51
|
Tang TX, Xiong W, Finkielstein CV, Capelluto DGS. Identification of Lipid Binding Modulators Using the Protein-Lipid Overlay Assay. Methods Mol Biol 2017; 1647:197-206. [PMID: 28809004 DOI: 10.1007/978-1-4939-7201-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The protein-lipid overlay assay is an inexpensive, easy-to-implement, and high-throughput methodology that employs nitrocellulose membranes to immobilize lipids in order to rapid screen and identify protein-lipid interactions. In this chapter, we show how this methodology can identify potential modulators of protein-lipid interactions by screening water-soluble lipid competitors or even the introduction of pH changes during the binding assay to identify pH-dependent lipid binding events.
Collapse
Affiliation(s)
- Tuo-Xian Tang
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wen Xiong
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Daniel G S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
52
|
Mohammadpour R, Safarian S, Buckway B, Ghandehari H. Comparative Endocytosis Mechanisms and Anticancer Effect of HPMA Copolymer- and PAMAM Dendrimer-MTCP Conjugates for Photodynamic Therapy. Macromol Biosci 2016; 17. [PMID: 27779358 DOI: 10.1002/mabi.201600333] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/03/2016] [Indexed: 12/14/2022]
Abstract
Polymer architecture can influence biodistribution and the mode of presentation of bioactive agents to cells. Herein delivery, loading efficiency, and mode of cellular entry of polymer conjugates of the photosensitizer Meso-Tetra (4-Carboxyphenyl) Porphyrine (MTCP) are examined when attached to hyperbranched amine terminated poly(amido amine) (PAMAM) dendrimer or random coil linear N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer containing free amines in the side chains. The in vitro dark cytotoxicity and phototoxicity of MTCP and related conjugates are assessed on mouth epidermal carcinoma (KB) and human adenocarcinoma alveolar basal epithelial (A549) cells. Phototoxicity of polymeric conjugates increases by ≈100 and 4000 fold in KB and A549 cells compared with nonconjugated MTCP. The increase in phototoxicity activity is shown to result from increased rate of cellular uptake, whereas, cellular internalization of MTCP is negligible in comparison with the conjugated forms. The results of this study suggest the superiority of amine-terminated HPMA copolymer versus PAMAM dendrimer under study for delivery of MTCP. Treatment with various pharmacological inhibitors of endocytosis shows that polymer architecture influences the mechanism of cellular uptake of the conjugated photosensitizer. Results show that polymeric conjugates of MTCP improve solubility, influence the route and the rate of cellular internalization, and drastically enhance the uptake of the photosensitizer.
Collapse
Affiliation(s)
- Raziye Mohammadpour
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, 1417614411, Iran.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112-5820, USA
| | - Shahrokh Safarian
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, 1417614411, Iran
| | - Brandon Buckway
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112-5820, USA.,The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112-5820, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112-5820, USA.,Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112-5820, USA.,The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112-5820, USA.,Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112-5820, USA
| |
Collapse
|
53
|
Endocytosis of Wingless via a dynamin-independent pathway is necessary for signaling in Drosophila wing discs. Proc Natl Acad Sci U S A 2016; 113:E6993-E7002. [PMID: 27791132 DOI: 10.1073/pnas.1610565113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Endocytosis of ligand-receptor complexes regulates signal transduction during development. In particular, clathrin and dynamin-dependent endocytosis has been well studied in the context of patterning of the Drosophila wing disc, wherein apically secreted Wingless (Wg) encounters its receptor, DFrizzled2 (DFz2), resulting in a distinctive dorso-ventral pattern of signaling outputs. Here, we directly track the endocytosis of Wg and DFz2 in the wing disc and demonstrate that Wg is endocytosed from the apical surface devoid of DFz2 via a dynamin-independent CLIC/GEEC pathway, regulated by Arf1, Garz, and class I PI3K. Subsequently, Wg containing CLIC/GEEC endosomes fuse with DFz2-containing vesicles derived from the clathrin and dynamin-dependent endocytic pathway, which results in a low pH-dependent transfer of Wg to DFz2 within the merged and acidified endosome to initiate Wg signaling. The employment of two distinct endocytic pathways exemplifies a mechanism wherein cells in tissues leverage multiple endocytic pathways to spatially regulate signaling.
Collapse
|
54
|
Ban F, Shi H, Feng C, Mao X, Yin Y, Zhu X. A one-pot strategy for the detection of proteins based on sterically and allosterically tunable hybridization chain reaction. Biosens Bioelectron 2016; 86:219-224. [PMID: 27376192 DOI: 10.1016/j.bios.2016.06.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 01/05/2023]
Abstract
In this work, we report a facile one-pot strategy for protein detection based on sterically and allosterically tunable hybridization chain reaction (HCR). In our strategy, DNA hairpins H1 and H2 are dual-labeled with pyrene moieties through a six-carbon-atom spacer at each end; and a single-stranded DNA primer is designed to contain two small molecules near each end. In the absence of target protein, the primer can trigger HCR events between alternating H1 and H2 hairpins to form a nicked double-helix. As a result, the pyrene excimers are formed to emit at approximately 485nm. On the contrary, upon binding of the specific target protein onto the primer through the protein-small molecule interaction, the HCR will be inhibited due to the steric and allosteric effect. The changes of the fluorescent signals of pyrene excimers are in response to the concentration of target protein, so that the detection of protein can be realized. We have demonstrated the feasibility of this strategy by using streptavidin (SA) and folate receptor (FR) as model targets. Results show that both of them can be well detected with a detection limit of 1.07nM and 2.7nM, respectively. The developed method for protein assay is flexible, so we infer that the one-pot strategy holds great potential for the detection of other proteins.
Collapse
Affiliation(s)
- Fangfang Ban
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hai Shi
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China; State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Chang Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Xiaoxia Mao
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yongmei Yin
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Xiaoli Zhu
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
55
|
Gavello D, Carbone E, Carabelli V. Leptin-mediated ion channel regulation: PI3K pathways, physiological role, and therapeutic potential. Channels (Austin) 2016; 10:282-96. [PMID: 27018500 DOI: 10.1080/19336950.2016.1164373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Leptin is produced by adipose tissue and identified as a "satiety signal," informing the brain when the body has consumed enough food. Specific areas of the hypothalamus express leptin receptors (LEPRs) and are the primary site of leptin action for body weight regulation. In response to leptin, appetite is suppressed and energy expenditure allowed. Beside this hypothalamic action, leptin targets other brain areas in addition to neuroendocrine cells. LEPRs are expressed also in the hippocampus, neocortex, cerebellum, substantia nigra, pancreatic β-cells, and chromaffin cells of the adrenal gland. It is intriguing how leptin is able to activate different ionic conductances, thus affecting excitability, synaptic plasticity and neurotransmitter release, depending on the target cell. Most of the intracellular pathways activated by leptin and directed to ion channels involve PI3K, which in turn phosphorylates different downstream substrates, although parallel pathways involve AMPK and MAPK. In this review we will describe the effects of leptin on BK, KATP, KV, CaV, TRPC, NMDAR and AMPAR channels and clarify the landscape of pathways involved. Given the ability of leptin to influence neuronal excitability and synaptic plasticity by modulating ion channels activity, we also provide a short overview of the growing potentiality of leptin as therapeutic agent for treating neurological disorders.
