51
|
Ireland L, Luckett T, Schmid MC, Mielgo A. Blockade of Stromal Gas6 Alters Cancer Cell Plasticity, Activates NK Cells, and Inhibits Pancreatic Cancer Metastasis. Front Immunol 2020; 11:297. [PMID: 32174917 PMCID: PMC7056881 DOI: 10.3389/fimmu.2020.00297] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the deadliest cancers due to its aggressive and metastatic nature. PDA is characterized by a rich tumor stroma with abundant macrophages, fibroblasts, and collagen deposition that can represent up to 90% of the tumor mass. Activation of the tyrosine kinase receptor AXL and expression of its ligand growth arrest-specific protein 6 (Gas6) correlate with a poor prognosis and increased metastasis in pancreatic cancer patients. Gas6 is a multifunctional protein that can be secreted by several cell types and regulates multiple processes, including cancer cell plasticity, angiogenesis, and immune cell functions. However, the role of Gas6 in pancreatic cancer metastasis has not been fully investigated. In these studies we find that, in pancreatic tumors, Gas6 is mainly produced by tumor associated macrophages (TAMs) and cancer associated fibroblasts (CAFs) and that pharmacological blockade of Gas6 signaling partially reverses epithelial-to-mesenchymal transition (EMT) of tumor cells and supports NK cell activation, thereby inhibiting pancreatic cancer metastasis. Our data suggest that Gas6 simultaneously acts on both the tumor cells and the NK cells to support pancreatic cancer metastasis. This study supports the rationale for targeting Gas6 in pancreatic cancer and use of NK cells as a potential biomarker for response to anti-Gas6 therapy.
Collapse
Affiliation(s)
| | | | | | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
52
|
Song X, Akasaka H, Wang H, Abbasgholizadeh R, Shin JH, Zang F, Chen J, Logsdon CD, Maitra A, Bean AJ, Wang H. Hematopoietic progenitor kinase 1 down-regulates the oncogenic receptor tyrosine kinase AXL in pancreatic cancer. J Biol Chem 2020; 295:2348-2358. [PMID: 31959629 PMCID: PMC7039544 DOI: 10.1074/jbc.ra119.012186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
The oncogenic receptor tyrosine kinase AXL is overexpressed in cancer and plays an important role in carcinomas of multiple organs. However, the mechanisms of AXL overexpression in cancer remain unclear. In this study, using HEK293T, Panc-1, and Panc-28 cells and samples of human pancreatic intraepithelial neoplasia (PanIN), along with several biochemical approaches and immunofluorescence microscopy analyses, we sought to investigate the mechanisms that regulate AXL over-expression in pancreatic ductal adenocarcinoma (PDAC). We found that AXL interacts with hematopoietic progenitor kinase 1 (HPK1) and demonstrate that HPK1 down-regulates AXL and decreases its half-life. The HPK1-mediated AXL degradation was inhibited by the endocytic pathway inhibitors leupeptin, bafilomycin A1, and monensin. HPK1 accelerated the movement of AXL from the plasma membrane to endosomes in pancreatic cancer cells treated with the AXL ligand growth arrest-specific 6 (GAS6). Moreover, HPK1 increased the binding of AXL to the Cbl proto-oncogene (c-Cbl); promoted AXL ubiquitination; decreased AXL-mediated signaling, including phospho-AKT and phospho-ERK signaling; and decreased the invasion capability of PDAC cells. Importantly, we show that AXL expression inversely correlates with HPK1 expression in human PanINs and that patients whose tumors have low HPK1 and high AXL expression levels have shorter survival than those with low AXL or high HPK1 expression (p < 0.001). Our results suggest that HPK1 is a tumor suppressor that targets AXL for degradation via the endocytic pathway. HPK1 loss of function may contribute to AXL overexpression and thereby enhance AXL-dependent downstream signaling and tumor invasion in PDAC.
Collapse
Affiliation(s)
- Xianzhou Song
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Hironari Akasaka
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Hua Wang
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Reza Abbasgholizadeh
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Ji-Hyun Shin
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Fenglin Zang
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Jiayi Chen
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Anirban Maitra
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Andrew J Bean
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, Texas 77030
| | - Huamin Wang
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030.
| |
Collapse
|
53
|
Sarukhanyan E, Shityakov S, Dandekar T. Rational Drug Design of Axl Tyrosine Kinase Type I Inhibitors as Promising Candidates Against Cancer. Front Chem 2020; 7:920. [PMID: 32117858 PMCID: PMC7010640 DOI: 10.3389/fchem.2019.00920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
The high level of Axl tyrosine kinase expression in various cancer cell lines makes it an attractive target for the development of anti-cancer drugs. In this study, we carried out several sets of in silico screening for the ATP-competitive Axl kinase inhibitors based on different molecular docking protocols. The best drug-like candidates were identified, after parental structure modifications, by their highest affinity to the target protein. We found that our newly designed compound R5, a derivative of the R428 patented analog, is the most promising inhibitor of the Axl kinase according to the three molecular docking algorithms applied in the study. The molecular docking results are in agreement with the molecular dynamics simulations using the MM-PBSA/GBSA implicit solvation models, which confirm the high affinity of R5 toward the protein receptor. Additionally, the selectivity test against other kinases also reveals a high affinity of R5 toward ABL1 and Tyro3 kinases, emphasizing its promising potential for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Edita Sarukhanyan
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sergey Shityakov
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.,Department of Anesthesia and Critical Care, University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
54
|
Okura N, Nishioka N, Yamada T, Taniguchi H, Tanimura K, Katayama Y, Yoshimura A, Watanabe S, Kikuchi T, Shiotsu S, Kitazaki T, Nishiyama A, Iwasaku M, Kaneko Y, Uchino J, Uehara H, Horinaka M, Sakai T, Tanaka K, Kozaki R, Yano S, Takayama K. ONO-7475, a Novel AXL Inhibitor, Suppresses the Adaptive Resistance to Initial EGFR-TKI Treatment in EGFR-Mutated Non-Small Cell Lung Cancer. Clin Cancer Res 2020; 26:2244-2256. [PMID: 31953310 DOI: 10.1158/1078-0432.ccr-19-2321] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/16/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Currently, an optimal therapeutic strategy comprising molecularly targeted agents for treating EGFR-mutated non-small cell lung cancer (NSCLC) patients with acquired resistance to osimertinib is not available. Therefore, the initial therapeutic intervention is crucial for the prolonged survival of these patients. The activation of anexelekto (AXL) signaling is known to be associated with intrinsic and acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs). In this study, we investigated the best therapeutic strategy to combat AXL-induced tolerance to EGFR-TKIs using the novel AXL inhibitor ONO-7475. EXPERIMENTAL DESIGN We examined the efficacy of ONO-7475 in combination with EGFR-TKIs in EGFR-mutated NSCLC cells using in vitro and in vivo experiments. We investigated the correlation between AXL expression in tumors and clinical outcomes with osimertinib for EGFR-mutated NSCLC patients with acquired resistance to initial EGFR-TKIs. RESULTS ONO-7475 sensitized AXL-overexpressing EGFR-mutant NSCLC cells to the EGFR-TKIs osimertinib and dacomitinib. In addition, ONO-7475 suppressed the emergence and maintenance of EGFR-TKI-tolerant cells. In the cell line-derived xenograft models of AXL-overexpressing EGFR-mutated lung cancer treated with osimertinib, initial combination therapy of ONO-7475 and osimertinib markedly regressed tumors and delayed tumor regrowth compared with osimertinib alone or the combination after acquired resistance to osimertinib. AXL expression in EGFR-TKI refractory tumors did not correlate with the sensitivity of osimertinib. CONCLUSIONS These results demonstrate that ONO-7475 suppresses the emergence and maintenance of tolerant cells to the initial EGFR-TKIs, osimertinib or dacomitinib, in AXL-overexpressing EGFR-mutated NSCLC cells, suggesting that ONO-7475 and osimertinib is a highly potent combination for initial treatment.
