse
Affiliation(s)
- Khen Eng Ng
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia.
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Muhammad Wahab Amjad
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Adeel Masood Butt
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Arun K Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| |
Collapse
|
55
|
Stuckey JI, Simpson C, Norris-Drouin JL, Cholensky SH, Lee J, Pasca R, Cheng N, Dickson BM, Pearce KH, Frye SV, James LI. Structure-Activity Relationships and Kinetic Studies of Peptidic Antagonists of CBX Chromodomains. J Med Chem 2016; 59:8913-8923. [PMID: 27571219 DOI: 10.1021/acs.jmedchem.6b00801] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To better understand the contribution of methyl-lysine (Kme) binding proteins to various disease states, we recently developed and reported the discovery of 1 (UNC3866), a chemical probe that targets two families of Kme binding proteins, CBX and CDY chromodomains, with selectivity for CBX4 and -7. The discovery of 1 was enabled in part by the use of molecular dynamics simulations performed with CBX7 and its endogenous substrate. Herein, we describe the design, synthesis, and structure-activity relationship studies that led to the development of 1 and provide support for our model of CBX7-ligand recognition by examining the binding kinetics of our antagonists with CBX7 as determined by surface-plasmon resonance.
Collapse
Affiliation(s)
- Jacob I Stuckey
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Catherine Simpson
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Jacqueline L Norris-Drouin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Stephanie H Cholensky
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Junghyun Lee
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Ryan Pasca
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Nancy Cheng
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Bradley M Dickson
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
56
|
Reis-Mendes A, Gomes AS, Carvalho RA, Carvalho F, Remião F, Pinto M, Bastos ML, Sousa E, Costa VM. Naphthoquinoxaline metabolite of mitoxantrone is less cardiotoxic than the parent compound and it can be a more cardiosafe drug in anticancer therapy. Arch Toxicol 2016; 91:1871-1890. [PMID: 27629428 DOI: 10.1007/s00204-016-1839-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022]
Abstract
Mitoxantrone (MTX) is an antineoplastic agent used to treat several types of cancers and on multiple sclerosis, which shows a high incidence of cardiotoxicity. Still, the underlying mechanisms of MTX cardiotoxicity are poorly understood and the potential toxicity of its metabolites scarcely investigated. Therefore, this work aimed to synthesize the MTX-naphthoquinoxaline metabolite (NAPHT) and to compare its cytotoxicity to the parent compound in 7-day differentiated H9c2 cells using pharmacological relevant concentrations (0.01-5 µM). MTX was more toxic in equivalent concentrations in all cytotoxicity tests performed [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide reduction, neutral red uptake, and lactate dehydrogenase release assays] and times tested (24 and 48 h). Both MTX and NAPHT significantly decreased mitochondrial membrane potential in 7-day differentiated H9c2 cells after a 12-h incubation. However, energetic pathways were affected in a different manner after MTX or NAPHT incubation. ATP increased and lactate levels decreased after a 24-h incubation with MTX, whereas for the same incubation time and concentrations, NAPHT did not cause any significant effect. The increased activity of ATP synthase seems responsible for MTX-induced increases in ATP levels, as oligomycin (an inhibitor of ATP synthase) abrogated this effect on 5 µM MTX-incubated cells. 3-Methyladenine (an autophagy inhibitor) was the only molecule to give a partial protection against the cytotoxicity produced by MTX or NAPHT. To the best of our knowledge, this was the first broad study on NAPHT cardiotoxicity, and it revealed that the parent drug, MTX, caused a higher disruption in the energetic pathways in a cardiac model in vitro, whereas autophagy is involved in the toxicity of both compounds. In conclusion, NAPHT is claimed to largely contribute to MTX-anticancer properties; therefore, this metabolite should be regarded as a good option for a safer anticancer therapy since it is less cardiotoxic than MTX.
Collapse
Affiliation(s)
- A Reis-Mendes
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - A S Gomes
- UCIBIO-REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.,Lab. Química Orgânica e Farmacêutica, Dep. Química, Faculdade de Farmácia, U. Porto, Porto, Portugal
| | - R A Carvalho
- Centre for Functional Ecology, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - F Carvalho
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - F Remião
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - M Pinto
- Lab. Química Orgânica e Farmacêutica, Dep. Química, Faculdade de Farmácia, U. Porto, Porto, Portugal.,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal
| | - M L Bastos
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - E Sousa
- Lab. Química Orgânica e Farmacêutica, Dep. Química, Faculdade de Farmácia, U. Porto, Porto, Portugal.,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal
| | - V M Costa
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
57
|
First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro. Int J Mol Sci 2016; 17:404. [PMID: 26999125 PMCID: PMC4813259 DOI: 10.3390/ijms17030404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 01/18/2023] Open
Abstract
First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes' internal milieu induced by haloperidol affects lysosomal functionality.