Collapse
Affiliation(s)
- Daniela Gavello
- a Department of Drug Science , Lab of Cellular Physiology and Molecular Neuroscience, NIS Center of Excellence, University of Torino , Torino , Italy
| | - Emilio Carbone
- a Department of Drug Science , Lab of Cellular Physiology and Molecular Neuroscience, NIS Center of Excellence, University of Torino , Torino , Italy
| | - Valentina Carabelli
- a Department of Drug Science , Lab of Cellular Physiology and Molecular Neuroscience, NIS Center of Excellence, University of Torino , Torino , Italy
| |
Collapse
|
56
|
Riehle R, Pattni B, Jhaveri A, Kulkarni A, Thakur G, Degterev A, Torchilin V. Combination Nanopreparations of a Novel Proapoptotic Drug - NCL-240, TRAIL and siRNA. Pharm Res 2016; 33:1587-601. [PMID: 26951567 DOI: 10.1007/s11095-016-1899-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop a multifunctional nanoparticle system carrying a combination of pro-apoptotic drug, NCL-240, TRAIL [tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand] and anti-survivin siRNA and to test the combination preparation for anti-cancer effects in different cancer cells. METHODS Polyethylene glycol-phosphoethanolamine (PEG-PE) - based polymeric micelles were prepared carrying NCL-240. These micelles were used in combination with TRAIL-conjugated micelles and anti-survivin siRNA-S-S-PE containing micelles. All the micelles were characterized for size, zeta potential, and drug encapsulation efficiency. Different cancer cells were used to study the cytotoxicity potential of the individual as well as the combination formulations. Other cell based assays included cellular association studies of transferrin-targeted NCL-240 micelles and study of cellular survivin protein downregulation by anti-survivin siRNA-S-S-PE containing micelles. RESULTS NCL-240 micelles and the combination NCL-240/TRAIL micelles significantly increased cytotoxicity in the resistant strains of SKOV-3, MCF-7 and A549 as compared to free drugs or single drug formulations. The NCL-240/TRAIL micelles were also more effective in NCI/ADR-RES cancer cell spheroids. Anti-survivin siRNA micelles alone displayed a dose-dependent reduction in survivin protein levels in A2780 cells. Treatment with NCL-240/TRAIL after pre-incubation with anti-survivin siRNA inhibited cancer cell proliferation. Additionally, a single multifunctional system composed of NCL-240/TRAIL/siRNA PM also had significant cytotoxic effects in vitro in multiple cell lines. CONCLUSION These results demonstrate the efficacy of a combination of small-molecule PI3K inhibitors, TRAIL, and siRNA delivered by micellar preparations in multiple cancer cell lines.
Collapse
Affiliation(s)
- Robert Riehle
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Room 236, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Bhushan Pattni
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Room 236, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Aditi Jhaveri
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Room 236, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Abhijit Kulkarni
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Room 236, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Ganesh Thakur
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Room 236, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Alexei Degterev
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Room 236, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA. .,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
57
|
Zeki AA, Yeganeh B, Kenyon NJ, Post M, Ghavami S. Autophagy in airway diseases: a new frontier in human asthma? Allergy 2016; 71:5-14. [PMID: 26335713 DOI: 10.1111/all.12761] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 12/11/2022]
Abstract
The study of autophagy ('self-eating'), a fundamental cell fate pathway involved in physiological and pathological subcellular processes, opens a new frontier in the continuous search for novel therapies for human asthma. Asthma is a complex syndrome with different disease phenotypes. Autophagy plays a central role in cell physiology, energy and metabolism, and cell survival. Autophagy's hallmark is the formation of double-membrane autophagic autophagosomes, and this process is operational in airway epithelial and mesenchymal cells in asthma. Genetic associations between autophagy genes and asthma have been observed including single nucleotide polymorphisms in Atg5 which correlate with reduced lung function. Immune mechanisms important in asthma such as Th2 cells and eosinophils also manifest autophagy. Lastly, we address the role of autophagy in extracellular matrix deposition and fibrosis in asthmatic airways remodeling, a pathologic process still without effective therapy, and discuss potential pharmacologic inhibitors. We end by offering two opposing but plausible hypotheses as to how autophagy may be directly involved in airway fibrosis.
Collapse
Affiliation(s)
- A. A. Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine; Center for Comparative Respiratory Biology and Medicine; Davis CA USA
| | - B. Yeganeh
- Physiology and Experimental Medicine; Hospital for Sick Children (Sickkids); University of Toronto; Toronto ON Canada
| | - N. J. Kenyon
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine; Center for Comparative Respiratory Biology and Medicine; Davis CA USA
| | - M. Post
- Physiology and Experimental Medicine; Hospital for Sick Children (Sickkids); University of Toronto; Toronto ON Canada
| | - S. Ghavami
- Department of Human Anatomy & Cell Science; Faculty of Health Sciences; College of Medicine; University of Manitoba; Winnipeg MB Canada
| |
Collapse
|
58
|
Apelin: an antithrombotic factor that inhibits platelet function. Blood 2015; 127:908-20. [PMID: 26634301 DOI: 10.1182/blood-2014-05-578781] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/19/2015] [Indexed: 12/31/2022] Open
Abstract
Apelin peptide and its receptor APJ are directly implicated in various physiological processes ranging from cardiovascular homeostasis to immune signaling. Here, we show that apelin is a key player in hemostasis with an ability to inhibit thrombin- and collagen-mediated platelet activation. Mice lacking apelin displayed a shorter bleeding time and a prothrombotic profile. Their platelets exhibited increased adhesion and a reduced occlusion time in venules, and displayed a higher aggregation rate after their activation by thrombin compared with wild-type platelets. Consequently, human and mouse platelets express apelin and its receptor APJ. Apelin directly interferes with thrombin-mediated signaling pathways and platelet activation, secretion, and aggregation, but not with ADP and thromboxane A2-mediated pathways. IV apelin administration induced excessive bleeding and prevented thrombosis in mice. Taken together, these findings suggest that apelin and/or APJ agonists could potentially be useful adducts in antiplatelet therapies and may provide a promising perspective for patients who continue to display adverse thrombotic events with current antiplatelet therapies.
Collapse
|
59
|
Advances in small-molecule drug discovery for triple-negative breast cancer. Future Med Chem 2015; 7:2019-39. [PMID: 26495746 DOI: 10.4155/fmc.15.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of poor prognosis, highly invasive and difficult-to-treat breast cancers accounting for approximately 15% of clinical cases. Given the poor outlook and lack of sustained response to conventional therapies, TNBC has been the subject of intense studies on new therapeutic approaches in recent years. The development of targeted cancer therapies, often in combination with established chemotherapy, has been applied to a number of new clinical studies in this setting in recent years. This review will highlight recent therapeutic advances in TNBC, focusing on small-molecule drugs and their associated biological mechanisms of action, and offering the possibility of improved prospects for this patient group in the near future.
Collapse
|
60
|
Galli U, Ciraolo E, Massarotti A, Margaria JP, Sorba G, Hirsch E, Tron GC. The Guareschi Pyridine Scaffold as a Valuable Platform for the Identification of Selective PI3K Inhibitors. Molecules 2015; 20:17275-87. [PMID: 26393561 PMCID: PMC6332036 DOI: 10.3390/molecules200917275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 11/16/2022] Open
Abstract
A novel series of 4-aryl-3-cyano-2-(3-hydroxyphenyl)-6-morpholino-pyridines have been designed as potential phosphatidylinositol-3-kinase (PI3K) inhibitors. The compounds have been synthesized using the Guareschi reaction to prepare the key 4-aryl-3-cyano-2,6-dihydroxypyridine intermediate. A different selectivity according to the nature of the aryl group has been observed. Compound 9b is a selective inhibitor against the PI3Kα isoform, maintaining a good inhibitory activity. Docking studies were also performed in order to rationalize its profile of selectivity.
