51
|
Dhara D, Dhara A, Bennett J, Murphy PV. Cyclisations and Strategies for Stereoselective Synthesis of Piperidine Iminosugars. CHEM REC 2021; 21:2958-2979. [PMID: 34713557 DOI: 10.1002/tcr.202100221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022]
Abstract
This personal account focuses on synthesis of polyhydroxylated piperidines, a subset of compounds within the iminosugar family. Cyclisations to form the piperidine ring include reductive amination, substitution via amines, iminium ions and cyclic nitrones, transamidification (N-acyl transfer), addition to alkenes, ring contraction and expansion, photoinduced electron transfer, multicomponent Ugi reaction and ring closing metathesis. Enantiomerically pure piperidines are obtained from chiral pool precursors (e. g. sugars, amino acids, Garner's aldehyde) or asymmetric reactions (e. g. epoxidation, dihydroxylation, aminohydroxylation, aldol, biotransformation). Our laboratory have contributed cascades based on reductive amination from glycosyl azide precursors as well as Huisgen azide-alkene cycloaddition. The latter's combination with allylic azide rearrangement has given substituted piperidines, including those with quaternary centres adjacent to nitrogen.
Collapse
Affiliation(s)
- Debashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.,Unité de Chimie des Biomolécules, UMR 3523 CNRS, Institut Pasteur, Université de Paris, 28 rue du Dr Roux, 75015, Paris, France
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Jack Bennett
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.,SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
52
|
Lee ZY, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Targeting cancer via Golgi α-mannosidase II inhibition: How far have we come in developing effective inhibitors? Carbohydr Res 2021; 508:108395. [PMID: 34280804 DOI: 10.1016/j.carres.2021.108395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
Dysregulation of glycosylation pathways has been well documented in several types of cancer, where it often participates in cancer development and progression, especially cancer metastasis. Hence, inhibition of glycosidases such as mannosidases can disrupt the biosynthesis of glycans on cell surface glycoproteins and modify their role in carcinogenesis and metastasis. Several reviews have delineated the role of N-glycosylation in cancer, but the data regarding effective inhibitors remains sparse. Golgi α-mannosidase has been an attractive therapeutic target for preventing the formation of ß1,6-branched complex type N-glycans. However, due to its high structural similarity to the broadly specific lysosomal α-mannosidase, undesired co-inhibition occurs and this leads to serious side effects that complicates its potential role as a therapeutic agent. Even though extensive efforts have been geared towards the discovery of effective inhibitors, no breakthrough has been achieved thus far which could allow for their use in clinical settings. Improving the specificity of current inhibitors towards Golgi α-mannosidase is requisite in progressing this class of compounds in cancer chemotherapy. In this review, we highlight a few potent and selective inhibitors discovered up to the present to guide researchers for rational design of further effective inhibitors to overcome the issue of specificity.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400, Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
53
|
Ashmus RA, Wang Y, González-Cuesta M, King DT, Tiet B, Gilormini PA, García Fernández JM, Ortiz Mellet C, Britton R, Vocadlo DJ. Rational design of cell active C2-modified DGJ analogues for the inhibition of human α-galactosidase A (GALA). Org Biomol Chem 2021; 19:8057-8062. [PMID: 34494637 DOI: 10.1039/d1ob01526e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the rational design and synthesis of C2-modified DGJ analogues to improve the selective inhibition of human GALA over other glycosidases. We prepare these analogues using a concise route from non-carbohydrate materials and demonstrate the most selective inhibitor 7c (∼100-fold) can act in Fabry patient cells to drive reductions in levels of the disease-relevant glycolipid Gb3.
Collapse
Affiliation(s)
- Roger A Ashmus
- Department of Chemistry and Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Yang Wang
- Department of Chemistry and Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Manuel González-Cuesta
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla 41012, Spain
| | - Dustin T King
- Department of Molecular Biology and Biochemistry Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ben Tiet
- Department of Chemistry and Simon Fraser University, Burnaby, British Columbia, Canada.
| | | | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Sevilla 41092, Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla 41012, Spain
| | - Robert Britton
- Department of Chemistry and Simon Fraser University, Burnaby, British Columbia, Canada.
| | - David J Vocadlo
- Department of Chemistry and Simon Fraser University, Burnaby, British Columbia, Canada.
- Department of Molecular Biology and Biochemistry Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
54
|
A Convenient Approach towards the Synthesis of ADMDP Type Iminosugars and Nojirimycin Derivatives from Sugar-Derived Lactams. Molecules 2021; 26:molecules26185459. [PMID: 34576929 PMCID: PMC8464940 DOI: 10.3390/molecules26185459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022] Open
Abstract
An efficient method for the synthesis of nojirimycin- and pyrrolidine-based iminosugar derivatives has been developed. The strategy is based on the partial reduction in sugar-derived lactams by Schwartz’s reagent and tandem stereoselective nucleophilic addition of cyanide or a silyl enol ether dictated by Woerpel’s or diffusion control models, which affords amino-modified iminosugars, such as ADMDP or higher nojirimycin derivatives.
Collapse
|
55
|
Cigan E, Eggbauer B, Schrittwieser JH, Kroutil W. The role of biocatalysis in the asymmetric synthesis of alkaloids - an update. RSC Adv 2021; 11:28223-28270. [PMID: 35480754 PMCID: PMC9038100 DOI: 10.1039/d1ra04181a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
Alkaloids are a group of natural products with interesting pharmacological properties and a long history of medicinal application. Their complex molecular structures have fascinated chemists for decades, and their total synthesis still poses a considerable challenge. In a previous review, we have illustrated how biocatalysis can make valuable contributions to the asymmetric synthesis of alkaloids. The chemo-enzymatic strategies discussed therein have been further explored and improved in recent years, and advances in amine biocatalysis have vastly expanded the opportunities for incorporating enzymes into synthetic routes towards these important natural products. The present review summarises modern developments in chemo-enzymatic alkaloid synthesis since 2013, in which the biocatalytic transformations continue to take an increasingly 'central' role.
Collapse
Affiliation(s)
- Emmanuel Cigan
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Bettina Eggbauer
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Joerg H Schrittwieser
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|
56
|
Stereoselective synthesis of a 4-⍺-glucoside of valienamine and its X-ray structure in complex with Streptomyces coelicolor GlgE1-V279S. Sci Rep 2021; 11:13413. [PMID: 34183716 PMCID: PMC8238978 DOI: 10.1038/s41598-021-92554-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Glycoside hydrolases (GH) are a large family of hydrolytic enzymes found in all domains of life. As such, they control a plethora of normal and pathogenic biological functions. Thus, understanding selective inhibition of GH enzymes at the atomic level can lead to the identification of new classes of therapeutics. In these studies, we identified a 4-⍺-glucoside of valienamine (8) as an inhibitor of Streptomyces coelicolor (Sco) GlgE1-V279S which belongs to the GH13 Carbohydrate Active EnZyme family. The results obtained from the dose-response experiments show that 8 at a concentration of 1000 µM reduced the enzyme activity of Sco GlgE1-V279S by 65%. The synthetic route to 8 and a closely related 4-⍺-glucoside of validamine (7) was achieved starting from readily available D-maltose. A key step in the synthesis was a chelation-controlled addition of vinylmagnesium bromide to a maltose-derived enone intermediate. X-ray structures of both 7 and 8 in complex with Sco GlgE1-V279S were solved to resolutions of 1.75 and 1.83 Å, respectively. Structural analysis revealed the valienamine derivative 8 binds the enzyme in an E2 conformation for the cyclohexene fragment. Also, the cyclohexene fragment shows a new hydrogen-bonding contact from the pseudo-diaxial C(3)-OH to the catalytic nucleophile Asp 394 at the enzyme active site. Asp 394, in fact, forms a bidentate interaction with both the C(3)-OH and C(7)-OH of the inhibitor. In contrast, compound 7 disrupts the catalytic sidechain interaction network of Sco GlgE1-V279S via steric interactions resulting in a conformation change in Asp 394. These findings will have implications for the design other aminocarbasugar-based GH13-inhibitors and will be useful for identifying more potent and selective inhibitors.