Collapse
|
58
|
Synthetic fluorescent probes to map metallostasis and intracellular fate of zinc and copper. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
59
|
Miller CM, Donner AJ, Blank EE, Egger AW, Kellar BM, Østergaard ME, Seth PP, Harris EN. Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver. Nucleic Acids Res 2016; 44:2782-94. [PMID: 26908652 PMCID: PMC4824115 DOI: 10.1093/nar/gkw112] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/15/2016] [Indexed: 12/11/2022] Open
Abstract
Phosphorothioate (PS)-modified antisense oligonucleotides (ASOs) have been extensively investigated over the past three decades as pharmacological and therapeutic agents. One second generation ASO, Kynamro™, was recently approved by the FDA for the treatment of homozygous familial hypercholesterolemia and over 35 second generation PS ASOs are at various stages of clinical development. In this report, we show that the Stabilin class of scavenger receptors, which were not previously thought to bind DNA, do bind and internalize PS ASOs. With the use of primary cells from mouse and rat livers and recombinant cell lines each expressing Stabilin-1 and each isoform of Stabilin-2 (315-HARE and 190-HARE), we have determined that PS ASOs bind with high affinity and these receptors are responsible for bulk, clathrin-mediated endocytosis within the cell. Binding is primarily dependent on salt-bridge formation and correct folding of the intact protein receptor. Increased internalization rates also enhanced ASO potency for reducing expression of the non-coding RNA Malat-1, in Stabilin-expressing cell lines. A more thorough understanding of mechanisms by which ASOs are internalized in cells and their intracellular trafficking pathways will aid in the design of next generation antisense agents with improved therapeutic properties.
Collapse
Affiliation(s)
- Colton M Miller
- University of Nebraska-Lincoln, Dept. of Biochemistry, 1901 Vine Street Lincoln NE 68588, USA
| | - Aaron J Donner
- Ionis Pharmaceuticals, 2855 Gazelle Ct, Carlsbad, CA 92010, USA
| | - Emma E Blank
- University of Nebraska-Lincoln, Dept. of Biochemistry, 1901 Vine Street Lincoln NE 68588, USA
| | - Andrew W Egger
- University of Nebraska-Lincoln, Dept. of Biochemistry, 1901 Vine Street Lincoln NE 68588, USA
| | - Brianna M Kellar
- University of Nebraska-Lincoln, Dept. of Biochemistry, 1901 Vine Street Lincoln NE 68588, USA
| | | | - Punit P Seth
- Ionis Pharmaceuticals, 2855 Gazelle Ct, Carlsbad, CA 92010, USA
| | - Edward N Harris
- University of Nebraska-Lincoln, Dept. of Biochemistry, 1901 Vine Street Lincoln NE 68588, USA
| |
Collapse
|
60
|
Han SO, Pope R, Li S, Kishnani PS, Steet R, Koeberl DD. A beta-blocker, propranolol, decreases the efficacy from enzyme replacement therapy in Pompe disease. Mol Genet Metab 2016; 117:114-9. [PMID: 26454691 PMCID: PMC4755835 DOI: 10.1016/j.ymgme.2015.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 01/13/2023]
Abstract
UNLABELLED Enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) fails to completely reverse muscle weakness in Pompe disease. β2-agonists enhanced ERT by increasing receptor-mediated uptake of rhGAA in skeletal muscles. PURPOSE To test the hypothesis that a β-blocker might reduce the efficacy of ERT, because the action of β-blockers opposes those of β2-agonists. METHODS Mice with Pompe disease were treated with propranolol (a β-blocker) or clenbuterol in combination with ERT, or with ERT alone. RESULTS Propranolol-treated mice had decreased weight gain (p<0.01), in comparison with clenbuterol-treated mice. Left ventricular mass was decreased (and comparable to wild-type) in ERT only and clenbuterol-treated groups of mice, and unchanged in propranolol-treated mice. GAA activity increased following either clenbuterol or propranolol in skeletal muscles. However, muscle glycogen was reduced only in clenbuterol-treated mice, not in propranolol-treated mice. Cell-based experiments confirmed that propranolol reduces uptake of rhGAA into Pompe fibroblasts and also demonstrated that the drug induces intracellular accumulation of glycoproteins at higher doses. CONCLUSION Propranolol, a commonly prescribed β-blocker, reduced weight, increased left ventricular mass and decreased glycogen clearance in skeletal muscle following ERT. β-Blockers might therefore decrease the efficacy from ERT in patients with Pompe disease.