Collapse
Affiliation(s)
- Naoko Okura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoya Nishioka
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Hirokazu Taniguchi
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Keiko Tanimura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihiro Yoshimura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shinsuke Shiotsu
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Takeshi Kitazaki
- Department of Respiratory Medicine, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiko Kaneko
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hisanori Uehara
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kohei Tanaka
- Research Center of Oncology, Discovery and Research, Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Ryohei Kozaki
- Research Center of Oncology, Discovery and Research, Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
55
|
Xu C, Han Y, Xu S, Wang R, Yue M, Tian Y, Li X, Zhao Y, Gong P. Design, synthesis and biological evaluation of new Axl kinase inhibitors containing 1,3,4-oxadiazole acetamide moiety as novel linker. Eur J Med Chem 2020; 186:111867. [PMID: 31757525 DOI: 10.1016/j.ejmech.2019.111867] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
Using the principle of bioisosteric replacement, we present a structure-based design approach to obtain new Axl kinase inhibitors with significant activity at the kinase and cellular levels. Through a stepwise structure-activity relationships exploration, a series of 6,7-disubstituted quinoline derivatives, which contain 1,3,4-oxadiazol acetamide moiety as novel Linker, were ultimately synthesized with Axl as the primary target. Most of them exhibited moderate to excellent activity, with IC50 values ranging from 0.032 to 1.54 μM against the tested cell lines. Among them, the most promising compound 47e, as an Axl kinase inhibitor (IC50 = 10 nM), shows remarkable cytotoxicity against A549, HT-29, PC-3, MCF-7, H1975 and MDA-MB-231 cell lines. More importantly, 47e also shows a significant inhibitory effect on EGFR-TKI resistant NSCLC cell lines H1975/gefitinib. Meanwhile, this study provides a novel type of linker for Axl kinase inhibitors, namely 1,3,4-oxadiazol acetamide moiety, which is out of the scope of the "5- atoms role ".
Collapse
Affiliation(s)
- Congjun Xu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Yufei Han
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Sicong Xu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Ruxin Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Ming Yue
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Yu Tian
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Xiaofan Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Yanfang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China.
| | - Ping Gong
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China.
| |
Collapse
|
56
|
AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer 2019; 18:153. [PMID: 31684958 PMCID: PMC6827209 DOI: 10.1186/s12943-019-1090-3] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023] Open
Abstract
Molecular targeted therapy for cancer has been a research hotspot for decades. AXL is a member of the TAM family with the high-affinity ligand growth arrest-specific protein 6 (GAS6). The Gas6/AXL signalling pathway is associated with tumour cell growth, metastasis, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance, immune regulation and stem cell maintenance. Different therapeutic agents targeting AXL have been developed, typically including small molecule inhibitors, monoclonal antibodies (mAbs), nucleotide aptamers, soluble receptors, and several natural compounds. In this review, we first provide a comprehensive discussion of the structure, function, regulation, and signalling pathways of AXL. Then, we highlight recent strategies for targeting AXL in the treatment of cancer.AXL-targeted drugs, either as single agents or in combination with conventional chemotherapy or other small molecule inhibitors, are likely to improve the survival of many patients. However, future investigations into AXL molecular signalling networks and robust predictive biomarkers are warranted to select patients who could receive clinical benefit and to avoid potential toxicities.
Collapse
|
57
|
Arner EN, Du W, Brekken RA. Behind the Wheel of Epithelial Plasticity in KRAS-Driven Cancers. Front Oncol 2019; 9:1049. [PMID: 31681587 PMCID: PMC6798880 DOI: 10.3389/fonc.2019.01049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Cellular plasticity, a feature associated with epithelial-to-mesenchymal transition (EMT), contributes to tumor cell survival, migration, invasion, and therapy resistance. Phenotypic plasticity of the epithelium is a critical feature in multiple phases of human cancer in an oncogene- and tissue-specific context. Many factors can drive epithelial plasticity, including activating mutations in KRAS, which are found in an estimated 30% of all cancers. In this review, we will introduce cellular plasticity and its effect on cancer progression and therapy resistance and then summarize the drivers of EMT with an emphasis on KRAS effector signaling. Lastly, we will discuss the contribution of cellular plasticity to metastasis and its potential clinical implications. Understanding oncogenic KRAS cellular reprogramming has the potential to reveal novel strategies to control metastasis in KRAS-driven cancers.
Collapse
Affiliation(s)
- Emily N Arner
- Cancer Biology Graduate Program, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Wenting Du
- Cancer Biology Graduate Program, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rolf A Brekken
- Cancer Biology Graduate Program, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
58
|
A gain-of-functional screen identifies the Hippo pathway as a central mediator of receptor tyrosine kinases during tumorigenesis. Oncogene 2019; 39:334-355. [PMID: 31477837 DOI: 10.1038/s41388-019-0988-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
The Hippo pathway has emerged as a key signaling pathway that regulates various biological functions. Dysregulation of the Hippo pathway has been implicated in a broad range of human cancer types. While a number of stimuli affecting the Hippo pathway have been reported, its upstream kinase and extracellular regulators remain largely unknown. Here we performed the first comprehensive gain-of-functional screen for receptor tyrosine kinases (RTKs) regulating the Hippo pathway using an RTK overexpression library and a Hippo signaling activity biosensor. Surprisingly, we found that the majority of RTKs could regulate the Hippo signaling activity. We further characterized several of these novel relationships [TAM family members (TYRO3, AXL, METRK), RET, and FGFR family members (FGFR1 and FGFR2)] and found that the Hippo effectors YAP/TAZ are central mediators of the tumorigenic phenotypes (e.g., increased cell proliferation, transformation, increased cell motility, and angiogenesis) induced by these RTKs and their extracellular ligands (Gas6, GDNF, and FGF) through either PI3K or MAPK signaling pathway. Significantly, we identify FGFR, RET, and MERTK as the first RTKs that can directly interact with and phosphorylate YAP/TAZ at multiple tyrosine residues independent of upstream Hippo signaling, thereby activating their functions in tumorigenesis. In conclusion, we have identified several novel kinases and extracellular stimuli regulating the Hippo pathway. Our findings also highlight the pivotal role of the Hippo pathway in mediating Gas6/GDNF/FGF-TAM/RET/FGFR-MAPK/PI3K signaling during tumorigenesis and provide a compelling rationale for targeting YAP/TAZ in RTK-driven cancers.