Collapse
|
57
|
Ferjancic Z, Saicic RN. Combining Organocatalyzed Aldolization and Reductive Amination: An Efficient Reaction Sequence for the Synthesis of Iminosugars. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zorana Ferjancic
- University of Belgrade – Faculty of Chemistry Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| | - Radomir N. Saicic
- University of Belgrade – Faculty of Chemistry Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
- Serbian Academy of Sciences and Arts Kneza Mihaila 35 11 000 Belgrade Serbia
| |
Collapse
|
58
|
Azad CS, Shukla P, Olson MA, Narula AK. Phosphinic Acid/
NaI
Mediated Reductive Cyclization Approach for Accessing the
L
‐1‐Deoxynojirimycin
Using a
Two‐Component Three‐Centered
(
2C3C
) Ugi Type Reaction. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chandra S Azad
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Health Science Platform, Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 China
- “Hygeia”, Centre of Excellence in Pharmaceutical Sciences, Guru Gobind Singh Indraprastha University Sector 16‐C, Dwarka New Delhi 110078 India
| | - Pratibha Shukla
- “Hygeia”, Centre of Excellence in Pharmaceutical Sciences, Guru Gobind Singh Indraprastha University Sector 16‐C, Dwarka New Delhi 110078 India
| | - Mark A Olson
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Health Science Platform, Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 China
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Anudeep K Narula
- “Hygeia”, Centre of Excellence in Pharmaceutical Sciences, Guru Gobind Singh Indraprastha University Sector 16‐C, Dwarka New Delhi 110078 India
| |
Collapse
|
59
|
Li RF, Yang JX, Liu J, Ai GM, Zhang HY, Xu LY, Chen SB, Zhang HX, Li XL, Cao ZR, Wang KR. Positional Isomeric Effects on the Optical Properties, Multivalent Glycosidase Inhibition Effect, and Hypoglycemic Effect of Perylene Bisimide-deoxynojirimycin Conjugates. J Med Chem 2021; 64:5863-5873. [PMID: 33886333 DOI: 10.1021/acs.jmedchem.1c00036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although multivalent glycosidase inhibitors have shown enhanced glycosidase inhibition activities, further applications and research directions need to be developed in the future. In this paper, two positional isomeric perylene bisimide derivatives (PBI-4DNJ-1 and PBI-4DNJ-2) with 1-deoxynojirimycin conjugated were synthesized. Furthermore, PBI-4DNJ-1 and PBI-4DNJ-2 showed positional isomeric effects on the optical properties, self-assembly behaviors, glycosidase inhibition activities, and hypoglycemic effects. Importantly, PBI-4DNJ-1 exhibited potent hypoglycemic effects in mice with 41.33 ± 2.84 and 37.45 ± 3.94% decreases in blood glucose at 15 and 30 min, respectively. The molecular docking results showed that the active fragment of PBI-4DNJ-1 has the highest binding energy (9.649 kcal/mol) and the highest total hydrogen bond energy (62.83 kJ/mol), which were related to the positional isomeric effect on the hypoglycemic effect in mice. This work introduced a new means to develop antihyperglycemic agents in the field of multivalent glycomimetics.
Collapse
Affiliation(s)
- Ren-Feng Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, P. R. China.,Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, P. R. China
| | - Jian-Xing Yang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, P. R. China
| | - Jing Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Guo-Min Ai
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Hui-Yan Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, P. R. China
| | - Li-Yue Xu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Si-Bing Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Hong-Xin Zhang
- Medical Comprehensive Experimental Center, Hebei University, Baoding 071002, P. R. China
| | - Xiao-Liu Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, P. R. China
| | - Zhi-Ran Cao
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, P. R. China
| | - Ke-Rang Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, P. R. China
| |
Collapse
|
60
|
De Fenza M, Esposito A, D’Alonzo D, Guaragna A. Synthesis of Piperidine Nucleosides as Conformationally Restricted Immucillin Mimics. Molecules 2021; 26:1652. [PMID: 33809603 PMCID: PMC8001838 DOI: 10.3390/molecules26061652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
The de novo synthesis of piperidine nucleosides from our homologating agent 5,6-dihydro-1,4-dithiin is herein reported. The structure and conformation of nucleosides were conceived to faithfully resemble the well-known nucleoside drugs Immucillins H and A in their bioactive conformation. NMR analysis of the synthesized compounds confirmed that they adopt an iminosugar conformation bearing the nucleobases and the hydroxyl groups in the appropriate orientation.
Collapse
Affiliation(s)
- Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (M.D.F.); (A.E.); (D.D.)
| | - Anna Esposito
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (M.D.F.); (A.E.); (D.D.)
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (M.D.F.); (A.E.); (D.D.)
| | - Annalisa Guaragna
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
61
|
Serbian I, Prell E, Fischer C, Deigner HP, Csuk R. n-Propyl 6-amino-2,6-dideoxy-2,2-difluoro-β-d-glucopyranoside is a good inhibitor for the β-galactosidase from E. coli. Med Chem Res 2021; 30:1099-1107. [PMID: 33716475 PMCID: PMC7934981 DOI: 10.1007/s00044-021-02715-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/17/2021] [Indexed: 01/25/2023]
Abstract
A convenient route has been developed for the synthesis of novel 6-amino-2,2-(or 3,3-difluoro)-2-(or 3),6-dideoxy-hexopyranoses. Biological screening showed these compounds as good inhibitors for several glycosidases. Especially n-propyl 6-amino-2,6-dideoxy-2,2-difluoro-β-d-glucopyranoside (8) was an excellent competitive inhibitor for the β-galactosidase from E. coli holding a Ki of 0.50 μM. ![]()
Collapse
Affiliation(s)
- Immo Serbian
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes_Str. 2, D-06120 Halle (Saale), Germany
| | - Erik Prell
- Department of Radiation Medicine, Section of Nuclear Medicine, University Hospital Halle (Saale), Ernst-Grube Str. 40, D-06120 Halle (Saale), Germany
| | - Claudia Fischer
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes_Str. 2, D-06120 Halle (Saale), Germany
| | - Hans-Peter Deigner
- Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes_Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
62
|
Okuyama Y, Kidena M, Kato E, Kawano S, Ishii K, Maie K, Miura K, Simizu S, Sato T, Chida N. Seven-Step Synthesis of All-Nitrogenated Sugar Derivatives Using Sequential Overman Rearrangements. Angew Chem Int Ed Engl 2021; 60:5193-5198. [PMID: 33252821 DOI: 10.1002/anie.202015141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 11/10/2022]
Abstract
All-nitrogenated sugars (ANSs), in which all hydroxy groups in a carbohydrate are replaced with amino groups, are anticipated to be privileged structures with useful biological activities. However, ANS synthesis has been challenging due to the difficulty in the installation of multi-amino groups. We report herein the development of a concise synthetic route to peracetylated ANSs in seven steps from commercially available monosaccharides. The key to success is the use of the sequential Overman rearrangement, which enables formal simultaneous substitution of four or five hydroxy groups in monosaccharides with amino groups. A variety of ANSs are available through the same reaction sequence starting from different initial monosaccharides by chirality transfer of secondary alcohols. Transformations of the resulting peracetylated ANSs such as glycosylation and deacetylation are also demonstrated. Biological studies reveal that ANS-modified cholesterol show cytotoxicity against human cancer cell lines, whereas each ANS and cholesterol have no cytotoxicity.
Collapse
Affiliation(s)
- Yuya Okuyama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Mayu Kidena
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Erina Kato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Sayaka Kawano
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Koki Ishii
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kenta Maie
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kazuki Miura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
63
|
Okuyama Y, Kidena M, Kato E, Kawano S, Ishii K, Maie K, Miura K, Simizu S, Sato T, Chida N. Seven‐Step Synthesis of All‐Nitrogenated Sugar Derivatives Using Sequential Overman Rearrangements. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuya Okuyama
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Mayu Kidena
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Erina Kato
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Sayaka Kawano
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Koki Ishii
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kenta Maie
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kazuki Miura
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Siro Simizu
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Takaaki Sato
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Noritaka Chida
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
64
|
Muru K, Gauthier C. Glycosylation and Protecting Group Strategies Towards the Synthesis of Saponins and Bacterial Oligosaccharides: A Personal Account. CHEM REC 2021; 21:2990-3004. [DOI: 10.1002/tcr.202000181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Kevin Muru
- Centre Armand-Frappier Santé Biotechnologie Institut national de la recherche scientifique (INRS) 531, boulevard des Prairies Laval Québec Canada H7V 1B7
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie Institut national de la recherche scientifique (INRS) 531, boulevard des Prairies Laval Québec Canada H7V 1B7
| |
Collapse
|
65
|
Lumbroso A, Berthonneau C, Beaudet I, Quintard JP, Planchat A, García-Moreno MI, Ortiz Mellet C, Le Grognec E. A versatile stereocontrolled synthesis of 2-deoxyiminosugar C-glycosides and their evaluation as glycosidase inhibitors. Org Biomol Chem 2021; 19:1083-1099. [PMID: 33427829 DOI: 10.1039/d0ob02249g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A highly enantioselective synthesis of (R,S) or (S,S)-2,6-disubstituted dehydropiperidines has been previously achieved through Sn/Li transmetalation of the corresponding stannylated dehydropiperidines or of their precursors. Herein, we successively consider their Upjohn's syn dihydroxylation and their anti-dihydroxylation via an epoxidation reaction followed by epoxide opening reaction. The stereochemical course of these reactions was first reported including the use of appropriate protecting groups before considering the conversion of the obtained compounds into NH or NMe iminosugar hydrochlorides. A primary evaluation of the designed iminosugar C-glycosides as glycosidase inhibitors suggests candidates for the selective inhibition of α-galactosidase, amyloglycosidase and naringinase. Beyond the reported results, the method constitutes a highly modulable route for the synthesis of well stereodefined iminosugar C-glycosides, an advantage which might be used for the design of iminosugars to enhance their biological properties.