Collapse
Affiliation(s)
- Sang-Oh Han
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Rand Pope
- Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Songtao Li
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Richard Steet
- Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
61
|
Rosethorne EM, Bradley ME, Gherbi K, Sykes DA, Sattikar A, Wright JD, Renard E, Trifilieff A, Fairhurst RA, Charlton SJ. Long Receptor Residence Time of C26 Contributes to Super Agonist Activity at the Human β2 Adrenoceptor. Mol Pharmacol 2016; 89:467-75. [DOI: 10.1124/mol.115.101253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
|
62
|
Lysosomes as mediators of drug resistance in cancer. Drug Resist Updat 2016; 24:23-33. [DOI: 10.1016/j.drup.2015.11.004] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/04/2015] [Accepted: 11/19/2015] [Indexed: 11/23/2022]
|
63
|
Zhitomirsky B, Assaraf YG. Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance. Oncotarget 2015; 6:1143-56. [PMID: 25544758 PMCID: PMC4359223 DOI: 10.18632/oncotarget.2732] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/09/2014] [Indexed: 01/13/2023] Open
Abstract
Multidrug resistance (MDR) is a primary hindrance to curative cancer chemotherapy. In this respect, lysosomes were suggested to play a role in intrinsic MDR by sequestering protonated hydrophobic weak base chemotherapeutics away from their intracellular target sites. Here we show that intrinsic resistance to sunitinib, a hydrophobic weak base tyrosine kinase inhibitor known to accumulate in lysosomes, tightly correlates with the number of lysosomes accumulating high levels of sunitinib in multiple human carcinoma cells. Furthermore, exposure of cancer cells to hydrophobic weak base drugs leads to a marked increase in the number of lysosomes per cell. Non-cytotoxic, nanomolar concentrations, of the hydrophobic weak base chemotherapeutics doxorubicin and mitoxantrone triggered rapid lysosomal biogenesis that was associated with nuclear translocation of TFEB, the dominant transcription factor regulating lysosomal biogenesis. This resulted in increased lysosomal gene expression and lysosomal enzyme activity. Thus, treatment of cancer cells with hydrophobic weak base chemotherapeutics and their consequent sequestration in lysosomes triggers lysosomal biogenesis, thereby further enhancing lysosomal drug entrapment and MDR. The current study provides the first evidence that drug-induced TFEB-associated lysosomal biogenesis is an emerging determinant of MDR and suggests that circumvention of lysosomal drug sequestration is a novel strategy to overcome this chemoresistance.
Collapse
Affiliation(s)
- Benny Zhitomirsky
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
64
|
HRABETA JAN, GROH TOMAS, KHALIL MOHAMEDASHRAF, POLJAKOVA JITKA, ADAM VOJTECH, KIZEK RENE, UHLIK JIRI, DOKTOROVA HELENA, CERNA TEREZA, FREI EVA, STIBOROVA MARIE, ECKSCHLAGER TOMAS. Vacuolar-ATPase-mediated intracellular sequestration of ellipticine contributes to drug resistance in neuroblastoma cells. Int J Oncol 2015; 47:971-80. [DOI: 10.3892/ijo.2015.3066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/08/2015] [Indexed: 11/06/2022] Open
|
65
|
Cognetta AB, Niphakis MJ, Lee HC, Martini ML, Hulce JJ, Cravatt BF. Selective N-Hydroxyhydantoin Carbamate Inhibitors of Mammalian Serine Hydrolases. ACTA ACUST UNITED AC 2015; 22:928-37. [PMID: 26120000 DOI: 10.1016/j.chembiol.2015.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/18/2015] [Accepted: 05/30/2015] [Indexed: 01/12/2023]
Abstract
Serine hydrolase inhibitors, which facilitate enzyme function assignment and are used to treat a range of human disorders, often act by an irreversible mechanism that involves covalent modification of the serine hydrolase catalytic nucleophile. The portion of mammalian serine hydrolases for which selective inhibitors have been developed, however, remains small. Here, we show that N-hydroxyhydantoin (NHH) carbamates are a versatile class of irreversible serine hydrolase inhibitors that can be modified on both the staying (carbamylating) and leaving (NHH) groups to optimize potency and selectivity. Synthesis of a small library of NHH carbamates and screening by competitive activity-based protein profiling furnished selective, in vivo-active inhibitors and tailored activity-based probes for multiple mammalian serine hydrolases, including palmitoyl protein thioesterase 1, mutations of which cause the human disease infantile neuronal ceroid lipofuscinosis.