Collapse
Affiliation(s)
- Ubaldina Galli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale "A. Avogadro", Largo Donegani 2, Novara 28100, Italy.
| | - Elisa Ciraolo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino 10126, Italy.
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale "A. Avogadro", Largo Donegani 2, Novara 28100, Italy.
| | - Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino 10126, Italy.
| | - Giovanni Sorba
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale "A. Avogadro", Largo Donegani 2, Novara 28100, Italy.
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino 10126, Italy.
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale "A. Avogadro", Largo Donegani 2, Novara 28100, Italy.
| |
Collapse
|
61
|
Down K, Amour A, Baldwin IR, Cooper AWJ, Deakin AM, Felton LM, Guntrip SB, Hardy C, Harrison ZA, Jones KL, Jones P, Keeling SE, Le J, Livia S, Lucas F, Lunniss CJ, Parr NJ, Robinson E, Rowland P, Smith S, Thomas DA, Vitulli G, Washio Y, Hamblin JN. Optimization of Novel Indazoles as Highly Potent and Selective Inhibitors of Phosphoinositide 3-Kinase δ for the Treatment of Respiratory Disease. J Med Chem 2015; 58:7381-99. [PMID: 26301626 DOI: 10.1021/acs.jmedchem.5b00767] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Optimization of lead compound 1, through extensive use of structure-based design and a focus on PI3Kδ potency, isoform selectivity, and inhaled PK properties, led to the discovery of clinical candidates 2 (GSK2269557) and 3 (GSK2292767) for the treatment of respiratory indications via inhalation. Compounds 2 and 3 are both highly selective for PI3Kδ over the closely related isoforms and are active in a disease relevant brown Norway rat acute OVA model of Th2-driven lung inflammation.
Collapse
Affiliation(s)
- Kenneth Down
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Augustin Amour
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Ian R Baldwin
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Anthony W J Cooper
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Angela M Deakin
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Leigh M Felton
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Stephen B Guntrip
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Charlotte Hardy
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Zoë A Harrison
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Katherine L Jones
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Paul Jones
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Suzanne E Keeling
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Joelle Le
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Stefano Livia
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Fiona Lucas
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Christopher J Lunniss
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Nigel J Parr
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Ed Robinson
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Paul Rowland
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Sarah Smith
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Daniel A Thomas
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Giovanni Vitulli
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Yoshiaki Washio
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - J Nicole Hamblin
- Refractory Respiratory Inflammation DPU, and ‡Allergic Inflammation DPU, Respiratory Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Molecular Discovery Research, ∥Biological Sciences, and ⊥Computational Chemistry, Platform Technology & Science, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K.,Experimental Medicine Unit, and ∇Epinova DPU, ImmunoInflammation Therapeutic Area, GlaxoSmithKline R&D , Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| |
Collapse
|
62
|
Gorai S, Bagdi PR, Borah R, Paul D, Santra MK, Khan AT, Manna D. Insights into the inhibitory mechanism of triazole-based small molecules on phosphatidylinositol-4,5-bisphosphate binding pleckstrin homology domain. Biochem Biophys Rep 2015; 2:75-86. [PMID: 29124147 PMCID: PMC5668642 DOI: 10.1016/j.bbrep.2015.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
Abstract
Background Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is an important regulator of several cellular processes and a precursor for other second messengers which are involved in cell signaling pathways. Signaling proteins preferably interact with PI(4,5)P2 through its pleckstrin homology (PH) domain. Efforts are underway to design small molecule-based antagonist, which can specifically inhibit the PI(4,5)P2/PH-domain interaction to establish an alternate strategy for the development of drug(s) for phosphoinositide signaling pathways. Methods Surface plasmon resonance, molecular docking, circular dichroism, competitive Förster resonance energy transfer, isothermal titration calorimetric analyses and liposome pull down assay were used. Results In this study, we employed 1,2,3-triazol-4-yl methanol containing small molecule (CIPs) as antagonists for PI(4,5)P2/PH-domain interaction and determined their inhibitory effect by using competitive-surface plasmon resonance analysis (IC50 ranges from 53 to 159 nM for PI(4,5)P2/PLCδ1-PH domain binding assay). We also used phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2], PI(4,5)P2 specific PH-domains to determine binding selectivity of the compounds. Various physicochemical analyses showed that the compounds have weak affect on fluidity of the model membrane but, strongly interact with the phospholipase C δ1 (PLCδ1)-PH domains. The 1,2,3-triazol-4-yl methanol moiety and nitro group of the compounds are essential for their exothermic interaction with the PH-domains. Potent compound can efficiently displace PLCδ1-PH domain from plasma membrane to cytosol in A549 cells. Conclusions Overall, our studies demonstrate that these compounds interact with the PIP-binding PH-domains and inhibit their membrane recruitment. General significance These results suggest specific but differential binding of these compounds to the PLCδ1-PH domain and emphasize the role of their structural differences in binding parameters. These triazole-based compounds could be directly used/further developed as potential inhibitor for PH domain-dependent enzyme activity.
Collapse
Affiliation(s)
- Sukhamoy Gorai
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Prasanta Ray Bagdi
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Rituparna Borah
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Debasish Paul
- National Center for Cell Science, Pune 411007, Maharashtra, India
| | | | - Abu Taleb Khan
- Alia University, DN 18, 8th Floor, Sector V, Kolkata 700091, India
| | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
63
|
Moreira JBN, Wohlwend M, Alves MNM, Wisløff U, Bye A. A small molecule activator of AKT does not reduce ischemic injury of the rat heart. J Transl Med 2015; 13:76. [PMID: 25889299 PMCID: PMC4352273 DOI: 10.1186/s12967-015-0444-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 02/20/2015] [Indexed: 11/10/2022] Open
Abstract
Background Activation of protein kinase AKT is required for cardioprotection by ischemic preconditioning, and transgenic overexpression of AKT protects the heart against ischemia. However, it is unknown whether acute pharmacological activation of AKT alone, using a therapeutically relevant strategy, induces cardioprotection. In this study we provide the first evidence to clarify this question. Methods We used a recently described specific activator of AKT, the small molecule SC79, to treat rat hearts submitted to ischemia and reperfusion. Initially, isolated rat hearts were perfused with increasing doses of SC79 to verify the magnitude of AKT activation. Low and high doses were determined and used to treat hearts submitted to ischemia (35 minutes) and reperfusion (60 minutes), in a randomized and blinded design. AKT activation was verified by western immunobloting. Metabolic profile was determined by cardiac ATP content and mitochondrial enzyme activity, while cytosolic levels of cytochrome C and caspase-3 activity were used as markers of apoptosis. Ischemic injury was assessed by quantification of infarct size and cardiac release of creatine kinase and lactate dehydrogenase. Results SC79 activated cardiac AKT within 30 minutes in a dose-dependent fashion. ATP content was largely reduced by ischemia, but was not rescued by SC79. Similarly, mitochondrial enzyme activity was not affected by SC79. SC79 administered before ischemia or at reperfusion did not prevent cytosolic accumulation of cytochrome C and overactivation of caspase-3. Finally, SC79 failed to reduce infarct size or release of cardiac injury biomarkers at reperfusion. Conclusion We conclude that selective AKT activation by the synthetic molecule SC79 does not protect the rat heart against ischemic injury, indicating that acute pharmacological activation of AKT is not sufficient for cardioprotection.