Collapse
|
66
|
Affiliation(s)
- Yoshihiro Natori
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
67
|
Dikošová L, Otočková B, Malatinský T, Doháňošová J, Kopáčová M, Ďurinová A, Smutná L, Trejtnar F, Fischer R. New total synthesis and structure confirmation of putative (+)-hyacinthacine C 3 and (+)-5- epi-hyacinthacine C 3. RSC Adv 2021; 11:31621-31630. [PMID: 35496868 PMCID: PMC9041629 DOI: 10.1039/d1ra06225e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/10/2021] [Indexed: 12/03/2022] Open
Abstract
A unique synthesis of polyhydroxylated pyrrolizidine alkaloids, namely (+)-hyacinthacine C3 and (+)-5-epi-hyacinthacine C3 is presented. The strategy relies on a 1,3-dipolar cycloaddition of an l-mannose derived nitrone, which owing to its great syn-stereoselectivity builds up the majority of the required stereocenters. The following key steps include Wittig olefination and iodine-mediated aminocyclisation, that provide two epimeric pyrrolizidines with the appropriate configuration. As a result, structure and steric arrangement of the first synthetically prepared (+)-hyacinthacine C3 are proved to be correct, clearly confirming the inconsistency with the stereochemistry assigned to the natural sample. With respect to the previously proven glycosidase inhibitory activities, the antiproliferative effect of (+)-hyacinthacine C3 and (+)-5-epi-hyacinthacine C3 was evaluated using several cell line models. A second total synthesis of (+)-hyacinthacine C3 is reported. As a result, structure of the first synthetically prepared alkaloid is proved to be correct, clearly confirming the inconsistency with the stereochemistry assigned to the natural sample.![]()
Collapse
Affiliation(s)
- Lívia Dikošová
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Barbora Otočková
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Tomáš Malatinský
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Jana Doháňošová
- Central Laboratories, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Mária Kopáčová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovak Republic
| | - Anna Ďurinová
- Charles University, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Lucie Smutná
- Charles University, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - František Trejtnar
- Charles University, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Róbert Fischer
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovak Republic
| |
Collapse
|
68
|
Puet A, Domínguez G, Cañada FJ, Pérez-Castells J. Amino Acid-Based Synthesis and Glycosidase Inhibition of Cyclopropane-Containing Iminosugars. ACS OMEGA 2020; 5:31821-31830. [PMID: 33344836 PMCID: PMC7745444 DOI: 10.1021/acsomega.0c04589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/29/2020] [Indexed: 05/04/2023]
Abstract
Synthesis of four iminosugars fused to a cyclopropane ring is described using l-serine as the chiral pool. The key steps are large-scale preparation of an α,β-unsaturated piperidinone followed by completely stereoselective sulfur ylide cyclopropanation. Stereochemistry of compounds has been studied by nuclear Overhauser effect spectroscopy (NOESY) experiments and 1H homonuclear decoupling to measure constant couplings. The activity of these compounds against different glycosidases has been evaluated. Although inhibition activity was low (compound 8a presents a (K i) of 1.18 mM against β-galactosidase from Escherichia coli), interestingly, we found that compounds 8a and 8b increase the activity of neuraminidase from Vibrio cholerae up to 100%.
Collapse
Affiliation(s)
- Alejandro Puet
- Department
of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain
| | - Gema Domínguez
- Department
of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain
| | - F. Javier Cañada
- Dep.
Biología FisicoQuímica, CIB
Margarita Salas, CSIC,
C/Ramiro de Maetzu 9, 28040 Madrid, Spain
- CIBER
de Enfermedades Respiratorias (CIBERES), Avda, Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Javier Pérez-Castells
- Department
of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain
- E-mail:
| |
Collapse
|
69
|
Esposito A, D’Alonzo D, D’Errico S, De Gregorio E, Guaragna A. Toward the Identification of Novel Antimicrobial Agents: One-Pot Synthesis of Lipophilic Conjugates of N-Alkyl d- and l-Iminosugars. Mar Drugs 2020; 18:E572. [PMID: 33228211 PMCID: PMC7699595 DOI: 10.3390/md18110572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
In the effort to improve the antimicrobial activity of iminosugars, we report the synthesis of lipophilic iminosugars 10a-b and 11a-b based on the one-pot conjugation of both enantiomeric forms of N-butyldeoxynojirimycin (NBDNJ) and N-nonyloxypentyldeoxynojirimycin (NPDNJ) with cholesterol and a succinic acid model linker. The conjugation reaction was tuned using the established PS-TPP/I2/ImH activating system, which provided the desired compounds in high yields (94-96%) by a one-pot procedure. The substantial increase in the lipophilicity of 10a-b and 11a-b is supposed to improve internalization within the bacterial cell, thereby potentially leading to enhanced antimicrobial properties. However, assays are currently hampered by solubility problems; therefore, alternative administration strategies will need to be devised.
Collapse
Affiliation(s)
- Anna Esposito
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (D.D.)
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (D.D.)
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy;
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Annalisa Guaragna
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
70
|
Domingues M, Jaszczyk J, Ismael MI, Figueiredo JA, Daniellou R, Lafite P, Schuler M, Tatibouët A. Conformationally Restricted Oxazolidin‐2‐one Fused Bicyclic Iminosugars as Potential Glycosidase Inhibitors. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Domingues
- Institut de Chimie Organique et Analytique (ICOA) Université d'Orléans CNRS‐UMR 7311, BP 6759 45067 Orléans cedex 02 France
- Departamento de Química Unidade I&D FibEnTech da Universidade da Beira Interior Av. Marquês d'Ávila e Bolama 6201‐001 Covilhã Portugal
| | - Justyna Jaszczyk
- Institut de Chimie Organique et Analytique (ICOA) Université d'Orléans CNRS‐UMR 7311, BP 6759 45067 Orléans cedex 02 France
| | - Maria Isabel Ismael
- Departamento de Química Unidade I&D FibEnTech da Universidade da Beira Interior Av. Marquês d'Ávila e Bolama 6201‐001 Covilhã Portugal
| | - José Albertino Figueiredo
- Departamento de Química Unidade I&D FibEnTech da Universidade da Beira Interior Av. Marquês d'Ávila e Bolama 6201‐001 Covilhã Portugal
| | - Richard Daniellou
- Institut de Chimie Organique et Analytique (ICOA) Université d'Orléans CNRS‐UMR 7311, BP 6759 45067 Orléans cedex 02 France
| | - Pierre Lafite
- Institut de Chimie Organique et Analytique (ICOA) Université d'Orléans CNRS‐UMR 7311, BP 6759 45067 Orléans cedex 02 France
| | - Marie Schuler
- Institut de Chimie Organique et Analytique (ICOA) Université d'Orléans CNRS‐UMR 7311, BP 6759 45067 Orléans cedex 02 France
| | - Arnaud Tatibouët
- Institut de Chimie Organique et Analytique (ICOA) Université d'Orléans CNRS‐UMR 7311, BP 6759 45067 Orléans cedex 02 France
| |
Collapse
|
71
|
Troost B, Smit JM. Recent advances in antiviral drug development towards dengue virus. Curr Opin Virol 2020; 43:9-21. [PMID: 32795907 DOI: 10.1016/j.coviro.2020.07.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/09/2020] [Indexed: 01/29/2023]
Abstract
Despite the high disease burden of dengue virus, there is no approved antiviral treatment or broadly applicable vaccine to treat or prevent dengue virus infection. In the last decade, many antiviral compounds have been identified but only few have been further evaluated in pre-clinical or clinical trials. This review will give an overview of the direct-acting and host-directed antivirals identified to date. Furthermore, important parameters for further development that is, drug properties including efficacy, specificity and stability, pre-clinical animal testing, and combinational drug therapy will be discussed.