Collapse
Affiliation(s)
- Armand B Cognetta
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Micah J Niphakis
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hyeon-Cheol Lee
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael L Martini
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan J Hulce
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
66
|
Hartlieb KJ, Witus LS, Ferris DP, Basuray AN, Algaradah MM, Sarjeant AA, Stern CL, Nassar MS, Botros YY, Stoddart JF. Anticancer activity expressed by a library of 2,9-diazaperopyrenium dications. ACS NANO 2015; 9:1461-1470. [PMID: 25555133 PMCID: PMC4344210 DOI: 10.1021/nn505895j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/02/2015] [Indexed: 06/04/2023]
Abstract
Polyaromatic compounds are well-known to intercalate DNA. Numerous anticancer chemotherapeutics have been developed upon the basis of this recognition motif. The compounds have been designed such that they interfere with the role of the topoisomerases, which control the topology of DNA during the cell-division cycle. Although many promising chemotherapeutics have been developed upon the basis of polyaromatic DNA intercalating systems, these candidates did not proceed past clinical trials on account of their dose-limiting toxicity. Herein, we discuss an alternative, water-soluble class of polyaromatic compounds, the 2,9-diazaperopyrenium dications, and report in vitro cell studies for a library of these dications. These investigations reveal that a number of 2,9-diazaperopyrenium dications show similar activities as doxorubicin toward a variety of cancer cell lines. Additionally, we report the solid-state structures of these dications, and we relate their tendency to aggregate in solution to their toxicity profiles. The addition of bulky substituents to these polyaromatic dications decreases their tendency to aggregate in solution. The derivative substituted with 2,6-diisopropylphenyl groups proved to be the most cytotoxic against the majority of the cell lines tested. In the solid state, the 2,6-diisopropylphenyl-functionalized derivative does not undergo π···π stacking, while in aqueous solution, dynamic light scattering reveals that this derivative forms very small (50-100 nm) aggregates, in contrast with the larger ones formed by dications with less bulky substituents. Alteration of the aromaticitiy in the terminal heterocycles of selected dications reveals a drastic change in the toxicity of these polyaromatic species toward specific cell lines.
Collapse
Affiliation(s)
- Karel J. Hartlieb
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leah S. Witus
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Daniel P. Ferris
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ashish N. Basuray
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammed M. Algaradah
- Joint Center of Excellence in Integrated Nano-Systems (JCIN), King Abdul-Aziz City for Science and Technology (KACST), P.O. Box 6068, Riyadh 11442, Kingdom of Saudia Arabia
| | - Amy A. Sarjeant
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Majed S. Nassar
- Joint Center of Excellence in Integrated Nano-Systems (JCIN), King Abdul-Aziz City for Science and Technology (KACST), P.O. Box 6068, Riyadh 11442, Kingdom of Saudia Arabia
| | - Youssry Y. Botros
- University Research Office, Intel Corporation, Building RNB-6-61, 2200 Mission College Boulevard, Santa Clara, California 95054, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
67
|
Chen Y, Bai Y, Han Z, He W, Guo Z. Photoluminescence imaging of Zn2+in living systems. Chem Soc Rev 2015; 44:4517-46. [DOI: 10.1039/c5cs00005j] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in PL imaging techniques, such as confocal microscopy, two photon microscopy, lifetime and optical imaging techniques, have made remarkable contributions in Zn2+tracking.
Collapse
Affiliation(s)
- Yuncong Chen
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Yang Bai
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Zhong Han
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| |
Collapse
|
68
|
Colombo F, Trombetta E, Cetrangolo P, Maggioni M, Razini P, De Santis F, Torrente Y, Prati D, Torresani E, Porretti L. Giant Lysosomes as a Chemotherapy Resistance Mechanism in Hepatocellular Carcinoma Cells. PLoS One 2014; 9:e114787. [PMID: 25493932 PMCID: PMC4262459 DOI: 10.1371/journal.pone.0114787] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023] Open
Abstract
Despite continuous improvements in therapeutic protocols, cancer-related mortality is still one of the main problems facing public health. The main cause of treatment failure is multi-drug resistance (MDR: simultaneous insensitivity to different anti-cancer agents), the underlying molecular and biological mechanisms of which include the activity of ATP binding cassette (ABC) proteins and drug compartmentalisation in cell organelles. We investigated the expression of the main ABC proteins and the role of cytoplasmic vacuoles in the MDR of six hepatocellular carcinoma (HCC) cell lines, and confirmed the accumulation of the yellow anti-cancer drug sunitinib in giant (four lines) and small cytoplasmic vacuoles of lysosomal origin (two lines). ABC expression analyses showed that the main ABC protein harboured by all of the cell lines was PGP, whose expression was not limited to the cell membrane but was also found on lysosomes. MTT assays showed that the cell lines with giant lysosomes were more resistant to sorafenib treatment than those with small lysosomes (p<0.01), and that verapamil incubation can revert this resistance, especially if it is administered after drug pre-incubation. The findings of this study demonstrate the involvement of PGP-positive lysosomes in drug sequestration and MDR in HCC cell lines. The possibility of modulating this mechanism using PGP inhibitors could lead to the development of new targeted strategies to enhance HCC treatment.