Collapse
Affiliation(s)
- Jose B N Moreira
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, St. Olavs Hospital, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway. .,Norwegian Council on Cardiovascular Disease, Oslo, Norway.
| | - Martin Wohlwend
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, St. Olavs Hospital, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway.
| | - Marcia N M Alves
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, St. Olavs Hospital, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway.
| | - Ulrik Wisløff
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, St. Olavs Hospital, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway.
| | - Anja Bye
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, St. Olavs Hospital, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway. .,Norwegian Council on Cardiovascular Disease, Oslo, Norway.
| |
Collapse
|
64
|
Yu X, Long YC, Shen HM. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy 2015; 11:1711-28. [PMID: 26018563 PMCID: PMC4824607 DOI: 10.1080/15548627.2015.1043076] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases.
Collapse
Affiliation(s)
- Xinlei Yu
- a Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| | - Yun Chau Long
- a Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| | - Han-Ming Shen
- b Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| |
Collapse
|
65
|
Gorai S, Paul S, Sankaran G, Borah R, Santra MK, Manna D. Inhibition of phosphatidylinositol-3,4,5-trisphosphate binding to the AKT pleckstrin homology domain by 4-amino-1,2,5-oxadiazole derivatives. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00260e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
4-Amino-1,2,5-oxadiazole derivatives has been developed as an inhibitor of AKT pleckstrin homology domain.
Collapse
Affiliation(s)
- Sukhamoy Gorai
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Saurav Paul
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | | | - Rituparna Borah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | | | - Debasis Manna
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| |
Collapse
|
66
|
Yanamandra M, Mitra S, Giri A. Development and application of PI3K assays for novel drug discovery. Expert Opin Drug Discov 2014; 10:171-86. [DOI: 10.1517/17460441.2015.997205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mahesh Yanamandra
- 1Scientist, GVK Biosciences Private Ltd, Biology, Campus MLR 1, Survey Nos. 125 (part) and 126, IDA Mallapur, Hyderabad, Telangana, 500076, India
- 2Jawaharlal Nehru Technological University, Institute of Science and Technology, Centre for Biotechnology, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Sayan Mitra
- 3GVK Biosciences Private Ltd, Biology, Campus MLR 1, Survey Nos. 125 (part) and 126, IDA Mallapur, Hyderabad, Telangana, 500076, India
| | - Archana Giri
- 4Jawaharlal Nehru Technological University, Institute of Science and Technology, Centre for Biotechnology, Kukatpally, Hyderabad, Telangana, 500085, India
| |
Collapse
|
67
|
Martinez Marignac VL, Smith S, Toban N, Bazile M, Aloyz R. Resistance to Dasatinib in primary chronic lymphocytic leukemia lymphocytes involves AMPK-mediated energetic re-programming. Oncotarget 2014; 4:2550-66. [PMID: 24334291 PMCID: PMC3926848 DOI: 10.18632/oncotarget.1508] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults in the western world. Although promising new therapies for this incurable disease are being tested in clinical trials, the therapeutic relevance of metabolic rewiring in chronic lymphocytic leukemia (CLL) is poorly understood. The aim of this study was to identify targetable metabolic differences in primary CLL lymphocytes by the use of Dasatinib. Dasatinib is a multi-tyrosine kinase inhibitor used to treat chronic myelogenous leukemia (CML) and is being tested in clinical trials for several cancers including CLL. This drug has been shown to be beneficial to CML patients suffering from diabetes by reducing their glucose plasma levels. In keeping with this previous observation, we report that Dasatinib induced glucose use while reducing lactate production, suggesting that this tyrosine kinase inhibitor decreases aerobic glycolysis and shifts glucose use in primary CLL lymphocytes. Our results suggest that primary CLL lymphocytes (independently of traditional prognostic factors) can be stratified in two subsets by their sensitivity to Dasatinib in vitro. Increased glucose use induced by Dasatinib or by inhibition of mitochondrial respiration was not sufficient to sustain survival and ATP levels in CLL samples sensitive to Dasatinib. The two subsets of primary CLL lymphocytes are characterized as well by a differential dependency on mitochondrial respiration and the use of anabolic or catabolic processes to cope with induced metabolic/energetic stress. Differential metabolic reprogramming between subsets is supported by the contrasting effect on the survival of Dasatinib treated CLL lymphocytes with pharmacological inhibition of two master metabolic regulators (mTorc1 and AMPK) as well as induced autophagy. Alternative metabolic organization between subsets is further supported by the differential basal expression (freshly purified lymphocytes) of active AMPK, regulators of glucose metabolism and modulators of AKT signaling. The contrasting metabolic features revealed by our strategy could be used to metabolically target CLL lymphocyte subsets creating new therapeutic windows for this disease for mTORC1 or AMPK inhibitors. Indeed, we report that Metformin, a drug used to treat diabetes was selectively cytotoxic to Dasatinib sensitive samples. Ultimately, we suggest that a similar strategy could be applied to other cancer types by using Dasatinib and/or relevant tyrosine kinase inhibitors.
Collapse
|
68
|
Kommagalla Y, Cornea S, Riehle R, Torchilin V, Degterev A, Ramana CV. Optimization of the anti-cancer activity of phosphatidylinositol-3 kinase pathway inhibitor PITENIN-1: switching a thiourea with 1,2,3-triazole. MEDCHEMCOMM 2014; 5:1359-1363. [PMID: 25505943 DOI: 10.1039/c4md00109e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We previously reported encouraging in vitro and in vivoanti-cancer activity of N-((3-chloro-2-hydroxy-5-nitrophenyl)carbamothioyl)benzamide (termed PITENIN-1). In the current work, we describe the structure-activity relationship study of PIT-1 series, based on the replacement of central thiourea unit with a 1,2,3-triazole, which leads to increased liver microsomal stability, drug likeness and toxicity towards cancer cells.
Collapse
Affiliation(s)
- Yadagiri Kommagalla
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India 411008
| | - Sinziana Cornea
- Department of Developmental, Molecular and Chemical Biology, Tufts University, 136 Harrison Avenue, Boston, MA 02111
| | - Robert Riehle
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, 140 The Fenway, Boston, MA 02115
| | - Vladimir Torchilin
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, 140 The Fenway, Boston, MA 02115
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University, 136 Harrison Avenue, Boston, MA 02111
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India 411008
| |
Collapse
|
69
|
Feedbacks and adaptive capabilities of the PI3K/Akt/mTOR axis in acute myeloid leukemia revealed by pathway selective inhibition and phosphoproteome analysis. Leukemia 2014; 28:2197-205. [PMID: 24699302 DOI: 10.1038/leu.2014.123] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/27/2014] [Accepted: 03/07/2014] [Indexed: 12/24/2022]
Abstract
Acute myeloid leukemia (AML) primary cells express high levels of phosphorylated Akt, a master regulator of cellular functions regarded as a promising drug target. By means of reverse phase protein arrays, we examined the response of 80 samples of primary cells from AML patients to selective inhibitors of the phosphatidylinositol 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) axis. We confirm that >60% of the samples analyzed are characterized by high pathway phosphorylation. Unexpectedly, however, we show here that targeting Akt and mTOR with the specific inhibitors Akti 1/2 and Torin1, alone or in combination, result in paradoxical Akt phosphorylation and activation of downstream signaling in 70% of the samples. Indeed, we demonstrate that cropping Akt or mTOR activity can stabilize the Akt/mTOR downstream effectors Forkhead box O and insulin receptor substrate-1, which in turn potentiate signaling through upregulation of the expression/phosphorylation of selected growth factor receptor tyrosine kinases (RTKs). Activation of RTKs in turn reactivates PI3K and downstream signaling, thus overruling the action of the drugs. We finally demonstrate that dual inhibition of Akt and RTKs displays strong synergistic cytotoxic effects in AML cells and downmodulates Akt signaling to a much greater extent than either drug alone, and should therefore be explored in AML clinical setting.