Collapse
Affiliation(s)
- Berit Troost
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
72
|
Gamboa Marin OJ, Hussain N, Ravicoularamin G, Ameur N, Gormand P, Sauvageau J, Gauthier C. Total Synthesis of 6-Amino-2,6-dideoxy-α-Kdo from d-Mannose. Org Lett 2020; 22:5783-5788. [DOI: 10.1021/acs.orglett.0c01847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Oscar Javier Gamboa Marin
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boul. des Prairies, Laval, Québec, Canada H7V 1B7
| | - Nazar Hussain
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boul. des Prairies, Laval, Québec, Canada H7V 1B7
| | - Gokulakrishnan Ravicoularamin
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boul. des Prairies, Laval, Québec, Canada H7V 1B7
| | - Nassima Ameur
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boul. des Prairies, Laval, Québec, Canada H7V 1B7
| | - Paul Gormand
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boul. des Prairies, Laval, Québec, Canada H7V 1B7
| | - Janelle Sauvageau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boul. des Prairies, Laval, Québec, Canada H7V 1B7
- National Research Council Canada (NRC), 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boul. des Prairies, Laval, Québec, Canada H7V 1B7
| |
Collapse
|
73
|
Nash RJ, Bartholomew B, Penkova YB, Rotondo D, Yamasaka F, Stafford GP, Jenkinson SF, Fleet GWJ. Iminosugar idoBR1 Isolated from Cucumber Cucumis sativus Reduces Inflammatory Activity. ACS OMEGA 2020; 5:16263-16271. [PMID: 32656449 PMCID: PMC7346245 DOI: 10.1021/acsomega.0c02092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 05/17/2023]
Abstract
Cucumbers have been anecdotally claimed to have anti-inflammatory activity for a long time, but the active principle was not identified. idoBR1, (2R,3R,4R,5S)-3,4,5-trihydroxypiperidine-2-carboxylic acid, is an iminosugar amino acid isolated from fruits of certain cucumbers, Cucumis sativus (Cucurbitaceae). It has no chromophore and analytically behaves like an amino acid making detection and identification difficult. It has anti-inflammatory activity reducing lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α) in THP-1 cells and ex vivo human blood. It showed selective inhibition of human α-l-iduronidase and sialidases from both bacteria (Tannerella forsythia) and human THP-1 cells. idoBR1 and cucumber extract reduced the binding of hyaluronic acid (HA) to CD44 in LPS-stimulated THP-1 cells and may function as an anti-inflammatory agent by inhibiting induced sialidase involved in the production of functionally active HA adhesive CD44. Similar to the related iminosugars, idoBR1 is excreted unchanged in urine following consumption. Its importance in the diet should be further evaluated.
Collapse
Affiliation(s)
- Robert J. Nash
- PhytoQuest
Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, U.K.
- . Phone: +44 1970 823200. Fax: +44 1970 823209
| | | | - Yana B. Penkova
- PhytoQuest
Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, U.K.
| | - Dino Rotondo
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.
| | - Fernanda Yamasaka
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.
| | - Graham P. Stafford
- Integrated
BioSciences, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, U.K.
| | - Sarah F. Jenkinson
- Chemistry
Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - George W. J. Fleet
- Chemistry
Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| |
Collapse
|
74
|
De Gregorio E, Esposito A, Vollaro A, De Fenza M, D’Alonzo D, Migliaccio A, Iula VD, Zarrilli R, Guaragna A. N-Nonyloxypentyl-l-Deoxynojirimycin Inhibits Growth, Biofilm Formation and Virulence Factors Expression of Staphylococcus aureus. Antibiotics (Basel) 2020; 9:E362. [PMID: 32604791 PMCID: PMC7344813 DOI: 10.3390/antibiotics9060362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is one of the major causes of hospital- and community-associated bacterial infections throughout the world, which are difficult to treat due to the rising number of drug-resistant strains. New molecules displaying potent activity against this bacterium are urgently needed. In this study, d- and l-deoxynojirimycin (DNJ) and a small library of their N-alkyl derivatives were screened against S. aureus ATCC 29213, with the aim to identify novel candidates with inhibitory potential. Among them, N-nonyloxypentyl-l-DNJ (l-NPDNJ) proved to be the most active compound against S. aureus ATCC 29213 and its clinical isolates, with the minimum inhibitory concentration (MIC) value of 128 μg/mL. l-NPDNJ also displayed an additive effect with gentamicin and oxacillin against the gentamicin- and methicillin-resistant S. aureus isolate 00717. Sub-MIC values of l-NPDNJ affected S. aureus biofilm development in a dose-dependent manner, inducing a strong reduction in biofilm biomass. Moreover, real-time reverse transcriptase PCR analysis revealed that l-NPDNJ effectively inhibited at sub-MIC values the transcription of the spa, hla, hlb and sea virulence genes, as well as the agrA and saeR response regulator genes.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Anna Esposito
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (M.D.F.); (D.D.)
| | - Adriana Vollaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (M.D.F.); (D.D.)
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (M.D.F.); (D.D.)
| | - Antonella Migliaccio
- Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (A.M.); (R.Z.)
| | - Vita Dora Iula
- Complex Operative Unit of Clinical Pathology, “Ospedale del Mare-ASL NA1 Centro”, 80131 Naples, Italy;
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (A.M.); (R.Z.)
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (M.D.F.); (D.D.)
| |
Collapse
|
75
|
Strategy for Designing Selective Lysosomal Acid α-Glucosidase Inhibitors: Binding Orientation and Influence on Selectivity. Molecules 2020; 25:molecules25122843. [PMID: 32575625 PMCID: PMC7357040 DOI: 10.3390/molecules25122843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
Deoxynojirimycin (DNJ) is the archetypal iminosugar, in which the configuration of the hydroxyl groups in the piperidine ring truly mimic those of d-glucopyranose; DNJ and derivatives have beneficial effects as therapeutic agents, such as anti-diabetic and antiviral agents, and pharmacological chaperones for genetic disorders, because they have been shown to inhibit α-glucosidases from various sources. However, attempts to design a better molecule based solely on structural similarity cannot produce selectivity between α-glucosidases that are localized in multiple organs and tissues, because the differences of each sugar-recognition site are very subtle. In this study, we provide the first example of a design strategy for selective lysosomal acid α-glucosidase (GAA) inhibitors focusing on the alkyl chain storage site. Our design of α-1-C-heptyl-1,4-dideoxy-1,4-imino-l-arabinitol (LAB) produced a potent inhibitor of the GAA, with an IC50 value of 0.44 µM. It displayed a remarkable selectivity toward GAA (selectivity index value of 168.2). A molecular dynamic simulation study revealed that the ligand-binding conformation stability gradually improved with increasing length of the α-1-C-alkyl chain. It is noteworthy that α-1-C-heptyl-LAB formed clearly different interactions from DNJ and had favored hydrophobic interactions with Trp481, Phe525, and Met519 at the alkyl chain storage pocket of GAA. Moreover, a molecular docking study revealed that endoplasmic reticulum (ER) α-glucosidase II does not have enough space to accommodate these alkyl chains. Therefore, the design strategy focusing on the shape and acceptability of long alkyl chain at each α-glucosidase may lead to the creation of more selective and practically useful inhibitors.
Collapse
|
76
|
Harit VK, Ramesh NG. A common strategy towards the synthesis of 1,4-dideoxy-1,4-imino-l-xylitol, deacetyl (+)-anisomycin and amino-substituted piperidine iminosugars. Carbohydr Res 2020; 492:107988. [PMID: 32387805 DOI: 10.1016/j.carres.2020.107988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
A strategy towards the synthesis of three different target molecules, namely 1,4-dideoxy-1,4-imino-l-xylitol, deacetyl (+)-anisomycin and amino-substituted piperidine iminosugars, molecules of potential biological and medicinal significance, is reported from a common amino-vicinal diol intermediate derived from tri-O-benzyl-d-glucal. Construction of the key pyrrolidine ring present in 1,4-dideoxy-1,4-imino-l-xylitol and (+)-anisomycin was a consequence of thermodynamically driven concomitant intramolecular nucleophilic addition reaction of the amino group to the resultant aldehyde obtained by oxidative cleavage of the amino-vicinal diol. Alternatively, double nucleophilic substitution on an amino-diol, after mesylation, with various amines delivered amino-substituted piperidine iminosugars in good yields.