Collapse
Affiliation(s)
- Federico Colombo
- Clinical Chemistry and Microbiology Laboratory, Flow Cytometry and Experimental Hepatology Service, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- * E-mail:
| | - Elena Trombetta
- Clinical Chemistry and Microbiology Laboratory, Flow Cytometry and Experimental Hepatology Service, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Cetrangolo
- Clinical Chemistry and Microbiology Laboratory, Flow Cytometry and Experimental Hepatology Service, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Clinical Pathology Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Razini
- Stem Cell Laboratory, University of Milan, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca De Santis
- Stem Cell Laboratory, University of Milan, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, University of Milan, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Ospedale A. Manzoni, Lecco, Italy
| | - Erminio Torresani
- Clinical Chemistry and Microbiology Laboratory, Flow Cytometry and Experimental Hepatology Service, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Porretti
- Clinical Chemistry and Microbiology Laboratory, Flow Cytometry and Experimental Hepatology Service, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
69
|
Przybylak KR, Alzahrani AR, Cronin MTD. How Does the Quality of Phospholipidosis Data Influence the Predictivity of Structural Alerts? J Chem Inf Model 2014; 54:2224-32. [DOI: 10.1021/ci500233k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Katarzyna R. Przybylak
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, England
| | - Abdullah Rzgallah Alzahrani
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, England
| | - Mark T. D. Cronin
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, England
| |
Collapse
|
70
|
Chowdhury R, Saha A, Mandal AK, Jana B, Ghosh S, Bhattacharyya K. Excited State Proton Transfer in the Lysosome of Live Lung Cells: Normal and Cancer Cells. J Phys Chem B 2014; 119:2149-56. [DOI: 10.1021/jp503804y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rajdeep Chowdhury
- Department
of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Abhijit Saha
- Chemistry
Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Amit Kumar Mandal
- Department
of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Batakrishna Jana
- Chemistry
Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Surajit Ghosh
- Chemistry
Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Kankan Bhattacharyya
- Department
of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
71
|
Ferslew BC, Brouwer KLR. Identification of hepatic phospholipidosis inducers in sandwich-cultured rat hepatocytes, a physiologically relevant model, reveals altered basolateral uptake and biliary excretion of anionic probe substrates. Toxicol Sci 2014; 139:99-107. [PMID: 24563379 DOI: 10.1093/toxsci/kfu033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug-induced phospholipidosis (PLD) is characterized by phospholipid accumulation within the lysosomes of affected tissues, resulting in lysosomal enlargement and laminar body inclusions. Numerous adverse effects and toxicities have been linked to PLD-inducing drugs, but it remains unknown whether drug-induced PLD represents a distinct toxicity or cellular adaptation. In silico and immortalized cellular models have been used to evaluate the PLD potential of new drugs, but these systems have some limitations. The aims of this study were to determine whether primary sandwich-cultured hepatocytes (SCH) can serve as a sensitive and selective model to evaluate hepatic drug-induced PLD, and to evaluate the impact of PLD on the uptake and biliary excretion of probe substrates, taurocholate (TC) and rosuvastatin (RSV). Rat SCH were cultured for 48 h with prototypic hepatic PLD-inducing drugs, amiodarone (AMD), chloroquine (CHQ), desipramine (DES), and azithromycin (AZI), as well as the renal PLD inducer gentamicin (GTM). LysoTracker Red localization and transmission electron microscopy indicated enlarged lysosomal compartments and laminar body inclusions in SCH treated with AMD, CHQ, DES, and AZI, but not GTM, relative to control. PLD resulted in a 51-92% decrease in the in vitro biliary clearance of both TC and RSV; the biliary excretion index significantly decreased for TC from 88 to 35-73%. These data suggested that PLD significantly reduced both organic anion transporting polypeptide-mediated uptake, and bile salt export pump-mediated biliary transport processes. The current study demonstrates that the rat SCH system is a promising model to study hepatic PLD in vitro. Altered hepatic transport of anionic substrates secondary to drug-induced PLD is a novel finding.
Collapse
Affiliation(s)
- Brian C Ferslew
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
| | | |
Collapse
|
72
|
Fan J, de Lannoy IA. Pharmacokinetics. Biochem Pharmacol 2014; 87:93-120. [DOI: 10.1016/j.bcp.2013.09.007] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 11/29/2022]
|
73
|
Ho YM, Au NPB, Wong KL, Chan CTL, Kwok WM, Law GL, Tang KK, Wong WY, Ma CHE, Lam MHW. A lysosome-specific two-photon phosphorescent binuclear cyclometalated platinum(ii) probe for in vivo imaging of live neurons. Chem Commun (Camb) 2014; 50:4161-3. [DOI: 10.1039/c3cc48934e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
74
|
Gao M, Hu Q, Feng G, Tang BZ, Liu B. A fluorescent light-up probe with “AIE + ESIPT” characteristics for specific detection of lysosomal esterase. J Mater Chem B 2014; 2:3438-3442. [DOI: 10.1039/c4tb00345d] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fluorescent light-up probe with “AIE + ESIPT” characteristics for specific detection of lysosomal esterase.