Collapse
|
70
|
Vandegriff KD, Malavalli A, Lohman J, Young MA, Terraneo L, Virgili E, Bianciardi P, Caretti A, Samaja M. Impact of acellular hemoglobin-based oxygen carriers on brain apoptosis in rats. Transfusion 2014; 54:2045-54. [PMID: 24673504 DOI: 10.1111/trf.12643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Extracellular hemoglobin (Hb)-based oxygen carriers (HBOCs) are under extensive consideration as oxygen therapeutics. Their effects on cellular mechanisms related to apoptosis are of particular interest, because the onset of proapoptotic pathways may give rise to tissue damage. STUDY DESIGN AND METHODS The objective was to assess whether the properties of the Hb that replaces blood during an isovolemic hemodilution would modulate apoptotic-response mechanisms in rat brain and whether such signaling favors cytoprotection or damage. We exposed rats to exchange transfusion (ET; 50% blood volume and isovolemic replacement with Hextend [negative colloid control], MP4OX [PEGylated HBOC with high oxygen affinity], and ααHb [αα-cross-linked HBOC with low oxygen affinity; n=4-6/group]). Sham rats acted as control. Animals were euthanized at 2, 6, and 12 hours after ET; brain tissue was harvested and processed for analysis. RESULTS In MP4OX animals, the number of neurons that overexpressed the hypoxia-inducible factor (HIF)-1α was higher than in ααHb, particularly at the early time points. In addition, MP4OX was associated with greater phosphorylation of protein kinase B (Akt), a well-known cytoprotective factor. Indeed, the degree of apoptosis, measured as terminal deoxynucleotidyl transferase-positive neurons and caspase-3 cleavage, ranked in order of MP4OX < Hextend < ααHb. CONCLUSION Even though both HBOCs showed increased levels of HIF-1α compared to shams or Hextend-treated animals, differences in signaling events resulted in very different outcomes for the two HBOCs. ααHb-treated brain tissue showed significant neuronal damage, measured as apoptosis. This was in stark contrast to the protection seen with MP4OX, apparently due to recruitment of Akt and neuronal specific HIF-1α pathways.
Collapse
|
71
|
Wang YY, Zhe H, Zhao R. Preclinical evidences toward the use of triterpenoid CDDO-Me for solid cancer prevention and treatment. Mol Cancer 2014; 13:30. [PMID: 24552536 PMCID: PMC3940295 DOI: 10.1186/1476-4598-13-30] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 02/12/2014] [Indexed: 01/04/2023] Open
Abstract
Solid cancer remains a major cause of death in the world. As limited treatment options are currently available to patients with solid cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. The plant-derived triterpenoids, commonly used for medicinal purposes in many Asian countries, poses various pharmacological properties. A large number of triterpenoids exhibit cytotoxicity against a variety of cancer cells, and cancer preventive, as well as anticancer efficacy in preclinical animal models. To improve antitumor activity, some synthetic triterpenoid derivatives have been synthesized, including cyano-3,12-dioxooleana-1,9(11)- dien-28-oic (CDDO), its methyl ester (CDDO-Me), and imidazolide (CDDO-Im) derivatives. In this review, we will critically examine the current preclinical evidences of cancer preventive and therapeutic activity about one of the synthetic triterpenoids, CDDO-Me. Both in vitro and in vivo effects of this agent and related molecular mechanisms are presented.
Collapse
Affiliation(s)
- Yan-Yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, No,804 Shengli Str, Yinchuan, Ningxia, China.
| | | | | |
Collapse
|
72
|
Carvalho JFS, Kanaar R. Targeting homologous recombination-mediated DNA repair in cancer. Expert Opin Ther Targets 2014; 18:427-58. [PMID: 24491188 DOI: 10.1517/14728222.2014.882900] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION DNA is the target of many traditional non-specific chemotherapeutic drugs. New drugs or therapeutic approaches with a more rational and targeted component are mandatory to improve the success of cancer therapy. The homologous recombination (HR) pathway is an attractive target for the development of inhibitors because cancer cells rely heavily on HR for repair of DNA double-strand breaks resulting from chemotherapeutic treatments. Additionally, the discovery that poly(ADP)ribose polymerase-1 inhibitors selectively kill cells with genetic defects in HR has spurned an even greater interest in inhibitors of HR. AREAS COVERED HR drives the repair of broken DNA via numerous protein-mediated sequential DNA manipulations. Due to extensive number of steps and proteins involved, the HR pathway provides a rich pool of potential drug targets. This review discusses the latest developments concerning the strategies being explored to inhibit HR. Particular attention is given to the identification of small molecule inhibitors of key HR proteins, including the BRCA proteins and RAD51. EXPERT OPINION Current HR inhibitors are providing the basis for pharmaceutical development of more potent and specific inhibitors to be applied in mono- or combinatorial therapy regimes, while novel targets will be uncovered by experiments aimed to gain a deeper mechanistic understanding of HR and its subpathways.
Collapse
Affiliation(s)
- João F S Carvalho
- Erasmus MC Cancer Institute, Department of Genetics, Department of Radiation Oncology, Cancer Genomics Netherlands , PO Box 2040, 3000 CA Rotterdam , The Netherlands
| | | |
Collapse
|
73
|
Kim SM, Kim BY, Lee SA, Eo SK, Yun Y, Kim CD, Kim K. 27-Hydroxycholesterol and 7alpha-hydroxycholesterol trigger a sequence of events leading to migration of CCR5-expressing Th1 lymphocytes. Toxicol Appl Pharmacol 2014; 274:462-70. [DOI: 10.1016/j.taap.2013.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 12/13/2022]
|
74
|
Tanase CP, Enciu AM, Mihai S, Neagu AI, Calenic B, Cruceru ML. Anti-cancer Therapies in High Grade Gliomas. CURR PROTEOMICS 2013; 10:246-260. [PMID: 24228024 PMCID: PMC3821381 DOI: 10.2174/1570164611310030007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/10/2013] [Accepted: 06/11/2013] [Indexed: 12/28/2022]
Abstract
High grade gliomas represent one of the most aggressive and treatment-resistant types of human cancer, with only 1–2 years median survival rate for patients with grade IV glioma. The treatment of glioblastoma is a considerable therapeutic challenge; combination therapy targeting multiple pathways is becoming a fast growing area of research. This review offers an up-to-date perspective of the literature about current molecular therapy targets in high grade glioma, that include angiogenic signals, tyrosine kinase receptors, nodal signaling proteins and cancer stem cells related approaches. Simultaneous identification of proteomic signatures could provide biomarker panels for diagnostic and personalized treatment of different subsets of glioblastoma. Personalized medicine is starting to gain importance in clinical care, already having recorded a series of successes in several types of cancer; nonetheless, in brain tumors it is still at an early stage.