Collapse
|
59
|
Duan Y, Luo L, Qiao C, Li X, Wang J, Liu H, Zhou T, Shen B, Lv M, Feng J. A novel human anti-AXL monoclonal antibody attenuates tumour cell migration. Scand J Immunol 2019; 90:e12777. [PMID: 31075180 DOI: 10.1111/sji.12777] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
TAM family members (TYRO3, AXL and MERTK) play essential roles in the resolution of inflammation and in infectious diseases and cancer. AXL, a tyrosine kinase receptor, is commonly overexpressed in several solid tumours and numerous hematopoietic malignancies including acute myeloid leukaemia, acute lymphocytic leukaemia, chronic myeloid leukaemia, chronic lymphocytic leukaemia and multiple myeloma. AXL significantly promotes tumour cell migration, invasion and metastasis, as well as angiogenesis. AXL also plays an important role in inflammation and macrophage ontogeny. Recent studies have revealed that AXL contributes to leukaemic phenotypes through activation of oncogenic signalling pathways that lead to increased cell migration and proliferation. To evaluate the mechanisms underlying the role of AXL signalling in tumour metastasis, we screened a phage display library to generate a novel human monoclonal antibody, named DAXL-88, that recognizes both human and murine AXL. The concentrations of DAXL-88 required for 50% maximal binding to human and murine AXL were 0.118 and 0.164 μg/mL, respectively. Furthermore, DAXL-88 bound to human AXL with high affinity (KD ~ 370 pM). DAXL-88 blocked the interaction between AXL and its ligand, growth arrest-specific gene 6 (GAS6), with a half maximal inhibitory concentration of 2.16 μg/mL. Moreover, DAXL-88 inhibited AXL/GAS6-dependent cell signalling, which is implicated in cell migration and invasion. In conclusion, the novel anti-AXL DAXL-88 high-affinity antibody blocks the interaction between AXL and GAS6 and inhibits tumour cell migration and invasion induced by GAS6. Thus, DAXL-88 offers promise for the development of targeted therapeutic strategies in solid tumours, leukaemias and other lymphoid neoplasms.
Collapse
Affiliation(s)
- Yanting Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing, China
| | - Xinying Li
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing, China.,Institute of Military Cognitive and Brain Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing, China
| | - Hao Liu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Zhengzhou, China
| | - Tingting Zhou
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing, China.,Institute of Military Cognitive and Brain Sciences, Beijing, China
| | - Beifen Shen
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing, China.,Institute of Military Cognitive and Brain Sciences, Beijing, China
| | - Ming Lv
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing, China.,Institute of Military Cognitive and Brain Sciences, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing, China
| |
Collapse
|
60
|
Hsu CC, Hsieh PM, Chen YS, Lo GH, Lin HY, Dai CY, Huang JF, Chuang WL, Chen YL, Yu ML, Lin CW. Axl and autophagy LC3 expression in tumors is strongly associated with clinical prognosis of hepatocellular carcinoma patients after curative resection. Cancer Med 2019; 8:3453-3463. [PMID: 31094090 PMCID: PMC6601576 DOI: 10.1002/cam4.2229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The role of Axl and LC3 as predictors of tumor recurrence and overall survival (OS) after hepatocellular carcinoma (HCC) resection remains unclear. METHODS We retrospectively included 535 HCC patients who underwent hepatectomy from 2010 to 2014 in this study. Axl and the autophagy-related marker LC3 were immunohistochemically assessed in tumors. RESULTS Axl expression was significantly associated with advanced clinicopathological features, including cirrhosis, microvascular invasion, macrovascular invasion, tumor size, BCLC stage, recurrence, and mortality. HCC recurrence occurred in 245 patients, and 219 patients died. The 5-year cumulative incidences of HCC recurrence and OS rate after HCC resection were 53.3% and 58.8%, respectively. In the Cox proportional analyses, high Axl expression and high LC3 expression were significantly associated with HCC recurrence (hazard ratio [HR]: 3.85, 95% confidence interval [CI]: 2.95-5.02, P < 0.001; and HR: 0.38, 95% CI: 0.26-0.55, P < 0.001, respectively). In addition, HCC recurrence (HR: 2.87, 95% CI: 2.01-4.01, P < 0.0001), microvascular invasion (HR: 1.85, 95% CI: 1.08-3.19, P = 0.026), hepatitis B virus-related HCC (HR: 1.77, 95% CI: 1. 21-2.56, P = 0.003), high Axl expression (HR: 1.66, 95% CI: 1.41-1.97, P < 0.0001), antiviral therapy (HR: 0.54, CI: 0.38-0.76, P < 0.001) and LC3 expression (HR: 0.41, 95% CI: 0.28-0.58, P < 0.001) were significantly associated with mortality. Furthermore, patients with a combination of high Axl and low LC3 expression had the highest risk of HCC recurrence (HR: 6.53, 95% CI: 4.11-10.4, P < 0.001) and mortality (HR: 6.66, 95% CI: 4.07-10.9, P < 0.001). In patients with high Axl, low LC3, and combined high Axl and low LC3 expression, the 5-year cumulative incidences of HCC recurrence and OS rate were 77.9%, 73.3%, and 90.0% and 28.8%, 26.7%, and 16.8%, respectively. CONCLUSION High Axl expression in tumors is associated with aggressive tumor behavior and worse clinical outcomes. Furthermore, the combination of high Axl and low LC3 expression significantly predicts poorer prognosis for HCC patients who underwent hepatectomy.
Collapse
Affiliation(s)
- Chia-Chang Hsu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan.,Health Examination Center, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.,Division of Gastroenterology and Hepatology, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Pei-Min Hsieh
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan.,Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yaw-Sen Chen
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan.,Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Gin-Ho Lo
- Division of Gastroenterology and Hepatology, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hung-Yu Lin
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan.,Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Hepatobiliary Division, Department of Internal Medicine, and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Li Chen
- Division of General Surgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Lung Yu
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Hepatobiliary Division, Department of Internal Medicine, and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices, College of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Chih-Wen Lin
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan.,Health Examination Center, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.,Division of Gastroenterology and Hepatology, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Research Center for Traditional Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
61
|
Tanaka H, Sakagami H, Kaneko N, Konagai S, Yamamoto H, Matsuya T, Yuri M, Yamanaka Y, Mori M, Takeuchi M, Koshio H, Hirano M, Kuromitsu S. Mutant-Selective Irreversible EGFR Inhibitor, Naquotinib, Inhibits Tumor Growth in NSCLC Models with EGFR-Activating Mutations, T790M Mutation, and AXL Overexpression. Mol Cancer Ther 2019; 18:1366-1373. [DOI: 10.1158/1535-7163.mct-18-0976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/19/2018] [Accepted: 05/10/2019] [Indexed: 11/16/2022]
|
62
|
Antony J, Thiery JP, Huang RYJ. Epithelial-to-mesenchymal transition: lessons from development, insights into cancer and the potential of EMT-subtype based therapeutic intervention. Phys Biol 2019; 16:041004. [PMID: 30939460 DOI: 10.1088/1478-3975/ab157a] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a fundamental developmental process wherein polarized epithelial cells lose their junctional architecture and apical-basal polarity to become motile mesenchymal cells, and there is emerging evidence for its role in propagating tumor dissemination. While many multifaceted nodules converge onto the EMT program, in this review we will highlight the fundamental biology of the signaling schemas that enable EMT. In many cancers, the property of tumor dissemination and metastasis is closely associated with re-enabling developmental properties such as EMT. We discuss the molecular complexity of the tumor heterogeneity in terms of EMT-based gene expression molecular subtypes, and the rewiring of critical signaling nodules in the subtypes displaying higher degrees of EMT can be therapeutically exploited. Specifically in the context of a deadly malignancy such as ovarian cancer where there are no defined mutations or limited biomarkers for developing targeted therapy or personalized medicine, we highlight the importance of identifying EMT-based subtypes that will improve therapeutic intervention. In ovarian cancer, the poor prognosis mesenchymal 'Mes' subtype presents with amplified signaling of the receptor tyrosine kinase (RTK) AXL, extensive crosstalk with other RTKs such as cMET, EGFR and HER2, and sustained temporal activation of extracellular-signal regulated kinase (ERK) leading to induction of EMT transcription factor Slug, underscoring a pathway addiction in Mes that can be therapeutically targeted. We will further examine the emergence of therapeutic modalities in these EMT subtypes and finally conclude with potential interdisciplinary biophysical methodologies to provide additional insights in deciphering the mechanistic and biochemical aspects of EMT. This review intends to provide an overview of the cellular and molecular changes accompanying epithelial-to-mesenchymal transition (EMT) in development and the requisition of this evolutionarily conserved pathway in cancer progression and metastatic disease. Specifically, in a heterogeneous disease such as ovarian cancer lacking defined targetable mutations, the identification of EMT-based subtypes has opened avenues to tailor precision personalized medicine. In particular, using the oncogenic RTK AXL as an example, we will highlight how this classification enables EMT-subtype specific identification of targets that could improve treatment options for patients and how there is a growing need for biophysical approaches to model dynamic processes such as EMT.