Collapse
Affiliation(s)
- Meng Gao
- Institute of Materials Research and Engineering (A*STAR)
- , Singapore 117602
| | - Qinglian Hu
- Department of Chemical and Biomolecular Engineering
- 4 Engineering Drive 4
- National University of Singapore
- Singapore 117585
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering
- 4 Engineering Drive 4
- National University of Singapore
- Singapore 117585
| | - Ben Zhong Tang
- Department of Chemistry
- Institute for Advanced Study
- Division of Biomedical Engineering
- State Key Laboratory of Molecular Neuroscience and Institute of Molecular Functional Materials
- The Hong Kong University of Science and Technology
| | - Bin Liu
- Institute of Materials Research and Engineering (A*STAR)
- , Singapore 117602
- Department of Chemical and Biomolecular Engineering
- 4 Engineering Drive 4
- National University of Singapore
| |
Collapse
|
75
|
Zhu L, Yuan Z, Simmons JT, Sreenath K. Zn(II)-coordination modulated ligand photophysical processes - the development of fluorescent indicators for imaging biological Zn(II) ions. RSC Adv 2014; 4:20398-20440. [PMID: 25071933 PMCID: PMC4111279 DOI: 10.1039/c4ra00354c] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Molecular photophysics and metal coordination chemistry are the two fundamental pillars that support the development of fluorescent cation indicators. In this article, we describe how Zn(II)-coordination alters various ligand-centered photophysical processes that are pertinent to developing Zn(II) indicators. The main aim is to show how small organic Zn(II) indicators work under the constraints of specific requirements, including Zn(II) detection range, photophysical requirements such as excitation energy and emission color, temporal and spatial resolutions in a heterogeneous intracellular environment, and fluorescence response selectivity between similar cations such as Zn(II) and Cd(II). In the last section, the biological questions that fluorescent Zn(II) indicators help to answer are described, which have been motivating and challenging this field of research.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| | - Zhao Yuan
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| | - J. Tyler Simmons
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| | - Kesavapillai Sreenath
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| |
Collapse
|
76
|
Kazmi F, Hensley T, Pope C, Funk RS, Loewen GJ, Buckley DB, Parkinson A. Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells). Drug Metab Dispos 2013; 41:897-905. [PMID: 23378628 DOI: 10.1124/dmd.112.050054] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lipophilic (logP > 1) and amphiphilic drugs (also known as cationic amphiphilic drugs) with ionizable amines (pKa > 6) can accumulate in lysosomes, a process known as lysosomal trapping. This process contributes to presystemic extraction by lysosome-rich organs (such as liver and lung), which, together with the binding of lipophilic amines to phospholipids, contributes to the large volume of distribution characteristic of numerous cardiovascular and central nervous system drugs. Accumulation of lipophilic amines in lysosomes has been implicated as a cause of phospholipidosis. Furthermore, elevated levels of lipophilic amines in lysosomes can lead to high organ-to-blood ratios of drugs that can be mistaken for active drug transport. In the present study, we describe an in vitro fluorescence-based method (using the lysosome-specific probe LysoTracker Red) to identify lysosomotropic agents in immortalized hepatocytes (Fa2N-4 cells). A diverse set of compounds with various physicochemical properties were tested, such as acids, bases, and zwitterions. In addition, the partitioning of the nonlysosomotropic atorvastatin (an anion) and the lysosomotropics propranolol and imipramine (cations) were quantified in Fa2N-4 cells in the presence or absence of various lysosomotropic or nonlysosomotropic agents and inhibitors of lysosomal sequestration (NH4Cl, nigericin, and monensin). Cellular partitioning of propranolol and imipramine was markedly reduced (by at least 40%) by NH4Cl, nigericin, or monensin. Lysosomotropic drugs also inhibited the partitioning of propranolol by at least 50%, with imipramine partitioning affected to a lesser degree. This study demonstrates the usefulness of immortalized hepatocytes (Fa2N-4 cells) for determining the lysosomal sequestration of lipophilic amines.