Collapse
Affiliation(s)
- Vimal Kant Harit
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Namakkal G Ramesh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
77
|
Synthesis and Therapeutic Applications of Iminosugars in Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21093353. [PMID: 32397443 PMCID: PMC7247015 DOI: 10.3390/ijms21093353] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Iminosugars are sugar analogues endowed with a high pharmacological potential. The wide range of biological activities exhibited by these glycomimetics associated with their excellent drug profile make them attractive therapeutic candidates for several medical interventions. The ability of iminosugars to act as inhibitors or enhancers of carbohydrate-processing enzymes suggests their potential use as therapeutics for the treatment of cystic fibrosis (CF). Herein we review the most relevant advances in the field, paying attention to both the chemical synthesis of the iminosugars and their biological evaluations, resulting from in vitro and in vivo assays. Starting from the example of the marketed drug NBDNJ (N-butyl deoxynojirimycin), a variety of iminosugars have exhibited the capacity to rescue the trafficking of F508del-CFTR (deletion of F508 residue in the CF transmembrane conductance regulator), either alone or in combination with other correctors. Interesting results have also been obtained when iminosugars were considered as anti-inflammatory agents in CF lung disease. The data herein reported demonstrate that iminosugars hold considerable potential to be applied for both therapeutic purposes.
Collapse
|
78
|
Bordes A, Poveda A, Troadec T, Franconetti A, Ardá A, Perrin F, Ménand M, Sollogoub M, Guillard J, Désiré J, Tripier R, Jiménez-Barbero J, Blériot Y. Synthesis, Conformational Analysis, and Complexation Study of an Iminosugar-Aza-Crown, a Sweet Chiral Cyclam Analog. Org Lett 2020; 22:2344-2349. [PMID: 32153195 PMCID: PMC7114874 DOI: 10.1021/acs.orglett.0c00503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A new family of chiral C2 symmetric
tetraazamacrocycles, coined ISAC for IminoSugar Aza-Crown, incorporating
two iminosugars adopting a 4C1 conformation
is disclosed. Multinuclear NMR experiments on the corresponding Cd2+ complex show that the ISAC is a strong chelator in water
and its tetramine cavity adopts a conformation similar to that of
the parent Cd–cyclam complex. Similar behavior is observed
with Cu2+ in solution, with enhanced stability compared
to the Cu–cyclam complex.
Collapse
Affiliation(s)
- Alexandra Bordes
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Ana Poveda
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Edif. 801A-1°, Derio-Bizkaia 48160, Spain
| | - Thibault Troadec
- Universite de Brest, UMR-CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29200 Brest, France
| | - Antonio Franconetti
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Edif. 801A-1°, Derio-Bizkaia 48160, Spain
| | - Ana Ardá
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Edif. 801A-1°, Derio-Bizkaia 48160, Spain
| | - Flavie Perrin
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Mickaël Ménand
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Jerôme Guillard
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Jérôme Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Raphaël Tripier
- Universite de Brest, UMR-CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29200 Brest, France
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Edif. 801A-1°, Derio-Bizkaia 48160, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.,Dept. Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain
| | - Yves Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| |
Collapse
|
79
|
A Route to 1-Deoxynojirimycin and 1-Deoxymannojirimycin Derivatives with Quaternary Centers Adjacent to the Ring Nitrogen from Methyl α-d
-Mannopyranoside. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
80
|
Hanessian-Hullar reaction in the synthesis of highly substituted trans-3,4-dihydroxypyrrolidines: Rhamnulose iminosugar mimics inhibit α-glucosidase. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
81
|
J. Murphy P, J. R. Ashworth Z, Bartholomew B, M. Evans D, Forde-Thomas J, F. Hoffmann K, Murdoch R, J. Nash R, Sharp H, Whiteland H. The Synthesis and Glycosidase Inhibitory Activity of Analogues of Tiruchanduramine. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
82
|
Chen W, Sayyad A, Chen C, Chen Y, Cheng TR, Cheng W. Divergent Synthesis of Bicyclic Iminosugars: Preparation of (−)‐Swainsonine‐Based Alkaloids and Their Inhibition Study towardsα‐Human Mannosidases. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei‐An Chen
- Genomics Research CenterAcademia Sinica 128 Academia Road, Sec. 2 Taipei 115 Taiwan
| | - Ashik Sayyad
- Genomics Research CenterAcademia Sinica 128 Academia Road, Sec. 2 Taipei 115 Taiwan
| | - Chiao‐Wen Chen
- Genomics Research CenterAcademia Sinica 128 Academia Road, Sec. 2 Taipei 115 Taiwan
| | - Yu‐Hsin Chen
- Genomics Research CenterAcademia Sinica 128 Academia Road, Sec. 2 Taipei 115 Taiwan
| | - Ting‐Jen R. Cheng
- Genomics Research CenterAcademia Sinica 128 Academia Road, Sec. 2 Taipei 115 Taiwan
| | - Wei‐Chieh Cheng
- Genomics Research CenterAcademia Sinica 128 Academia Road, Sec. 2 Taipei 115 Taiwan
- Department of ChemistryNational Cheng-Kung University 1 University Road Tainan 701 Taiwan
- Department of Applied ChemistryNational Chiayi University 300, Xuefu Rd., East Dist. Chiayi 600 Taiwan
- Department of Medicinal and Applied ChemistryKaohsiung Medical University 100 Shih-Chuan 1st Rd. Kaohsiung 807 Taiwan
| |
Collapse
|
83
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
84
|
Wu QK, Kinami K, Kato A, Li YX, Fleet GWJ, Yu CY, Jia YM. Synthesis and Glycosidase Inhibition of Broussonetine M and Its Analogues. Molecules 2019; 24:molecules24203712. [PMID: 31619020 PMCID: PMC6832352 DOI: 10.3390/molecules24203712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 01/13/2023] Open
Abstract
Cross-metathesis (CM) and Keck asymmetric allylation, which allows access to defined stereochemistry of a remote side chain hydroxyl group, are the key steps in a versatile synthesis of broussonetine M (3) from the d-arabinose-derived cyclic nitrone 14. By a similar strategy, ent-broussonetine M (ent-3) and six other stereoisomers have been synthesized, respectively, starting from l-arabino-nitrone (ent-14), l-lyxo-nitrone (ent-3-epi-14), and l-xylo-nitrone (2-epi-14) in five steps, in 26%–31% overall yield. The natural product broussonetine M (3) and 10’-epi-3 were potent inhibitors of β-glucosidase (IC50 = 6.3 μM and 0.8 μM, respectively) and β-galactosidase (IC50 = 2.3 μM and 0.2 μM, respectively); while their enantiomers, ent-3 and ent-10’-epi-3, were selective and potent inhibitors of rice α-glucosidase (IC50 = 1.2 μM and 1.3 μM, respectively) and rat intestinal maltase (IC50 = 0.29 μM and 18 μM, respectively). Both the configuration of the polyhydroxylated pyrrolidine ring and C-10’ hydroxyl on the alkyl side chain affect the specificity and potency of glycosidase inhibition.
Collapse
Affiliation(s)
- Qing-Kun Wu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kyoko Kinami
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, OX13TA Oxford, UK.