Collapse
Affiliation(s)
- Cristiana Pistol Tanase
- Victor Babes National Institute of Pathology, Department of Biochemistry-Proteomics, no 99-101 Splaiul Inde-pendentei, 050096 sect 5 Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
75
|
van Oosterwijk JG, van Ruler MAJH, Briaire-de Bruijn IH, Herpers B, Gelderblom H, van de Water B, Bovée JVMG. Src kinases in chondrosarcoma chemoresistance and migration: dasatinib sensitises to doxorubicin in TP53 mutant cells. Br J Cancer 2013; 109:1214-22. [PMID: 23922104 PMCID: PMC3778302 DOI: 10.1038/bjc.2013.451] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chondrosarcomas are malignant cartilage-forming tumours of bone. Because of their resistance to conventional chemotherapy and radiotherapy, currently no treatment strategies exist for unresectable and metastatic chondrosarcoma. Previously, PI3K/AKT/GSK3β and Src kinase pathways were shown to be activated in chondrosarcoma cell lines. Our aim was to investigate the role of these kinases in chemoresistance and migration in chondrosarcoma in relation to TP53 mutation status. METHODS We used five conventional and three dedifferentiated chondrosarcoma cell lines and investigated the effect of PI3K/AKT/GSK3β pathway inhibition (enzastaurin) and Src pathway inhibition (dasatinib) in chemoresistance using WST assay and live cell imaging with AnnexinV staining. Immunohistochemistry on tissue microarrays (TMAs) containing 157 cartilaginous tumours was performed for Src family members. Migration assays were performed with the RTCA xCelligence System. RESULTS Src inhibition was found to overcome chemoresistance, to induce apoptosis and to inhibit migration. Cell lines with TP53 mutations responded better to combination therapy than wild-type cell lines (P=0.002). Tissue microarray immunohistochemistry confirmed active Src (pSrc) signalling, with Fyn being most abundantly expressed (76.1%). CONCLUSION These results strongly indicate Src family kinases, in particular Fyn, as a potential target for the treatment of inoperable and metastatic chondrosarcomas, and to sensitise for doxorubicin especially in the presence of TP53 mutations.
Collapse
Affiliation(s)
- J G van Oosterwijk
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - M A J H van Ruler
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - I H Briaire-de Bruijn
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - B Herpers
- Division of Toxicology, Leiden/Amsterdam Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - H Gelderblom
- Department of Clinical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - B van de Water
- Division of Toxicology, Leiden/Amsterdam Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - J V M G Bovée
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
76
|
Ferreira E, Porter RM, Wehling N, O'Sullivan RP, Liu F, Boskey A, Estok DM, Harris MB, Vrahas MS, Evans CH, Wells JW. Inflammatory cytokines induce a unique mineralizing phenotype in mesenchymal stem cells derived from human bone marrow. J Biol Chem 2013; 288:29494-505. [PMID: 23970554 DOI: 10.1074/jbc.m113.471268] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bone marrow contains mesenchymal stem cells (MSCs) that can differentiate along multiple mesenchymal lineages. In this capacity they are thought to be important in the intrinsic turnover and repair of connective tissues while also serving as a basis for tissue engineering and regenerative medicine. However, little is known of the biological responses of human MSCs to inflammatory conditions. When cultured with IL-1β, marrow-derived MSCs from 8 of 10 human subjects deposited copious hydroxyapatite, in which authenticity was confirmed by Fourier transform infrared spectroscopy. Transmission electron microscopy revealed the production of fine needles of hydroxyapatite in conjunction with matrix vesicles. Alkaline phosphatase activity did not increase in response to inflammatory mediators, but PPi production fell, reflecting lower ectonucleotide pyrophosphatase activity in cells and matrix vesicles. Because PPi is the major physiological inhibitor of mineralization, its decline generated permissive conditions for hydroxyapatite formation. This is in contrast to MSCs treated with dexamethasone, where PPi levels did not fall and mineralization was fuelled by a large and rapid increase in alkaline phosphatase activity. Bone sialoprotein was the only osteoblast marker strongly induced by IL-1β; thus these cells do not become osteoblasts despite depositing abundant mineral. RT-PCR did not detect transcripts indicative of alternative mesenchymal lineages, including chondrocytes, myoblasts, adipocytes, ligament, tendon, or vascular smooth muscle cells. IL-1β phosphorylated multiple MAPKs and activated nuclear factor-κB (NF-κB). Certain inhibitors of MAPK and PI3K, but not NF-κB, prevented mineralization. The findings are of importance to soft tissue mineralization, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Elisabeth Ferreira
- From the Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Dental stem cells as an alternative source for cardiac regeneration. Med Hypotheses 2013; 81:704-6. [PMID: 23932760 DOI: 10.1016/j.mehy.2013.07.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/17/2013] [Indexed: 01/09/2023]
Abstract
Dental tissues contains stem cells or progenitors that have high proliferative capacity, are clonogenic in vitro and demonstrate the ability to differentiate to multiple type cells involving neurons, bone, cartilage, fat and smooth muscle. Numerous experiments have demonstrated that the multipotent stem cells are not rejected by immune system and therefore it may be possible to use these cells in allogeneic settings. In addition, these remarkable cells are easily abundantly available couple with less invasive procedure in isolating comparing to bone marrow aspiration. Here we proposed dental stem cells as candidate for cardiac regeneration based on its immature characteristic and propensity towards cardiac lineage via PI3-Kinase/Aktsignalling pathway.
Collapse
|
78
|
Welker ME, Kulik G. Recent syntheses of PI3K/Akt/mTOR signaling pathway inhibitors. Bioorg Med Chem 2013; 21:4063-91. [PMID: 23735831 PMCID: PMC3711139 DOI: 10.1016/j.bmc.2013.04.083] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 04/30/2013] [Indexed: 12/20/2022]
Abstract
This review focuses on the syntheses of PI3K/Akt/mTOR inhibitors that have been reported outside of the patent literature in the last 5years but is largely centered on synthetic work reported in 2011 and 2012. While focused on syntheses of inhibitors, some information on in vitro and in vivo testing of compounds is also included. Many of these reported compounds are reversible, competitive adenosine triphosphate (ATP) binding inhibitors, so given the structural similarities of many of these compounds to the adenine core, this review presents recent work on inhibitors based on where the synthetic chemistry was started, that is, inhibitor syntheses which started with purines/pyrimidines are followed by inhibitor syntheses which began with pyridines, pyrazines, azoles, and triazines then moves to inhibitors which bear no structural resemblance to adenine: liphagal, wortmannin and quercetin analogs. The review then finishes with a short section on recent syntheses of phosphotidyl inositol (PI) analogs since competitive PI binding inhibitors represent an alternative to the competitive ATP binding inhibitors which have received the most attention.
Collapse
Affiliation(s)
- Mark E Welker
- Department of Chemistry, Wake Forest University, PO Box 7486, Winston-Salem, NC 27109, USA.
| | | |
Collapse
|
79
|
Riehle RD, Cornea S, Degterev A, Torchilin V. Micellar formulations of pro-apoptotic DM-PIT-1 analogs and TRAIL in vitro and in vivo. Drug Deliv 2013; 20:78-85. [PMID: 23495715 DOI: 10.3109/10717544.2013.766780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed and characterized micellar formulations of analogs to the recently developed inhibitor of the phosphatidylinositol-3-kinase (PI3K) pathway (N-[(2-hydroxy-5-nitrophenyl)amino]carbonothioyl-3,5-dimethylbenzamide (DM-PIT-1)) for their physicochemical, loading and cytotoxic properties. The first generation inhibitor DM-PIT-1 is a non-lipid, small molecule inhibitor of phosphatidylinositol-3,4,5-triphosphate/Pleckstrin homology (PIP3/PH) binding capable of inhibiting the growth of tumor cells both in vitro and in vivo. A second generation of improved and druggable analogs has been developed. All compounds were successfully loaded (>70%) in PEG2000-PE micelles of 16-20 nm in size with several analogs demonstrating favorable cytotoxic activity against A2780 ovarian carcinoma. These compounds were also successfully incorporated into polyethylene glycol-phosphatidylethanolamine (PEG-PE) micelles combined with surface-bound tumor necrosis factor related apoptosis inducing ligand (TRAIL). The resulting multifunctional combination micelles were able to significantly enhance cytotoxic activity in the TRAIL-resistant A2780 cell line. Additionally, analogs NCL-176 and NCL-240 were effective in inhibiting tumor growth in an in vivo subcutaneous tumor model of A2780. These results indicate the utility of delivering TRAIL and PI3K pathway inhibitors in a combined micellar preparation.