Collapse
Affiliation(s)
- Jane Antony
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States of America
| | | | | |
Collapse
|
63
|
Duan Y, Hu B, Qiao C, Luo L, Li X, Wang J, Liu H, Zhou T, Shen B, Lv M, Feng J. Engineered AXL -ECD-Fc variants that abolish the AXL/Gas6 interaction suppress tumor cell migration. Oncol Lett 2019; 17:5784-5792. [PMID: 31186805 DOI: 10.3892/ol.2019.10255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/29/2019] [Indexed: 01/12/2023] Open
Abstract
AXL receptor tyrosine kinase ligand (AXL), a tyrosine kinase receptor that is commonly overexpressed in numerous types of cancer, significantly promotes drug resistance and metastasis in tumor cells. Inhibition of the AXL/growth arrest-specific 6 (Gas6) signaling pathway is emerging as a potential anticancer therapeutic strategy. In the present study, on the basis of the three-dimensional complex structure of AXL/Gas6, the critical residues (E56, E59 and T77) in AXL binding to Gas6 were determined using computer graphics analysis and the distance geometry method. Subsequently, four-variant AXL-ECD-Fc-M1 (G32S, D87G, V92A and G127R) and AXL-ECD-Fc-M2 (G32A, D87A, V92A and G127A) were predicted as high-affinity mutants; AXL-ECD-Fc-M3 (E56R and T77R) and AXL-ECD-Fc-M4 (E59R and T77R) were predicted as low-affinity mutants. The results of the present study revealed that the half-maximal effect concentrations of AXL-ECD-Fc-M1 and AXL-ECD-Fc-M2 were ~0.141 and 0.375 µg/ml, respectively, whereas that of the wild-type protein (AXL-ECD-Fc-WT) was 0.514 µg/ml. Furthermore, adding the high-affinity mutants into culture medium to capture free Gas6 significantly inhibited AXL/Gas6 binding and thus blocked the downstream signaling pathway. In addition, the high-affinity mutants effectively suppressed the migration and metastasis of SKOV3 and A549 cells. Conversely, compared with AXL-ECD-Fc-WT, the low-affinity AXL mutants AXL-ECD-Fc-M3 and AXL-ECD-Fc-M4 lost all inhibitory activities. These findings highlight AXL as a potential therapeutic target and demonstrated that the key residues E56, E59 and T77 may be crucial sites for abolishing the activity of the AXL/Gas6 pathway in cancer therapy.
Collapse
Affiliation(s)
- Yanting Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China
| | - Bo Hu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China
| | - Xinying Li
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China.,Laboratory of Immunology, Institute of Military Cognitive and Brain Sciences, Beijing 100850, P.R. China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China
| | - Hao Liu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Zhengzhou, Henan 475004, P.R. China
| | - Tingting Zhou
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China.,Laboratory of Immunology, Institute of Military Cognitive and Brain Sciences, Beijing 100850, P.R. China
| | - Beifen Shen
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China.,Laboratory of Immunology, Institute of Military Cognitive and Brain Sciences, Beijing 100850, P.R. China
| | - Ming Lv
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China.,Laboratory of Immunology, Institute of Military Cognitive and Brain Sciences, Beijing 100850, P.R. China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China
| |
Collapse
|
64
|
Tata P, Gondaliya P, Sunkaria A, Srivastava A, Kalia K. Modulation of CD44, EGFR and RAC Pathway Genes (WAVE Complex) in Epithelial Cancers. Curr Pharm Des 2019; 25:833-848. [PMID: 30799784 DOI: 10.2174/1381612825666190222143044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Cancer hallmarks help in understanding the diversity of various neoplasms. Epithelial cancers play an immense role in the tumor biology through Epithelial-Mesenchymal Transition (EMT) process. Receptor tyrosine kinase, as well as phosphatidyl ionositol-3 kinase pathways, play an important role in the regulation of cell proliferation, survival, and differentiation during EMT. Till date, numerous studies have shown modulation in the expression profile of potential targets like CD44, EGFR, and Rac in epithelial cancers. CD44 interacts with EGFR and recruits other molecules which further activate the Rac pathway intermediates. This review mainly focused on modulation of genes like CD44, EGFR, and Rac pathway intermediates which play a crucial role in the tumor progression, metastasis, proliferation, and invasion characteristics in epithelial cancers with EMT properties. Hence, targeting Rac pathway might be a more strategically relevant approach in treating epithelial cancers.
Collapse
Affiliation(s)
- Pranathi Tata
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat-382355, India
| | - Piyush Gondaliya
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat-382355, India
| | - Aditya Sunkaria
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat-382355, India
| | - Akshay Srivastava
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat-382355, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat-382355, India
| |
Collapse
|
65
|
Paccez JD, Duncan K, Sekar D, Correa RG, Wang Y, Gu X, Bashin M, Chibale K, Libermann TA, Zerbini LF. Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl. Oncogenesis 2019; 8:14. [PMID: 30783079 PMCID: PMC6381097 DOI: 10.1038/s41389-019-0122-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/16/2018] [Accepted: 01/28/2019] [Indexed: 01/24/2023] Open
Abstract
Axl expression is deregulated in several cancer types, predicts poor overall patient survival and is linked to resistance to drug therapy. Here, we evaluated a library of natural compounds for inhibitors of Axl and identified dihydroartemisinin, the active principle of the anti-malarial drug artemisinin, as an Axl-inhibitor in prostate cancer. Dihydroartemisinin blocks Axl expression leading to apoptosis, decrease in cell proliferation, migration, and tumor development of prostate cancer cells. Dihydroartemisinin treatment synergizes with docetaxel, a standard of care in metastatic prostate cancer increasing overall survival of mice with human xenografts. Dihydroartemisinin control of miR-34a and miR-7 expression leads to inhibition of Axl expression in a process at least partially dependent on regulation of chromatin via methylation of histone H3 lysine 27 residues by Jumonji, AT-rich interaction domain containing 2 (JARID2), and the enhancer of zeste homolog 2. Our discovery of a previously unidentified miR-34a/miR-7/JARID2 pathway controlling dihydroartemisinin effects on Axl expression and inhibition of cancer cell proliferation, migration, invasion, and tumor formation provides new molecular mechanistic insights into dihydroartemisinin anticancer effect on prostate cancer with potential therapeutic implications.