Collapse
|
77
|
Canfrán-Duque A, Casado ME, Pastor O, Sánchez-Wandelmer J, de la Peña G, Lerma M, Mariscal P, Bracher F, Lasunción MA, Busto R. Atypical antipsychotics alter cholesterol and fatty acid metabolism in vitro. J Lipid Res 2012; 54:310-24. [PMID: 23175778 DOI: 10.1194/jlr.m026948] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Haloperidol, a typical antipsychotic, has been shown to inhibit cholesterol biosynthesis by affecting Δ(7)-reductase, Δ(8,7)-isomerase, and Δ(14)-reductase activities, which results in the accumulation of different sterol intermediates. In the present work, we investigated the effects of atypical or second-generation antipsychotics (SGA), such as clozapine, risperidone, and ziprasidone, on intracellular lipid metabolism in different cell lines. All the SGAs tested inhibited cholesterol biosynthesis. Ziprasidone and risperidone had the same targets as haloperidol at inhibiting cholesterol biosynthesis, although with different relative activities (ziprasidone > haloperidol > risperidone). In contrast, clozapine mainly affected Δ(24)-reductase and Δ(8,7)-isomerase activities. These amphiphilic drugs also interfered with the LDL-derived cholesterol egress from the endosome/lysosome compartment, thus further reducing the cholesterol content in the endoplasmic reticulum. This triggered a homeostatic response with the stimulation of sterol regulatory element-binding protein (SREBP)-regulated gene expression. Treatment with SGAs also increased the synthesis of complex lipids (phospholipids and triacylglycerides). Once the antipsychotics were removed from the medium, a rebound in the cholesterol biosynthesis rate was detected, and the complex-lipid synthesis further increased. In this condition, apolipoprotein B secretion was also stimulated as demonstrated in HepG2 cells. These effects of SGAs on lipid homeostasis may be relevant in the metabolic side effects of antipsychotics, especially hypertriglyceridemia.
Collapse
Affiliation(s)
- Alberto Canfrán-Duque
- Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Lysosome vacuolation disrupts the completion of autophagy during norephedrine exposure in SH-SY5Y human neuroblastoma cells. Brain Res 2012; 1490:9-22. [PMID: 23123211 DOI: 10.1016/j.brainres.2012.10.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/29/2012] [Accepted: 10/27/2012] [Indexed: 11/22/2022]
Abstract
In our current study, we examined the mechanism underlying neuronal cell injuries caused by norephedrine in SH-SY5Y human neuroblastoma cells. Norephedrine was found to induce cytoplasmic vacuolation and a resultant loss of cell viability. In the cells treated with norephedrine also, an autophagic marker LC3 was converted to its LC3-II activated form, suggesting the induction of autophagy. In cells transfected with RFP-LC3 and GFP-LAMP1, a punctate patterning of LC3 expression and colocalization of LAMP1 with the formed vacuoles were observed, highlighting the lysosomal nature of the vacuoles and their association with autophagosomes. An autophagic flux assay using tfLC3 (mRFP-GFP-LC3) indicated the formation of autophagosomes and autolysosomes by norephedrine stimulation at an early timepoint (∼3 h). However, at a later timepoint (∼6 h), both the dilation of autolysosomes/lysosomes and the neutralization of the vacuolar pH were also observed. These results thus indicate that norephedrine induces autophagy at an early timepoint and cell death with lysosomal dysfunction and autophagy disruption at a later timepoint.
Collapse
|
79
|
Kadam RS, Scheinman RI, Kompella UB. Pigmented-MDCK (P-MDCK) cell line with tunable melanin expression: an in vitro model for the outer blood-retinal barrier. Mol Pharm 2012; 9:3228-35. [PMID: 23003570 DOI: 10.1021/mp300305f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Retinal pigment epithelium, which forms the outer blood-retinal barrier, is a critical barrier for transport of drugs to the retina. The purpose of this study was to develop a pigmented MDCK (P-MDCK) cell line as a rapidly established in vitro model for the outer blood-retinal barrier to assess the influence of melanin pigment on solute permeability. A melanin synthesizing P-MDCK cell line was developed by lentiviral transduction of human tyrosinase and p-protein genes in MDCK (NBL-2) cells. Melanin content, tyrosinase activity (conversion of L-dopa to dopachrome), and transepithelial electrical resistance (TEER) were measured. Expression of tyrosinase protein and p-protein in P-MDCK cells was confirmed by confocal microscopy. Effect of l-tyrosine (0 to 2 mM) in culture medium on melanin synthesis in P-MDCK cells was evaluated. Cell uptake and transepithelial transport of pigment-binding chloroquine (Log D = 1.59) and a negative control salicylic acid (Log D = -1.14) were investigated. P-MDCK cells expressed tyrosinase and p-protein. Tyrosinase activity was 4.5-fold higher in P-MDCK cells compared to wild type MDCK cells. The transepithelial electrical resistance stabilized by day 4 in both cell types, with the TEER being 958 ± 33 and 964 ± 58 Ω·cm(2) for P-MDCK and wild type cells, respectively. Melanin content in P-MDCK cells depended on the concentration of l-tyrosine in culture medium, and increased from 3 to 54 μg/mg protein with an increase in l-tyrosine content from 0 to 2 mM. When the cells were grown in 2 mM l-tyrosine, uptake of chloroquine was 2.3-fold higher and the transepithelial transport was 2.2-fold lower in P-MDCK cells when compared to wild type MDCK cells. No significant difference was observed for both cell uptake and transport of salicylic acid. We developed a P-MDCK cell line with tunable melanin synthesis as a rapidly developing surrogate for retinal pigment epithelium.