Collapse
Affiliation(s)
- Robert D Riehle
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
80
|
Role of phosphatidylinositol 3,4,5-trisphosphate in cell signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:105-39. [PMID: 23775693 DOI: 10.1007/978-94-007-6331-9_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many lipids present in cellular membranes are phosphorylated as part of signaling cascades and participate in the recruitment, localization, and activation of downstream protein effectors. Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) is one of the most important second messengers and is capable of interacting with a variety of proteins through specific PtdIns(3,4,5)P3 binding domains. Localization and activation of these effector proteins controls a myriad of cellular functions including cell survival, proliferation, cytoskeletal rearrangement, and gene expression. Aberrations in the production and metabolism of PtdIns(3,4,5)P3 have been implicated in many human diseases including cancer, diabetes, inflammation, and heart disease. This chapter provides an overview of the role of PtdIns(3,4,5)P3 in cellular regulation and the implications of PtdIns(3,4,5)P3 dysregulation in human diseases. Additionally, recent attempts at targeting PtdIns(3,4,5)P3 signaling via small molecule inhibitors are summarized.
Collapse
|
81
|
Poursharifi P, Lapointe M, Pétrin D, Devost D, Gauvreau D, Hébert TE, Cianflone K. C5L2 and C5aR interaction in adipocytes and macrophages: insights into adipoimmunology. Cell Signal 2012; 25:910-8. [PMID: 23268185 DOI: 10.1016/j.cellsig.2012.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/29/2012] [Accepted: 12/12/2012] [Indexed: 11/18/2022]
Abstract
Obesity is associated with inflammation characterized by increased infiltration of macrophages into adipose tissue. C5aR-like receptor 2 (C5L2) has been identified as a receptor for acylation-stimulating protein (ASP) and the inflammatory factor C5a, which also binds C5aR. The present study examines the effects of ligands ASP and C5a on interactions between the receptors C5L2 and C5aR in 3T3-L1 adipocytes and J774 macrophages. BRET experiments indicate that C5L2 and C5aR form homo- and heterodimers in transfected HEK 293 cells, which were stable in the presence of ligand. Cell surface receptor levels of C5L2 and C5aR increased during 3T3-L1 adipocyte differentiation; both receptors are also highly expressed in J774 macrophages. Using confocal microscopy to evaluate endogenous receptors in adipocytes following stimulation with ASP or C5a, C5L2 is internalized with increasing perinuclear colocalization with C5aR. There is little C5a-dependent colocalization in macrophages. While adipocyte-conditioned medium (ACM) increased C5L2-C5aR colocalization in macrophages, this was blocked by C5a. ASP stimulation increased Akt (Ser(473)) phosphorylation in both cell types; C5a induced slight Akt phosphorylation in adipocytes with less effect in macrophages. ASP, but not C5a, increased fatty acid uptake/esterification in adipocytes. C5L2-C5aR homodimerization versus heterodimerization may thus contribute to differential responses obtained following ASP vs C5a stimulation of adipocytes and macrophages, providing new insights into the complex interaction between these two cell types within adipose tissue. Studying the mechanisms involved in the differential responses of C5L2-C5aR activation based on cell type will further our understanding of inflammatory processes in obesity.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Centre de Recherche de Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
82
|
Insulin stimulated-glucose transporter Glut 4 is expressed in the retina. PLoS One 2012; 7:e52959. [PMID: 23285235 PMCID: PMC3528717 DOI: 10.1371/journal.pone.0052959] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 11/26/2012] [Indexed: 11/19/2022] Open
Abstract
The vertebrate retina is a very metabolically active tissue whose energy demands are normally met through the uptake of glucose and oxygen. Glucose metabolism in this tissue relies upon adequate glucose delivery from the systemic circulation. Therefore, glucose transport depends on the expression of glucose transporters. Here, we show retinal expression of the Glut 4 glucose transporter in frog and rat retinas. Immunohistochemistry and in situ hybridization studies showed Glut 4 expression in the three nuclear layers of the retina: the photoreceptor, inner nuclear and ganglionar cell layers. In the rat retina immunoprecipitation and Western blot analysis revealed a protein with an apparent molecular mass of 45 kDa. ¹⁴C-glucose accumulation by isolated rat retinas was significantly enhanced by physiological concentrations of insulin, an effect blocked by inhibitors of phosphatidyl-inositol 3-kinase (PI3K), a key enzyme in the insulin-signaling pathway in other tissues. Also, we observed an increase in ³H-cytochalasin binding sites in the presence of insulin, suggesting an increase in transporter recruitment at the cell surface. Besides, insulin induced phosphorylation of Akt, an effect also blocked by PI3K inhibition. Expression of Glut 4 was not modified in retinas of a type 1 diabetic rat model. To our knowledge, our results provide the first evidence of Glut4 expression in the retina, suggesting it as an insulin- responsive tissue.
Collapse
|
83
|
Liby KT, Sporn MB. Synthetic oleanane triterpenoids: multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol Rev 2012; 64:972-1003. [PMID: 22966038 DOI: 10.1124/pr.111.004846] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We review the rationale for the use of synthetic oleanane triterpenoids (SOs) for prevention and treatment of disease, as well as extensive biological data on this topic resulting from both cell culture and in vivo studies. Emphasis is placed on understanding mechanisms of action. SOs are noncytotoxic drugs with an excellent safety profile. Several hundred SOs have now been synthesized and in vitro have been shown to: 1) suppress inflammation and oxidative stress and therefore be cytoprotective, especially at low nanomolar doses, 2) induce differentiation, and 3) block cell proliferation and induce apoptosis at higher micromolar doses. Animal data on the use of SOs in neurodegenerative diseases and in diseases of the eye, lung, cardiovascular system, liver, gastrointestinal tract, and kidney, as well as in cancer and in metabolic and inflammatory/autoimmune disorders, are reviewed. The importance of the cytoprotective Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1/nuclear factor (erythroid-derived 2)-like 2/antioxidant response element (Keap1/Nrf2/ARE) pathway as a mechanism of action is explained, but interactions with peroxisome proliferator-activated receptor γ (PARPγ), inhibitor of nuclear factor-κB kinase complex (IKK), janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT), human epidermal growth factor receptor 2 (HER2)/ErbB2/neu, phosphatase and tensin homolog (PTEN), the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway, mammalian target of rapamycin (mTOR), and the thiol proteome are also described. In these interactions, Michael addition of SOs to reactive cysteine residues in specific molecular targets triggers biological activity. Ultimately, SOs are multifunctional drugs that regulate the activity of entire networks. Recent progress in the earliest clinical trials with 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) methyl ester (bardoxolone methyl) is also summarized.