Collapse
Affiliation(s)
- Juliano D Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Kristal Duncan
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Durairaj Sekar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Ricardo G Correa
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Xuesong Gu
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Manoj Bashin
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kelly Chibale
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Towia A Libermann
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Luiz F Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
66
|
Chen YL, Hu CM, Hsu JT, Chang CC, Huang TY, Chiang PH, Chen WY, Chang YT, Chang MC, Tien YW, Lee EYHP, Jeng YM, Lee WH. Cellular 5-hydroxylmethylcytosine content determines tumorigenic potential and prognosis of pancreatic ductal adenocarcinoma. Am J Cancer Res 2018; 8:2548-2563. [PMID: 30662811 PMCID: PMC6325483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023] Open
Abstract
We stratified pancreatic ductal adenocarcinoma (PDAC) based on the tumorigenic properties of cancer cells, and aimed to identify clinically useful immunohistochemical (IHC) markers with mechanistic insights. The tumorigenic properties of PDACs were determined using patient-derived xenograft in NOD/SCID/IL2Rγnull mice. The success of tumor engraftment was significantly correlated to poor survival, and its predictive values were superior to clinicopathological parameters. To search IHC-based biomarkers as surrogate for high tumorigenicity with prognostic values, 11 candidates of potentially clinical useful prognostic markers were selected. Among them, 5hmC content of the cancer cells was validated. Elevated 5hmC content positively correlated with in vivo tumorigenicity and poor prognosis in both primary and validation cohorts. Enrichment of cancer-associated 5hmC in CDX2 and FOXA1 lineage-specific transcriptional factor genes further pointed out the potential role of 5hmC in modulating cellular differentiation to enhance tumor malignancy during PDAC progression. Tumor-associated 5hmC content defined a subpopulation of PDAC with high lineage plasticity and tumorigenic potential, and was a prognostic IHC marker that provided a clinical basis for future management of PDAC.
Collapse
Affiliation(s)
- Yi-Lng Chen
- Genomics Research Center, Academia SinicaTaipei, Taiwan
- Ph.D. Program in Translational Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia SinicaTaipei, Taiwan
| | - Jeh-Ting Hsu
- Department of Information Management, Hsing Wu UniversityNew Taipei City, Taiwan
| | | | - Ting-Yu Huang
- Genomics Research Center, Academia SinicaTaipei, Taiwan
| | | | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming UniversityTaipei, Taiwan
| | - Yu-Ting Chang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Eva YHP Lee
- Department of Biological Chemistry, University of CaliforniaIrvine, CA, USA
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Graduate Institute of Pathology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Wen-Hwa Lee
- Genomics Research Center, Academia SinicaTaipei, Taiwan
- Drug Development Center, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
67
|
Namba K, Shien K, Takahashi Y, Torigoe H, Sato H, Yoshioka T, Takeda T, Kurihara E, Ogoshi Y, Yamamoto H, Soh J, Tomida S, Toyooka S. Activation of AXL as a Preclinical Acquired Resistance Mechanism Against Osimertinib Treatment in EGFR-Mutant Non-Small Cell Lung Cancer Cells. Mol Cancer Res 2018; 17:499-507. [PMID: 30463991 DOI: 10.1158/1541-7786.mcr-18-0628] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/02/2018] [Accepted: 11/14/2018] [Indexed: 11/16/2022]
Abstract
Osimertinib (AZD9291) has an efficacy superior to that of standard EGFR-tyrosine kinase inhibitors for the first-line treatment of patients with EGFR-mutant advanced non-small cell lung cancer (NSCLC). However, patients treated with osimertinib eventually acquire drug resistance, and novel therapeutic strategies to overcome acquired resistance are needed. In clinical or preclinical models, several mechanisms of acquired resistance to osimertinib have been elucidated. However, the acquired resistance mechanisms when osimertinib is initially used for EGFR-mutant NSCLC remain unclear. In this study, we experimentally established acquired osimertinib-resistant cell lines from EGFR-mutant NSCLC cell lines and investigated the molecular profiles of resistant cells to uncover the mechanisms of acquired resistance. Various resistance mechanisms were identified, including the acquisition of MET amplification, EMT induction, and the upregulation of AXL. Using targeted next-generation sequencing with a multigene panel, no secondary mutations were detected in our resistant cell lines. Among three MET-amplified cell lines, one cell line was sensitive to a combination of osimertinib and crizotinib. Acquired resistance cell lines derived from H1975 harboring the T790M mutation showed AXL upregulation, and the cell growth of these cell lines was suppressed by a combination of osimertinib and cabozantinib, an inhibitor of multiple tyrosine kinases including AXL, both in vitro and in vivo. Our results suggest that AXL might be a therapeutic target for overcoming acquired resistance to osimertinib. IMPLICATIONS: Upregulation of AXL is one of the mechanisms of acquired resistance to osimertinib, and combination of osimertinib and cabozantinib might be a key treatment for overcoming osimertinib resistance.
Collapse
Affiliation(s)
- Kei Namba
- Department of Thoracic, Breast, and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Shien
- Department of Thoracic, Breast, and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Yuta Takahashi
- Department of Thoracic, Breast, and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidejiro Torigoe
- Department of Thoracic, Breast, and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroki Sato
- Department of Thoracic, Breast, and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takahiro Yoshioka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuaki Takeda
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eisuke Kurihara
- Department of Thoracic, Breast, and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Ogoshi
- Department of Thoracic, Breast, and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of Thoracic, Breast, and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Junichi Soh
- Department of Thoracic, Breast, and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuta Tomida
- Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of Thoracic, Breast, and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
68
|
Du W, Brekken RA. Does Axl have potential as a therapeutic target in pancreatic cancer? Expert Opin Ther Targets 2018; 22:955-966. [PMID: 30244621 PMCID: PMC6292430 DOI: 10.1080/14728222.2018.1527315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Pancreatic cancer is a leading cause of cancer-related death. Metastasis, therapy resistance, and immunosuppression are dominant characteristics of pancreatic tumors. Strategies that enhance the efficacy of standard of care and/or immune therapy are likely the most efficient route to improve overall survival in this disease. Areas covered: Axl, a member of the TAM (Tyro3, Axl, MerTK) family of receptor tyrosine kinases, is involved in cell plasticity, chemoresistance, immune suppression, and metastasis in various cancers, including pancreatic cancer. This review provides an overview of Axl and its function in normal conditions, summarizes the regulation and function of Axl in cancer, and highlights the contribution of Axl to pancreatic cancer as well as its potential as a therapeutic target. Expert opinion: Axl is an attractive therapeutic target in pancreatic cancer because it contributes to many of the roadblocks that hamper therapeutic efficacy. Clinical evidence supporting Axl inhibition in pancreatic cancer is currently limited; however, multiple clinical trials have been initiated or are in the planning phase to test the effect of inhibiting Axl in conjunction with standard therapy in pancreatic cancer patients. We anticipate that these studies will provide robust validation of Axl as a therapeutic target in pancreatic cancer.
Collapse
|
69
|
The Dual Role of TAM Receptors in Autoimmune Diseases and Cancer: An Overview. Cells 2018; 7:cells7100166. [PMID: 30322068 PMCID: PMC6210017 DOI: 10.3390/cells7100166] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) regulate cellular processes by converting signals from the extracellular environment to the cytoplasm and nucleus. Tyro3, Axl, and Mer (TAM) receptors form an RTK family that plays an intricate role in tissue maintenance, phagocytosis, and inflammation as well as cell proliferation, survival, migration, and development. Defects in TAM signaling are associated with numerous autoimmune diseases and different types of cancers. Here, we review the structure of TAM receptors, their ligands, and their biological functions. We discuss the role of TAM receptors and soluble circulating TAM receptors in the autoimmune diseases systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Lastly, we discuss the effect of TAM receptor deregulation in cancer and explore the therapeutic potential of TAM receptors in the treatment of diseases.