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
85
|
Prandi C, Occhiato EG. From synthetic control to natural products: a focus on N-heterocycles. PEST MANAGEMENT SCIENCE 2019; 75:2385-2402. [PMID: 30624033 DOI: 10.1002/ps.5322] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Natural products containing a N-heterocycle motif are widespread in nature and medicinal plants, in particular, have proved to be a source of almost unlimited N-derived structures with high molecular diversity. Because of their intrinsic potential for use in both biomedical and agricultural applications, there is a general need for new compounds and for the synthesis of 'natural-inspired' analogues. Importantly, transition of a natural product from discovery to a 'market lead' is associated with an increasingly challenging demand for more of the compound, which cannot be met by isolation from natural plant sources, often due to low extraction yields and uneven availability of the plant source itself. Synthesis remains the most reliable approach to provide valuable products for the market. In this review, a comprehensive overview of our contribution to synthetic access to N-derived natural products is given. Major strengths of the proposed methodologies are discussed critically. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Ernesto G Occhiato
- Department of Chemistry 'U. Schiff', Università degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
86
|
Zamoner LOB, Aragão-Leoneti V, Carvalho I. Iminosugars: Effects of Stereochemistry, Ring Size, and N-Substituents on Glucosidase Activities. Pharmaceuticals (Basel) 2019; 12:E108. [PMID: 31336868 PMCID: PMC6789487 DOI: 10.3390/ph12030108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 01/18/2023] Open
Abstract
N-substituted iminosugar analogues are potent inhibitors of glucosidases and glycosyltransferases with broad therapeutic applications, such as treatment of diabetes and Gaucher disease, immunosuppressive activities, and antibacterial and antiviral effects against HIV, HPV, hepatitis C, bovine diarrhea (BVDV), Ebola (EBOV) and Marburg viruses (MARV), influenza, Zika, and dengue virus. Based on our previous work on functionalized isomeric 1,5-dideoxy-1,5-imino-D-gulitol (L-gulo-piperidines, with inverted configuration at C-2 and C-5 in respect to glucose or deoxynojirimycin (DNJ)) and 1,6-dideoxy-1,6-imino-D-mannitol (D-manno-azepane derivatives) cores N-linked to different sites of glucopyranose units, we continue our studies on these alternative iminosugars bearing simple N-alkyl chains instead of glucose to understand if these easily accessed scaffolds could preserve the inhibition profile of the corresponding glucose-based N-alkyl derivatives as DNJ cores found in miglustat and miglitol drugs. Thus, a small library of iminosugars (14 compounds) displaying different stereochemistry, ring size, and N-substitutions was successfully synthesized from a common precursor, D-mannitol, by utilizing an SN2 aminocyclization reaction via two isomeric bis-epoxides. The evaluation of the prospective inhibitors on glucosidases revealed that merely D-gluco-piperidine (miglitol, 41a) and L-ido-azepane (41b) DNJ-derivatives bearing the N-hydroxylethyl group showed inhibition towards α-glucosidase with IC50 41 µM and 138 µM, respectively, using DNJ as reference (IC50 134 µM). On the other hand, β-glucosidase inhibition was achieved for glucose-inverted configuration (C-2 and C-5) derivatives, as novel L-gulo-piperidine (27a) and D-manno-azepane (27b), preserving the N-butyl chain, with IC50 109 and 184 µM, respectively, comparable to miglustat with the same N-butyl substituent (40a, IC50 172 µM). Interestingly, the seven-membered ring L-ido-azepane (40b) displayed near twice the activity (IC50 80 µM) of the corresponding D-gluco-piperidine miglustat drug (40a). Furthermore, besides α-glucosidase inhibition, both miglitol (41a) and L-ido-azepane (41b) proved to be the strongest β-glucosidase inhibitors of the series with IC50 of 4 µM.
Collapse
Affiliation(s)
- Luís O B Zamoner
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, CEP14040-903 Ribeirão Preto, Brazil
| | - Valquiria Aragão-Leoneti
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, CEP14040-903 Ribeirão Preto, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, CEP14040-903 Ribeirão Preto, Brazil.
| |
Collapse
|
87
|
Bourebaba L, Bedjou F, Röcken M, Marycz K. Nortropane alkaloids as pharmacological chaperones in the rescue of equine adipose-derived mesenchymal stromal stem cells affected by metabolic syndrome through mitochondrial potentiation, endoplasmic reticulum stress mitigation and insulin resistance alleviation. Stem Cell Res Ther 2019; 10:178. [PMID: 31215461 PMCID: PMC6582509 DOI: 10.1186/s13287-019-1292-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Equine metabolic syndrome (EMS) refers to a cluster of associated abnormalities and metabolic disorders, including insulin resistance and adiposity. The numerous biological properties of mesenchymal stem cells (MSCs), including self-renewal and multipotency, have been the subject of many in-depth studies, for the management of EMS; however, it has been shown that this cell type may be affected by the condition, impairing thus seriously their therapeutic potential. Therefore, an attempt to rescue EMS adipose-derived stem cells (ASCs) with calystegines (polyhydroxylated alkaloids) that are endowed with strong antioxidant and antidiabetic abilities was performed. METHODS ASCs isolated from EMS horses were subsequently treated with various concentrations of total calystegines. Different parameters were then assessed using flow cytometry, confocal as well as SE microscopy, and RT-qPCR. RESULTS Our results clearly demonstrated that calystegines could improve EqASC viability and proliferation and significantly reduce apoptosis, via improvement of mitochondrial potentiation and functionality, regulation of pro- and anti-apoptotic pathways, and suppression of ER stress. Furthermore, nortropanes positively upregulated GLUT4 and IRS transcripts, indicating a possible sensitizing or mimetic effect to insulin. Most interesting finding in this investigation lies in the modulatory effect of autophagy, a process that allows the maintenance of cellular homeostasis; calystegines acted as pharmacological chaperones to promote cell survival. CONCLUSION Obtained data open new perspectives in the development of new drugs, which may improve the metabolic dynamics of cells challenged by MS.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland. .,International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland.
| | - Fatiha Bedjou
- Laboratoire de Biotechnologies végétales et d'Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Michael Röcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland. .,Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany. .,International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland.
| |
Collapse
|
88
|
Hossain F, Andreana PR. Developments in Carbohydrate-Based Cancer Therapeutics. Pharmaceuticals (Basel) 2019; 12:ph12020084. [PMID: 31167407 PMCID: PMC6631729 DOI: 10.3390/ph12020084] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells of diverse origins express extracellular tumor-specific carbohydrate antigens (TACAs) because of aberrant glycosylation. Overexpressed TACAs on the surface of tumor cells are considered biomarkers for cancer detection and have always been prioritized for the development of novel carbohydrate-based anti-cancer vaccines. In recent years, progress has been made in developing synthetic, carbohydrate-based antitumor vaccines to improve immune responses associated with targeting these specific antigens. Tumor cells also exhaust more energy for proliferation than normal cells, by consuming excessive amounts of glucose via overexpressed sugar binding or transporting receptors located in the cellular membrane. Furthermore, inspired by the Warburg effect, glycoconjugation strategies of anticancer drugs have gained considerable attention from the scientific community. This review highlights a small cohort of recent efforts which have been made in carbohydrate-based cancer treatments, including vaccine design and the development of glycoconjugate prodrugs, glycosidase inhibiting iminosugars, and early cancer diagnosis.
Collapse
Affiliation(s)
- Farzana Hossain
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| | - Peter R Andreana
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
89
|
Zoidl M, Wolfsgruber A, Schalli M, Nasseri SA, Weber P, Stütz AE, Withers SG, Wrodnigg TM. Synthesis of modified 1,5-imino-d-xylitols as ligands for lysosomal β-glucocerebrosidase. MONATSHEFTE FUR CHEMIE 2019; 150:831-842. [PMID: 31178604 PMCID: PMC6534063 DOI: 10.1007/s00706-019-02427-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Abstract
ABSTRACT Modified 1,5-dideoxy-1,5-imino-d-xylitol analogues with different substitution patterns involving position C-1 and/or the ring nitrogen were prepared, which were designed to serve as precursors for the preparation of iminoxylitol-based ligands and tools for the elucidation and modulation of human lysosomal β-glucocerebrosidase. Biological evaluation of the synthesized glycomimetics with a series of glycoside hydrolases revealed that these substitution patterns elicit excellent β-glucosidase selectivities. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Manuel Zoidl
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Andreas Wolfsgruber
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Michael Schalli
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Seyed A. Nasseri
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Patrick Weber
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Arnold E. Stütz
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Tanja M. Wrodnigg
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
90
|
Natori Y, Sakuma T, Watanabe H, Wakamatsu H, Kato A, Adachi I, Takahata H, Yoshimura Y. Catalytic asymmetric synthesis of stereoisomers of 1-C-n-butyl-LABs for the SAR study of α-glucosidase inhibition. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
91
|
De Fenza M, D'Alonzo D, Esposito A, Munari S, Loberto N, Santangelo A, Lampronti I, Tamanini A, Rossi A, Ranucci S, De Fino I, Bragonzi A, Aureli M, Bassi R, Tironi M, Lippi G, Gambari R, Cabrini G, Palumbo G, Dechecchi MC, Guaragna A. Exploring the effect of chirality on the therapeutic potential of N-alkyl-deoxyiminosugars: anti-inflammatory response to Pseudomonas aeruginosa infections for application in CF lung disease. Eur J Med Chem 2019; 175:63-71. [PMID: 31075609 DOI: 10.1016/j.ejmech.2019.04.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/04/2019] [Accepted: 04/21/2019] [Indexed: 12/28/2022]
Abstract
In the frame of a research program aimed to explore the relationship between chirality of iminosugars and their therapeutic potential, herein we report the synthesis of N-akyl l-deoxyiminosugars and the evaluation of the anti-inflammatory properties of selected candidates for the treatment of Pseudomonas aeruginosa infections in Cystic Fibrosis (CF) lung disease. Target glycomimetics were prepared by the shortest and most convenient approach reported to date, relying on the use of the well-known PS-TPP/I2 reagent system to prepare reactive alkoxyalkyl iodides, acting as key intermediates. Iminosugars ent-1-3 demonstrated to efficiently reduce the inflammatory response induced by P. aeruginosa in CuFi cells, either alone or in synergistic combination with their d-enantiomers, by selectively inhibiting NLGase. Surprisingly, the evaluation in murine models of lung disease showed that the amount of ent-1 required to reduce the recruitment of neutrophils was 40-fold lower than that of the corresponding d-enantiomer. The remarkably low dosage of the l-iminosugar, combined with its inability to act as inhibitor for most glycosidases, is expected to limit the onset of undesired effects, which are typically associated with the administration of its d-counterpart. Biological results herein obtained place ent-1 and congeners among the earliest examples of l-iminosugars acting as anti-inflammatory agents for therapeutic applications in Cystic Fibrosis.