Collapse
Affiliation(s)
- Rajendra S Kadam
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | | | | |
Collapse
|
80
|
Shayman JA, Abe A. Drug induced phospholipidosis: an acquired lysosomal storage disorder. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:602-11. [PMID: 22960355 DOI: 10.1016/j.bbalip.2012.08.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 12/30/2022]
Abstract
There is a strong association between lysosome enzyme deficiencies and monogenic disorders resulting in lysosomal storage disease. Of the more than 75 characterized lysosomal proteins, two thirds are directly linked to inherited diseases of metabolism. Only one lysosomal storage disease, Niemann-Pick disease, is associated with impaired phospholipid metabolism. However, other phospholipases are found in the lysosome but remain poorly characterized. A recent exception is lysosomal phospholipase A2 (group XV phospholipase A2). Although no inherited disorder of lysosomal phospholipid metabolism has yet been associated with a loss of function of this lipase, this enzyme may be a target for an acquired form of lysosomal storage, drug induced phospholipidosis. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- James A Shayman
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
81
|
Logan R, Funk RS, Axcell E, Krise JP. Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications. Expert Opin Drug Metab Toxicol 2012; 8:943-58. [PMID: 22616667 DOI: 10.1517/17425255.2012.691165] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Many commercially available, weakly basic drugs have been shown to be lysosomotropic, meaning they are subject to extensive sequestration in lysosomes through an ion trapping-type mechanism. The extent of lysosomal trapping of a drug is an important therapeutic consideration because it can influence both activity and pharmacokinetic disposition. The administration of certain drugs can alter lysosomes such that their accumulation capacity for co-administered and/or secondarily administered drugs is altered. AREAS COVERED In this review the authors explore what is known regarding the mechanistic basis for drug-drug interactions involving lysosomes. Specifically, the authors address the influence of drugs on lysosomal pH, volume and lipid processing. EXPERT OPINION Many drugs are known to extensively accumulate in lysosomes and significantly alter their structure and function; however, the therapeutic and toxicological implications of this remain controversial. The authors propose that drug-drug interactions involving lysosomes represent an important potential source of variability in drug activity and pharmacokinetics. Most evaluations of drug-drug interactions involving lysosomes have been performed in cultured cells and isolated tissues. More comprehensive in vivo evaluations are needed to fully explore the impact of this drug-drug interaction pathway on therapeutic outcomes.
Collapse
Affiliation(s)
- Randall Logan
- The University of Kansas, Department of Pharmaceutical Chemistry, 2095 Constant Ave., Lawrence, KS 66047, USA
| | | | | | | |
Collapse
|
82
|
Baik J, Rosania GR. Molecular imaging of intracellular drug-membrane aggregate formation. Mol Pharm 2011; 8:1742-9. [PMID: 21800872 DOI: 10.1021/mp200101b] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clofazimine is a lipophilic antibiotic with an extremely long pharmacokinetic half-life associated with the appearance of crystal-like drug inclusions, in vivo. Here, we studied how clofazimine accumulates inside cells in the presence of supersaturating, extracellular concentrations of the drug (in the range of physiological drug concentrations). Based on a combination of molecular imaging, biochemical analysis and electron microscopy techniques, clofazimine mass increased inside cells in vitro, over a period of several days, with discrete clofazimine inclusions forming in the cytoplasm. These inclusions grew in size, number and density, as long as the drug-containing medium was replenished. With Raman confocal microscopy, clofazimine's spectral signature in these inclusions resembled that of amorphous clofazimine precipitates and was unlike that of clofazimine crystals. Additional experiments revealed that clofazimine first accumulated in mitochondria, with ensuing changes in mitochondrial structure and function. In turn, the degenerating organelles coalesced, fused with each other and condensed to form prominent drug-membrane aggregates (dubbed autophagosome-like drug inclusions or "aldis"). Like clofazimine, it is possible that intracellular drug-membrane aggregate formation is a common phenomenon underlying the reported phenotypic effects of many other small molecule drugs.
Collapse
Affiliation(s)
- Jason Baik
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|