Collapse
|
70
|
IQGAP1 binds the Axl receptor kinase and inhibits its signaling. Biochem J 2018; 475:3073-3086. [PMID: 30185434 DOI: 10.1042/bcj20180594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Abstract
Axl is a tyrosine kinase receptor that is important for hematopoiesis, the innate immune response, platelet aggregation, engulfment of apoptotic cells and cell survival. Binding of growth arrest-specific protein 6 (Gas6) activates Axl signaling, but the mechanism of inactivation of the Axl receptor is poorly understood. In the present study, we show that IQGAP1 modulates Axl signaling. IQGAP1 is a scaffold protein that integrates cell signaling pathways by binding several growth factor receptors and intracellular signaling molecules. Our in vitro analysis revealed a direct interaction between the IQ domain of IQGAP1 and Axl. Analysis by both immunoprecipitation and proximity ligation assays demonstrated an association between Axl and IQGAP1 in cells and this interaction was decreased by Gas6. Unexpectedly, reducing IQGAP1 levels in cells significantly enhanced the ability of Gas6 to stimulate both Axl phosphorylation and activation of Akt. Moreover, IQGAP1 regulates the interaction of Axl with the epidermal growth factor receptor. Our data identify IQGAP1 as a previously undescribed suppressor of Axl and provide insight into regulation of Axl function.
Collapse
|
71
|
Su CM, Chang TY, Hsu HP, Lai HH, Li JN, Lyu YJ, Kuo KT, Huang MT, Su JL, Chen PS. A novel application of E1A in combination therapy with EGFR-TKI treatment in breast cancer. Oncotarget 2018; 7:63924-63936. [PMID: 27590506 PMCID: PMC5325414 DOI: 10.18632/oncotarget.11737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/21/2016] [Indexed: 12/16/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is commonly overexpressed in breast cancer and is associated with poor clinical outcomes; however, an increasing number of patients have shown a poor effective response to EGFR tyrosine kinase inhibitors (EGFR-TKI). Here, we found that AXL expression was positively correlated with poor progression in breast cancer patients. Suppression of AXL by an anti-tumor protein, E1A, enhanced EGFR-TKI (gefitinib, erlotinib and lapatinib) sensitization, resulting in significant inhibition of tumor growth in breast cancer cells. Additionally, AXL overexpression dramatically impaired E1A-mediated EGFR-TKI sensitization. These findings show that downregulation of AXL expression by E1A contributes to sensitization to EGFR-TKI in breast cancer, suggesting that combinatorial therapy of AXL inhibitors or E1A gene therapy with EGFR-TKI may be a potential therapeutic strategy for treatment of breast cancer patients.
Collapse
Affiliation(s)
- Chih-Ming Su
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan, ROC.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC
| | - Ting-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli Country, Taiwan, ROC
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Hui-Huang Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jie-Ning Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yu-Jhen Lyu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Kuang-Tai Kuo
- Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC.,Division of Thoracic Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan, ROC
| | - Ming-Te Huang
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC
| | - Jen-Liang Su
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli Country, Taiwan, ROC.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan, ROC.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan, ROC.,Department of Biotechnology, Asia University, Taichung, Taiwan, ROC
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
72
|
Shen Y, Chen X, He J, Liao D, Zu X. Axl inhibitors as novel cancer therapeutic agents. Life Sci 2018; 198:99-111. [PMID: 29496493 DOI: 10.1016/j.lfs.2018.02.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/07/2018] [Accepted: 02/23/2018] [Indexed: 12/17/2022]
Abstract
Overexpression and activation of Axl receptor tyrosine kinase have been widely accepted to promote cell proliferation, chemotherapy resistance, invasion, and metastasis in several human cancers, such as lung, breast, and pancreatic cancers. Axl, a member of the TAM (Tyro3, Axl, Mer) family, and its inhibitors can specifically break the kinase signaling nodes, allowing advanced patients to regain drug sensitivity with improved therapeutic efficacy. Therefore, the research on Axl is promising and it is worthy of further investigations. In this review, we present an update on the Axl inhibitors and provide new insights into their latent application.
Collapse
Affiliation(s)
- Yingying Shen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Xiguang Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Jun He
- Department of Spine Surgery, the Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Duanfang Liao
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, Hunan, PR China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
73
|
Kashyap MK, Abdel-Rahman O. Expression, regulation and targeting of receptor tyrosine kinases in esophageal squamous cell carcinoma. Mol Cancer 2018. [PMID: 29455652 DOI: 10.1186/s12943-018-0790-4,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Esophageal cancer is one of the most common types of cancer, which is a leading cause of cancer-related death worldwide. Based on histological behavior, it is mainly of two types (i) Esophageal squamous cell carcinoma (ESCC), and (ii) esophageal adenocarcinoma (EAD or EAC). In astronomically immense majority of malignancies, receptor tyrosine kinases (RTKs) have been kenned to play a consequential role in cellular proliferation, migration, and metastasis of the cells. The post-translational modifications (PTMs) including phosphorylation of tyrosine (pY) residue of the tyrosine kinase (TK) domain have been exploited for treatment in different malignancies. Lung cancer where pY residues of EGFR have been exploited for treatment purpose in lung adenocarcinoma patients, but we do not have such kind of felicitously studied and catalogued data in ESCC patients. Thus, the goal of this review is to summarize the studies carried out on ESCC to explore the role of RTKs, tyrosine kinase inhibitors, and their pertinence and consequentiality for the treatment of ESCC patients.
Collapse
Affiliation(s)
- Manoj Kumar Kashyap
- School of Life and Allied Health Sciences, Glocal University, Saharanpur, UP, 247121, India. .,Department of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India.
| | - Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
74
|
Kashyap MK, Abdel-Rahman O. Expression, regulation and targeting of receptor tyrosine kinases in esophageal squamous cell carcinoma. Mol Cancer 2018; 17:54. [PMID: 29455652 PMCID: PMC5817798 DOI: 10.1186/s12943-018-0790-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer is one of the most common types of cancer, which is a leading cause of cancer-related death worldwide. Based on histological behavior, it is mainly of two types (i) Esophageal squamous cell carcinoma (ESCC), and (ii) esophageal adenocarcinoma (EAD or EAC). In astronomically immense majority of malignancies, receptor tyrosine kinases (RTKs) have been kenned to play a consequential role in cellular proliferation, migration, and metastasis of the cells. The post-translational modifications (PTMs) including phosphorylation of tyrosine (pY) residue of the tyrosine kinase (TK) domain have been exploited for treatment in different malignancies. Lung cancer where pY residues of EGFR have been exploited for treatment purpose in lung adenocarcinoma patients, but we do not have such kind of felicitously studied and catalogued data in ESCC patients. Thus, the goal of this review is to summarize the studies carried out on ESCC to explore the role of RTKs, tyrosine kinase inhibitors, and their pertinence and consequentiality for the treatment of ESCC patients.
Collapse
Affiliation(s)
- Manoj Kumar Kashyap
- School of Life and Allied Health Sciences, Glocal University, Saharanpur, UP 247121 India
- Department of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh India
| | - Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
75
|
Ludwig KF, Du W, Sorrelle NB, Wnuk-Lipinska K, Topalovski M, Toombs JE, Cruz VH, Yabuuchi S, Rajeshkumar NV, Maitra A, Lorens JB, Brekken RA. Small-Molecule Inhibition of Axl Targets Tumor Immune Suppression and Enhances Chemotherapy in Pancreatic Cancer. Cancer Res 2017; 78:246-255. [PMID: 29180468 DOI: 10.1158/0008-5472.can-17-1973] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/02/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
Activation of the receptor tyrosine kinase Axl is associated with poor outcomes in pancreatic cancer (PDAC), where it coordinately mediates immune evasion and drug resistance. Here, we demonstrate that the selective Axl kinase inhibitor BGB324 targets the tumor-immune interface to blunt the aggressive traits of PDAC cells in vitro and enhance gemcitibine efficacy in vivo Axl signaling stimulates the TBK1-NFκB pathway and innate immune suppression in the tumor microenvironment. In tumor cells, BGB324 treatment drove epithelial differentiation, expression of nucleoside transporters affecting gemcitabine response, and an immune stimulatory microenvironment. Our results establish a preclinical mechanistic rationale for the clinical development of Axl inhibitors to improve the treatment of PDAC patients.Significance: These results establish a preclinical mechanistic rationale for the clinical development of AXL inhibitors to improve the treatment of PDAC patients. Cancer Res; 78(1); 246-55. ©2017 AACR.