Collapse
Affiliation(s)
- Maria De Fenza
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia, 80126 Napoli, Italy
| | - Daniele D'Alonzo
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia, 80126 Napoli, Italy.
| | - Anna Esposito
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia, 80126 Napoli, Italy
| | - Silvia Munari
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Alessandra Santangelo
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Anna Tamanini
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Alice Rossi
- CFaCore, Infection and CF Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Serena Ranucci
- CFaCore, Infection and CF Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Ida De Fino
- CFaCore, Infection and CF Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Alessandra Bragonzi
- CFaCore, Infection and CF Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Matteo Tironi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Giuseppe Lippi
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulio Cabrini
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Giovanni Palumbo
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia, 80126 Napoli, Italy
| | - Maria Cristina Dechecchi
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy.
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia, 80126 Napoli, Italy
| |
Collapse
|
92
|
Carroll AW, Willis AC, Hoshino M, Kato A, Pyne SG. Corrected Structure of Natural Hyacinthacine C 1 via Total Synthesis. JOURNAL OF NATURAL PRODUCTS 2019; 82:358-367. [PMID: 30714734 DOI: 10.1021/acs.jnatprod.8b00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hyacinthacines C1 and C4 are natural products that were isolated from Hyacinthoides non-scripta and Scilla socialis in 1999 and 2007, respectively. Despite their different 1H NMR and 13C NMR spectroscopic data, these compounds have been assigned the same structures, including absolute configurations. This work details the total synthesis of natural (+)-hyacinthacine C1, whose structure is confirmed as being the C-6 epimer of that reported. The synthetic strategy focused on inverting the configuration at C-1 of the final hyacinthacines via operating the inversion at the corresponding carbon atom in three previously synthesized intermediates. To do this, the advanced intermediates were subjected to Swern oxidation, followed by a stereoselective reduction with L-Selectride. This approach led to the synthesis of (+)-5 -epi-hyacinthacine C1 (15), the corrected structure for (+)-hyacinthacine C1 (19), (+)-6,7-di- epi-hyacinthacine C1 (23), and (+)-7- epi-hyacinthacine C1 (29). Glycosidase inhibition assays revealed that (+)-hyacinthacine C1 (19) proved the most active, with IC50 values of 33.7, 55.5, and 78.2 μM, against the α-glucosidase of rice, human lysosome, and rat intestinal maltase, respectively.
Collapse
Affiliation(s)
- Anthony W Carroll
- School of Chemistry , University of Wollongong , Wollongong , New South Wales 2522 , Australia
| | - Anthony C Willis
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| | - Masako Hoshino
- Department of Hospital Pharmacy , University of Toyama , Sugitani , Toyama 2630 , Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy , University of Toyama , Sugitani , Toyama 2630 , Japan
| | - Stephen G Pyne
- School of Chemistry , University of Wollongong , Wollongong , New South Wales 2522 , Australia
| |
Collapse
|
93
|
Verma AK, Chennaiah A, Dubbu S, Vankar YD. Palladium catalyzed synthesis of sugar-fused indolines via C(sp 2)-H/NH activation. Carbohydr Res 2019; 473:57-65. [PMID: 30639591 DOI: 10.1016/j.carres.2018.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 11/28/2022]
Abstract
A simple Pd(OAc)2 catalyzed strategy for the synthesis of sugar-fused indolines from 2-N-oxalylamido-2-deoxy-C-aryl glycosides is reported by utilizing N-oxalylamido group as an auxiliary via C(sp2)-H/NH Activation. The reaction is successfully applied on glucose as well as galactose derived differently substituted 2-N-oxalylamido-2-deoxy-C-aryl glycosides to give sugar-fused indolines in moderate to good yields. The utility of this strategy in the synthesis of sugar-fused indoles is also described.
Collapse
Affiliation(s)
- Ashish Kumar Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Ande Chennaiah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sateesh Dubbu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Yashwant D Vankar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
94
|
Santhanam V, Pant P, Jayaram B, Ramesh NG. Design, synthesis and glycosidase inhibition studies of novel triazole fused iminocyclitol-δ-lactams. Org Biomol Chem 2019; 17:1130-1140. [DOI: 10.1039/c8ob03084g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synthesis of novel triazole fused iminocyclitol-δ-lactams, from tri-O-benzyl-d-glucal, involving intermolecular [3 + 2]cycloaddition and intramolecular lactamisation reactions as key steps is described.
Collapse
Affiliation(s)
- Venkatesan Santhanam
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi – 110016
- India
| | - Pradeep Pant
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi – 110016
- India
| | - B. Jayaram
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi – 110016
- India
| | - Namakkal G. Ramesh
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi – 110016
- India
| |
Collapse
|
95
|
Foucart Q, Shimadate Y, Marrot J, Kato A, Désiré J, Blériot Y. Synthesis and glycosidase inhibition of conformationally locked DNJ and DMJ derivatives exploiting a 2-oxo-C-allyl iminosugar. Org Biomol Chem 2019; 17:7204-7214. [DOI: 10.1039/c9ob01402k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The synthesis and glycosidase inhibition profile of a series of bicyclic analogs of DNJ and DMJ displaying a similar hydroxyl pattern and a distinct conformation is described.
Collapse
Affiliation(s)
- Quentin Foucart
- Université de Poitiers
- IC2MP
- UMR CNRS 7285
- Equipe “Synthèse Organique”
- Groupe Glycochimie
| | - Yuna Shimadate
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | - Jérôme Marrot
- Institut Lavoisier de Versailles
- UMR-CNRS 8180
- Université de Versailles
- 78035 Versailles Cedex
- France
| | - Atsushi Kato
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | - Jérôme Désiré
- Université de Poitiers
- IC2MP
- UMR CNRS 7285
- Equipe “Synthèse Organique”
- Groupe Glycochimie
| | - Yves Blériot
- Université de Poitiers
- IC2MP
- UMR CNRS 7285
- Equipe “Synthèse Organique”
- Groupe Glycochimie
| |
Collapse
|
96
|
Rampogu S, Zeb A, Baek A, Park C, Son M, Lee KW. Discovery of Potential Plant-Derived Peptide Deformylase (PDF) Inhibitors for Multidrug-Resistant Bacteria Using Computational Studies. J Clin Med 2018; 7:jcm7120563. [PMID: 30563019 PMCID: PMC6306950 DOI: 10.3390/jcm7120563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
Bacterial peptide deformylase (PDF) is an attractive target for developing novel inhibitors against several types of multidrug-resistant bacteria. The objective of the current study is to retrieve potential phytochemicals as prospective drugs against Staphylococcus aureus peptide deformylase (SaPDF). The current study focuses on applying ligand-based pharmacophore model (PharmL) and receptor-based pharmacophore (PharmR) approaches. Utilizing 20 known active compounds, pharmL was built and validated using Fischer's randomization, test set method and the decoy set method. PharmR was generated from the knowledge imparted by the Interaction Generation protocol implemented on the Discovery Studio (DS) v4.5 and was validated using the decoy set that was employed for pharmL. The selection of pharmR was performed based upon the selectivity score and further utilizing the Pharmacophore Comparison module available on the DS. Subsequently, the validated pharmacophore models were escalated for Taiwan Indigenous Plants (TIP) database screening and furthermore, a drug-like evaluation was performed. Molecular docking was initiated for the resultant compounds, employing CDOCKER (available on the DS) and GOLD. Eventually, the stability of the final PDF⁻hit complexes was affirmed using molecular dynamics (MD) simulation conducted by GROMACS v5.0.6. The redeemed hits demonstrated a similar binding mode and stable intermolecular interactions with the key residues, as determined by no aberrant behaviour for 50 ns. Taken together, it can be stated that the hits can act as putative scaffolds against SaPDF, with a higher therapeutic value. Furthermore, they can act as fundamental structures for designing new drug candidates.