Collapse
Affiliation(s)
- Karen T Liby
- Departments of Medicine and Pharmacology, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | |
Collapse
|
84
|
Lee IT, Lin CC, Lee CY, Hsieh PW, Yang CM. Protective effects of (-)-epigallocatechin-3-gallate against TNF-α-induced lung inflammation via ROS-dependent ICAM-1 inhibition. J Nutr Biochem 2012; 24:124-36. [PMID: 22819551 DOI: 10.1016/j.jnutbio.2012.03.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 02/20/2012] [Accepted: 03/01/2012] [Indexed: 02/04/2023]
Abstract
Oxidative stresses are considered to play an important role in the induction of cell adhesion molecules and proinflammatory cytokines implicated in inflammatory processes. Heme oxygenase (HO)-1 and suppressors of cytokine signaling (SOCS)-3 exert several biological functions, including antiapoptotic and anti-inflammatory effects. Here, we report that HO-1 and SOCS-3 were induced in A549 cells and human pulmonary alveolar epithelial cells (HPAEpiCs) treated with (-)-epigallocatechin-3-gallate (EGCG). EGCG protected against tumor necrosis factor (TNF)-α-mediated lung inflammation by down-regulation of oxidative stress and intercellular adhesion molecule (ICAM)-1 expression in A549 cells or HPAEpiCs and the lungs of mice. EGCG inhibited TNF-α-induced ICAM-1 expression, THP-1 cells adherence, pulmonary hematoma and leukocyte (eosinophils and neutrophils) count in bronchoalveolar lavage fluid in mice. In addition, EGCG also attenuated TNF-α-induced oxidative stress, p47(phox) translocation, MAPKs activation, and STAT-3 and activating transcription factor (ATF)2 phosphorylation. EGCG also reduced the formation of a TNFR1/TRAF2/Rac1/p47(phox) complex. Moreover, in this study, the observed suppression of TNF-α-stimulated ICAM-1 expression and reactive oxygen species (ROS) generation by EGCG was abrogated by transfection with siRNA of SOCS-3 or HO-1. These results suggested that HO-1 or SOCS-3 functions as a suppressor of TNF-α signaling, not only by inhibiting adhesion molecules expression but also by diminishing intracellular ROS production and STAT-3 and ATF2 activation in A549 cells or HPAEpiCs and the lungs of mice.
Collapse
Affiliation(s)
- I-Ta Lee
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
85
|
Sbrissa D, Ikonomov OC, Filios C, Delvecchio K, Shisheva A. Functional dissociation between PIKfyve-synthesized PtdIns5P and PtdIns(3,5)P2 by means of the PIKfyve inhibitor YM201636. Am J Physiol Cell Physiol 2012; 303:C436-46. [PMID: 22621786 DOI: 10.1152/ajpcell.00105.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PIKfyve is an essential mammalian lipid kinase with pleiotropic cellular functions whose genetic knockout in mice leads to preimplantation lethality. Despite several reports for PIKfyve-catalyzed synthesis of phosphatidylinositol 5-phosphate (PtdIns5P) along with phosphatidylinositol-3,5-biphosphate [PtdIns(3,5)P(2)] in vitro and in vivo, the role of the PIKfyve pathway in intracellular PtdIns5P production remains underappreciated and the function of the PIKfyve-synthesized PtdIns5P pool poorly characterized. Hence, the recently discovered potent PIKfyve-selective inhibitor, the YM201636 compound, has been solely tested for inhibiting PtdIns(3,5)P(2) synthesis. Here, we have compared the in vitro and in vivo inhibitory potency of YM201636 toward PtdIns5P and PtdIns(3,5)P(2). Unexpectedly, we observed that at low doses (10-25 nM), YM201636 inhibited preferentially PtdIns5P rather than PtdIns(3,5)P(2) production in vitro, whereas at higher doses, the two products were similarly inhibited. In cellular contexts, YM201636 at 160 nM inhibited PtdIns5P synthesis twice more effectively compared with PtdIns(3,5)P(2) synthesis. In 3T3L1 adipocytes, human embryonic kidney 293 and Chinese hamster ovary (CHO-T) cells, levels of PtdIns5P dropped by 62-71% of the corresponding untreated controls, whereas those of PtdIns(3,5)P(2) fell by only 28-46%. The preferential inhibition of PtdIns5P versus PtdIns(3,5)P(2) at low doses of YM201636 was explored to probe contributions of the PIKfyve-catalyzed PtdIns5P pool to insulin-induced actin stress fiber disassembly in CHO-T cells, GLUT4 translocation in 3T3L1 adipocytes, and induction of aberrant cellular vacuolation in these or other cell types. The results provide the first experimental evidence that the principal pathway for PtdIns5P intracellular production is through PIKfyve and that insulin effect on actin stress fiber disassembly is mediated entirely by the PIKfyve-produced PtdIns5P pool.
Collapse
Affiliation(s)
- Diego Sbrissa
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|
86
|
Knockdown of RON inhibits AP-1 activity and induces apoptosis and cell cycle arrest through the modulation of Akt/FoxO signaling in human colorectal cancer cells. Dig Dis Sci 2012; 57:371-80. [PMID: 21901254 DOI: 10.1007/s10620-011-1892-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/24/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIMS Altered Recepteur d'Origine nantais (RON) expression transduces signals inducting invasive growth phenotype that includes cell proliferation, migration, matrix invasion, and protection of apoptosis in human cancer cells. The aims of the current study were to evaluate whether RON affects tumor cell behavior and cellular signaling pathways including activator protein-1 (AP-1) and Akt/forkhead box O (FoxO) in human colorectal cancer cells. METHODS To study the biological role of RON on tumor cell behavior and cellular signaling pathways in human colorectal cancer, we used small interfering RNA (siRNA) to knockdown RON gene expression in human colorectal cancer cell line, DKO-1. RESULTS Knockdown of RON diminished migration, invasion, and proliferation of human colorectal cancer cells. Knockdown of RON decreased AP-1 transcriptional activity and expression of AP-1 target genes. Knockdown of RON activated cleaved caspase-3, -7, -9, and PARP, and down-regulated the expression of Mcl-1, survivin and XIAP, leading to induction of apoptosis. Knockdown of RON induced cell cycle arrest in the G2/M phase of cancer cells by an increase of p27 and a decrease of cyclin D3. Knockdown of RON inhibited the phosphorylation of Akt/FoxO signaling proteins such as Ser473 and Thr308 of Akt and FoxO1/3a. CONCLUSIONS These results indicate that knockdown of RON inhibits AP-1 activity and induces apoptosis and cell cycle arrest through the modulation of Akt/FoxO signaling in human colorectal cancer cells.
Collapse
|
87
|
Lazo PA, Santos CR. Interference with p53 functions in human viral infections, a target for novel antiviral strategies? Rev Med Virol 2011; 21:285-300. [PMID: 21726011 DOI: 10.1002/rmv.696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/02/2011] [Accepted: 05/06/2011] [Indexed: 12/11/2022]
Abstract
Viral infections cause a major stress in host cells. The cellular responses to stress are mediated by p53, which by deregulation of cell cycle and apoptosis, may also be part of the host cell reaction to fight infections. Therefore, during evolutionary viral adaptation to host organisms, viruses have developed strategies to manipulate host cell p53 dependent pathways to facilitate their viral life cycles. Thus, interference with p53 function is an important component in viral pathogenesis. Many viruses have proteins that directly affect p53, whereas others alter the regulation of p53 in an indirect manner, mediated by Hdm2 or Akt, or induction of interferon. Rescue of p53 activity is becoming an area of therapeutic development in oncology. It might be feasible that manipulation of p53 mediated responses can become a therapeutic option to limit viral replication or dissemination. In this report, the mechanisms by which viral proteins manipulate p53 responses are reviewed, and it is proposed that a pharmacological rescue of p53 functions might help to control viral infections.
Collapse
Affiliation(s)
- Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain.
| | | |
Collapse
|