Collapse
Affiliation(s)
- Kathleen F Ludwig
- Division of Pediatric Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wenting Du
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Noah B Sorrelle
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Mary Topalovski
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jason E Toombs
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Victoria H Cruz
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shinichi Yabuuchi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - N V Rajeshkumar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anirban Maitra
- Departments of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James B Lorens
- Department of Biomedicine, Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
76
|
Zhang G, Kong X, Wang M, Zhao H, Han S, Hu R, Huang J, Cui W. AXL is a marker for epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Oncol Lett 2017; 15:1900-1906. [PMID: 29434888 DOI: 10.3892/ol.2017.7443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 10/20/2017] [Indexed: 01/08/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common cancer in China and certain other parts of the world with a dismal prognosis for affected patients. AXL is a member of the TYRO3-AXL-MER family of receptor tyrosine kinases, and has been revealed to be an important mediator of epithelial-mesenchymal transition (EMT) in several types of cancer. However, to the best of our knowledge, its function in EMT in ESCC cells has not yet been examined. The present study employed two independent ESCC mRNA profile datasets and revealed that AXL is associated with several EMT markers. Gene Set Enrichment Analysis indicated that EMT occurs more in ESCC with high AXL expression. Analysis on another dataset demonstrated further that increased expression of AXL in ESCC is associated with increased migratory ability. Collectively, the results of the present study provide evidence that AXL is a marker for EMT in ESCC.
Collapse
Affiliation(s)
- Guoan Zhang
- Cancer Pathology Research Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Xia Kong
- Department of Pharmacy, Shandong Jining No. 1 People's Hospital, Jining, Shandong 27211, P.R. China
| | - Meng Wang
- Department of Oncology, Shandong Jining No. 1 People's Hospital, Jining, Shandong 27211, P.R. China
| | - Hongli Zhao
- Department of Gastroenterology, Shandong Control Center for Digestive Diseases, Jining, Shandong 272033, P.R. China
| | - Sha Han
- Life Science Experimental Center, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Ronghang Hu
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Jian Huang
- Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Wen Cui
- Cancer Pathology Research Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
77
|
Phenotypic screening identifies Axl kinase as a negative regulator of an alveolar epithelial cell phenotype. J Transl Med 2017; 97:1047-1062. [PMID: 28553934 DOI: 10.1038/labinvest.2017.52] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
Loss of epithelial barrier integrity is implicated in a number of human lung diseases. However, the molecular pathways underlying this process are poorly understood. In a phenotypic screen, we identified Axl kinase as a negative regulator of epithelial phenotype and function. Furthermore, suppression of Axl activity by a small molecule kinase inhibitor or downregulation of Axl expression by small interfering RNA led to: (1) the increase in epithelial surfactant protein expression; (2) a cell morphology transition from front-rear polarity to cuboidal shape; (3) the cytoskeletal re-organization resulting in decreased cell mobility; and (4) the acquisition of epithelial junctions. Loss of Axl activity reduced activation of the Axl canonical pathway members, Akt and extracellular signal-regulated kinase-1/2 and resulted in the loss of gene expression of a unique profile of epithelial-to-mesenchymal transition transcription factors including SNAI2, HOXA5, TBX2 or TBX3. Finally, we observed that Axl was activated in hyperplasia of epithelial cells in idiopathic pulmonary fibrosis where epithelial barrier integrity was lost. These results suggest that the Axl kinase signaling pathway is associated with the loss integrity of alveolar epithelium in pathological remodeling of human lung diseases.
Collapse
|
78
|
Abstract
A major challenge in anticancer treatment is the pre-existence or emergence of resistance to therapy. AXL and MER are two members of the TAM (TYRO3-AXL-MER) family of receptor tyrosine kinases, which, when activated, can regulate tumor cell survival, proliferation, migration and invasion, angiogenesis, and tumor-host interactions. An increasing body of evidence strongly suggests that these receptors play major roles in resistance to targeted therapies and conventional cytotoxic agents. Multiple resistance mechanisms exist, including the direct and indirect crosstalk of AXL and MER with other receptors and the activation of feedback loops regulating AXL and MER expression and activity. These mechanisms may be innate, adaptive, or acquired. A principal role of AXL appears to be in sustaining a mesenchymal phenotype, itself a major mechanism of resistance to diverse anticancer therapies. Both AXL and MER play a role in the repression of the innate immune response which may also limit response to treatment. Small molecule and antibody inhibitors of AXL and MER have recently been described, and some of these have already entered clinical trials. The optimal design of treatment strategies to maximize the clinical benefit of these AXL and MER targeting agents are discussed in relation to the different cancer types and the types of resistance encountered. One of the major challenges to successful development of these therapies will be the application of robust predictive biomarkers for clear-cut patient stratification.
Collapse
|
79
|
Gajiwala KS, Grodsky N, Bolaños B, Feng J, Ferre R, Timofeevski S, Xu M, Murray BW, Johnson TW, Stewart A. The Axl kinase domain in complex with a macrocyclic inhibitor offers first structural insights into an active TAM receptor kinase. J Biol Chem 2017; 292:15705-15716. [PMID: 28724631 DOI: 10.1074/jbc.m116.771485] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/18/2017] [Indexed: 11/06/2022] Open
Abstract
The receptor tyrosine kinase family consisting of Tyro3, Axl, and Mer (TAM) is one of the most recently identified receptor tyrosine kinase families. TAM receptors are up-regulated postnatally and maintained at high levels in adults. They all play an important role in immunity, but Axl has also been implicated in cancer and therefore is a target in the discovery and development of novel therapeutics. However, of the three members of the TAM family, the Axl kinase domain is the only one that has so far eluded structure determination. To this end, using differential scanning fluorimetry and hydrogen-deuterium exchange mass spectrometry, we show here that a lower stability and greater dynamic nature of the Axl kinase domain may account for its poor crystallizability. We present the first structural characterization of the Axl kinase domain in complex with a small-molecule macrocyclic inhibitor. The Axl crystal structure revealed two distinct conformational states of the enzyme, providing a first glimpse of what an active TAM receptor kinase may look like and suggesting a potential role for the juxtamembrane region in enzyme activity. We noted that the ATP/inhibitor-binding sites of the TAM members closely resemble each other, posing a challenge for the design of a selective inhibitor. We propose that the differences in the conformational dynamics among the TAM family members could potentially be exploited to achieve inhibitor selectivity for targeted receptors.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergei Timofeevski
- Oncology Research and Development, Pfizer Worldwide Research and Development, San Diego, California 92121
| | - Meirong Xu
- Oncology Research and Development, Pfizer Worldwide Research and Development, San Diego, California 92121
| | - Brion W Murray
- Oncology Research and Development, Pfizer Worldwide Research and Development, San Diego, California 92121
| | | | | |
Collapse
|
80
|
Antony J, Huang RYJ. AXL-Driven EMT State as a Targetable Conduit in Cancer. Cancer Res 2017; 77:3725-3732. [PMID: 28667075 DOI: 10.1158/0008-5472.can-17-0392] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/19/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022]
Abstract
The receptor tyrosine kinase (RTK) AXL has been intrinsically linked to epithelial-mesenchymal transition (EMT) and promoting cell survival, anoikis resistance, invasion, and metastasis in several cancers. AXL signaling has been shown to directly affect the mesenchymal state and confer it with aggressive phenotype and drug resistance. Recently, the EMT gradient has also been shown to rewire the kinase signaling nodes that facilitate AXL-RTK cross-talk, protracted signaling, converging on ERK, and PI3K axes. The molecular mechanisms underplaying the regulation between the kinome and EMT require further elucidation to define targetable conduits. Therapeutically, as AXL inhibition has shown EMT reversal and resensitization to other tyrosine kinase inhibitors, mitotic inhibitors, and platinum-based therapy, there is a need to stratify patients based on AXL dependence. This review elucidates the role of AXL in EMT-mediated oncogenesis and highlights the reciprocal control between AXL signaling and the EMT state. In addition, we review the potential in inhibiting AXL for the development of different therapeutic strategies and inhibitors. Cancer Res; 77(14); 3725-32. ©2017 AACR.