Collapse
Affiliation(s)
- Shailima Rampogu
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 52828, Korea.
| | - Amir Zeb
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 52828, Korea.
| | - Ayoung Baek
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 52828, Korea.
| | - Chanin Park
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 52828, Korea.
| | - Minky Son
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 52828, Korea.
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 52828, Korea.
| |
Collapse
|
97
|
Yuan W, Pan Y, Zhang X, Liang P, Zhang J, Jiao W, Shao H. Direct and highly stereoselective synthesis of quinolizidine iminosugars promoted by l-proline-Et 3N. Org Biomol Chem 2018; 16:9230-9236. [PMID: 30483692 DOI: 10.1039/c8ob01953c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild and effective method for the synthesis of polyhydroxylated quinolizidine iminosugars is described. The Mannich-type reaction of iminosugar C-glycosides with aldehyde in the presence of l-proline-Et3N provides polyhydroxylated quinolizidine iminosugars, and desired products as the potential glucosidase inhibitors were obtained in good to excellent yields with excellent stereoselectivity.
Collapse
Affiliation(s)
- Wen Yuan
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China.
| | | | | | | | | | | | | |
Collapse
|
98
|
Nash RJ, Azantsa BK, Sharp H, Shanmugham V. Effectiveness of Cucumis sativus extract versus glucosamine-chondroitin in the management of moderate osteoarthritis: a randomized controlled trial. Clin Interv Aging 2018; 13:2119-2126. [PMID: 30498336 PMCID: PMC6207263 DOI: 10.2147/cia.s173227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Osteoarthritis (OA) is an age-related disease caused by the wear and tear of the joints. Presently, there is no known cure for OA, but its management involves the use of high doses of pain killers and antiinflammatory agents with different side and dependency effects. Alternative management strategies involve the use of high doses of glucosamine-chondroitin (GC). This study was carried out to evaluate the efficacy of Q-Actin™, an aqueous extract of Cucumis sativus (cucumber; CSE) against GC in the management of moderate knee OA. Patients and methods Overall, 122 patients (56 males and 66 females) aged between 40 and 75 years and diagnosed with moderate knee OA were included in this randomized double-blind, parallel-group clinical trial that took place in three different centers. The 180 day intervention involved two groups of 61 participants in each: the GC group, which received orally the generally prescribed dose of 1,350 mg of GC twice daily and the CSE group, which received orally10 mg twice daily of CSE. The Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), Visual Analog scale, and Lequesne's Functional Index were used to evaluate pain, stiffness, and physical function of knee OA in participants at baseline (Day 0) and on Days 30, 60, 90, 120, 150, and 180. Results In the CSE group, the WOMAC score was decreased by 22.44% and 70.29% on Days 30 and 180, respectively, compared to a 14.80% and 32.81% decrease in the GC group. Similar trends were observed for all the other pain scores. No adverse effect was reported during the trial period. Conclusion The use of 10 mg CSE, twice daily, was effective in reducing pain related to moderate knee OA and can be potentially used in the management of knee pain, stiffness, and physical functions related to OA.
Collapse
Affiliation(s)
- Robert J Nash
- PhytoQuest Limited, Plas Gogerddan, Aberystwyth, Ceredigion, UK
| | - Boris Kg Azantsa
- Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon,
| | - Hazel Sharp
- PhytoQuest Limited, Plas Gogerddan, Aberystwyth, Ceredigion, UK
| | | |
Collapse
|
99
|
Rugen MD, Vernet MMJL, Hantouti L, Soenens A, Andriotis VME, Rejzek M, Brett P, van den Berg RJBHN, Aerts JMFG, Overkleeft HS, Field RA. A chemical genetic screen reveals that iminosugar inhibitors of plant glucosylceramide synthase inhibit root growth in Arabidopsis and cereals. Sci Rep 2018; 8:16421. [PMID: 30401902 PMCID: PMC6219604 DOI: 10.1038/s41598-018-34749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/19/2018] [Indexed: 01/11/2023] Open
Abstract
Iminosugars are carbohydrate mimics that are useful as molecular probes to dissect metabolism in plants. To analyse the effects of iminosugar derivatives on germination and seedling growth, we screened a library of 390 N-substituted iminosugar analogues against Arabidopsis and the small cereal Eragrostis tef (Tef). The most potent compound identified in both systems, N-5-(adamantane-1-yl-ethoxy)pentyl- L-ido-deoxynojirimycin (L-ido-AEP-DNJ), inhibited root growth in agar plate assays by 92% and 96% in Arabidopsis and Tef respectively, at 10 µM concentration. Phenocopying the effect of L-ido-AEP-DNJ with the commercial inhibitor (PDMP) implicated glucosylceramide synthase as the target responsible for root growth inhibition. L-ido-AEP-DNJ was twenty-fold more potent than PDMP. Liquid chromatography-mass spectrometry (LC-MS) analysis of ceramide:glucosylceramide ratios in inhibitor-treated Arabidopsis seedlings showed a decrease in the relative quantity of the latter, confirming that glucosylceramide synthesis is perturbed in inhibitor-treated plants. Bioinformatic analysis of glucosylceramide synthase indicates gene conservation across higher plants. Previous T-DNA insertional inactivation of glucosylceramide synthase in Arabidopsis caused seedling lethality, indicating a role in growth and development. The compounds identified herein represent chemical alternatives that can overcome issues caused by genetic intervention. These inhibitors offer the potential to dissect the roles of glucosylceramides in polyploid crop species.
Collapse
Affiliation(s)
- Michael D Rugen
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mathieu M J L Vernet
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Laila Hantouti
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Amalia Soenens
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | - Vasilios M E Andriotis
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- School of Natural and Environmental Sciences, Devonshire Building, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Paul Brett
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Richard J B H N van den Berg
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Hermen S Overkleeft
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
100
|
Kothari S, Saravana M, Muthusamy S, Mozingo A, Soni M. Safety assessment of a standardized cucumber extract (Q-Actin ™): Oral repeat-dose toxicity and mutagenicity studies. Toxicol Rep 2018; 5:1078-1086. [PMID: 30425929 PMCID: PMC6224328 DOI: 10.1016/j.toxrep.2018.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 12/18/2022] Open
Abstract
Cucumus sativus (cucumber) is one of the most widely consumed fruit vegetables worldwide. Recent discovery of iminosugars in commonly consumed fruits and vegetables has promoted the interest in isolating these compounds and understanding the potential benefits to human health. The objective of the present study was to investigate the general toxicity and mutagenic effects of an aqueous extract of cucumber (Q-Actin), standardized to ≥1% (1-2%) ido-BR1 iminosugar. Single dose of Q-Actin was well tolerated without mortality at 2000 mg/kg body weight (bw) in Sprague Dawley rats. Oral (gavage) administration of Q-Actin up to 1000 mg/kg bw/day was well tolerated followed by repeated administration for a maximum period of 90 days in Sprague-Dawley rats. There were no treatment related changes in clinical observations, ophthalmic examinations, body weights and body weight gains or feed consumption, clinical chemistry and pathological changes compared to control. The mutagenicity as evaluated by Ames assay, in vitro chromosomal aberration test and in vivo micronucleus assay did not reveal any potential of Q-Actin to induce genotoxicity. The results showed that Q-Actin is well tolerated in general toxicity studies and did not induce mutagenicity. The no-observed-adverse-effect level (NOAEL) of the standardized aqueous cucumber extract (Q-Actin) is considered to be ≥1000 mg/kg bw/day, followed by repeated administration for90 days.
Collapse
Affiliation(s)
- S. Kothari
- Gateway Health Alliances, 4769 Mangles Blvd., Fairfield, CA 94534, USA
| | - M. Saravana
- Vipragen Biosciences Pvt. Ltd., 67B, Hootagalli Industrial Area, Mysore 570 018, Karnataka, India
| | - S. Muthusamy
- Vipragen Biosciences Pvt. Ltd., 67B, Hootagalli Industrial Area, Mysore 570 018, Karnataka, India
| | - A. Mozingo
- RNI Consulting LLC, 822 N. A1A Hwy., Ste 310, Ponte Vedra Beach, FL 32082, USA
| | - M. Soni
- Soni and Associates Inc., 973 37th Place, Vero Beach, FL 32960, USA
| |
Collapse
|