Collapse
Affiliation(s)
- Jane Antony
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore. .,Department of Obstetrics and Gynecology, National University Health System, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
81
|
Volk DE, Lokesh GLR. Development of Phosphorothioate DNA and DNA Thioaptamers. Biomedicines 2017; 5:E41. [PMID: 28703779 PMCID: PMC5618299 DOI: 10.3390/biomedicines5030041] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/03/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers are short RNA- or DNA-based affinity reagents typically selected from combinatorial libraries to bind to a specific target such as a protein, a small molecule, whole cells or even animals. Aptamers have utility in the development of diagnostic, imaging and therapeutic applications due to their size, physico-chemical nature and ease of synthesis and modification to suit the application. A variety of oligonucleotide modifications have been used to enhance the stability of aptamers from nuclease degradation in vivo. The non-bridging oxygen atoms of the phosphodiester backbones of RNA and DNA aptamers can be substituted with one or two sulfur atoms, resulting in thioaptamers with phosphorothioate or phosphorodithioate linkages, respectively. Such thioaptamers are known to have increased binding affinity towards their target, as well as enhanced resistance to nuclease degradation. In this review, we discuss the development of phosphorothioate chemistry and thioaptamers, with a brief review of selection methods.
Collapse
Affiliation(s)
- David E Volk
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Ganesh L R Lokesh
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
82
|
Kanlikilicer P, Ozpolat B, Aslan B, Bayraktar R, Gurbuz N, Rodriguez-Aguayo C, Bayraktar E, Denizli M, Gonzalez-Villasana V, Ivan C, Lokesh GLR, Amero P, Catuogno S, Haemmerle M, Wu SYY, Mitra R, Gorenstein DG, Volk DE, de Franciscis V, Sood AK, Lopez-Berestein G. Therapeutic Targeting of AXL Receptor Tyrosine Kinase Inhibits Tumor Growth and Intraperitoneal Metastasis in Ovarian Cancer Models. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:251-262. [PMID: 29246304 PMCID: PMC5675720 DOI: 10.1016/j.omtn.2017.06.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022]
Abstract
Despite substantial improvements in the treatment strategies, ovarian cancer is still the most lethal gynecological malignancy. Identification of drug treatable therapeutic targets and their safe and effective targeting is critical to improve patient survival in ovarian cancer. AXL receptor tyrosine kinase (RTK) has been proposed to be an important therapeutic target for metastatic and advanced-stage human ovarian cancer. We found that AXL-RTK expression is associated with significantly shorter patient survival based on the The Cancer Genome Atlas patient database. To target AXL-RTK, we developed a chemically modified serum nuclease-stable AXL aptamer (AXL-APTAMER), and we evaluated its in vitro and in vivo antitumor activity using in vitro assays as well as two intraperitoneal animal models. AXL-aptamer treatment inhibited the phosphorylation and the activity of AXL, impaired the migration and invasion ability of ovarian cancer cells, and led to the inhibition of tumor growth and number of intraperitoneal metastatic nodules, which was associated with the inhibition of AXL activity and angiogenesis in tumors. When combined with paclitaxel, in vivo systemic (intravenous [i.v.]) administration of AXL-aptamer treatment markedly enhanced the antitumor efficacy of paclitaxel in mice. Taken together, our data indicate that AXL-aptamers successfully target in vivo AXL-RTK and inhibit its AXL activity and tumor growth and progression, representing a promising strategy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Pinar Kanlikilicer
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Burcu Aslan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nilgun Gurbuz
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Merve Denizli
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vianey Gonzalez-Villasana
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ganesh L R Lokesh
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Silvia Catuogno
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Monika Haemmerle
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sherry Yen-Yao Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rahul Mitra
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David G Gorenstein
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - David E Volk
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
83
|
Kasikara C, Kumar S, Kimani S, Tsou WI, Geng K, Davra V, Sriram G, Devoe C, Nguyen KQN, Antes A, Krantz A, Rymarczyk G, Wilczynski A, Empig C, Freimark B, Gray M, Schlunegger K, Hutchins J, Kotenko SV, Birge RB. Phosphatidylserine Sensing by TAM Receptors Regulates AKT-Dependent Chemoresistance and PD-L1 Expression. Mol Cancer Res 2017; 15:753-764. [PMID: 28184013 PMCID: PMC8363069 DOI: 10.1158/1541-7786.mcr-16-0350] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/30/2016] [Accepted: 01/13/2017] [Indexed: 12/14/2022]
Abstract
Tyro3, Axl, and Mertk (collectively TAM receptors) are three homologous receptor tyrosine kinases that bind vitamin K-dependent endogenous ligands, Protein S (ProS), and growth arrest-specific factor 6 (Gas6), and act as bridging molecules to promote phosphatidylserine (PS)-mediated clearance of apoptotic cells (efferocytosis). TAM receptors are overexpressed in a vast array of tumor types, whereby the level of expression correlates with the tumor grade and the emergence of chemo- and radioresistance to targeted therapeutics, but also have been implicated as inhibitory receptors on infiltrating myeloid-derived cells in the tumor microenvironment that can suppress host antitumor immunity. In the present study, we utilized TAM-IFNγR1 reporter lines and expressed TAM receptors in a variety of epithelial cell model systems to show that each TAM receptor has a unique pattern of activation by Gas6 or ProS, as well as unique dependency for PS on apoptotic cells and PS liposomes for activity. In addition, we leveraged this system to engineer epithelial cells that express wild-type TAM receptors and show that although each receptor can promote PS-mediated efferocytosis, AKT-mediated chemoresistance, as well as upregulate the immune checkpoint molecule PD-L1 on tumor cells, Mertk is most dominant in the aforementioned pathways. Functionally, TAM receptor-mediated efferocytosis could be partially blocked by PS-targeting antibody 11.31 and Annexin V, demonstrating the existence of a PS/PS receptor (i.e., TAM receptor)/PD-L1 axis that operates in epithelial cells to foster immune escape. These data provide a rationale that PS-targeting, anti-TAM receptor, and anti-PD-L1-based therapeutics will have merit as combinatorial checkpoint inhibitors.Implications: Many tumor cells are known to upregulate the immune checkpoint inhibitor PD-L1. This study demonstrates a role for PS and TAM receptors in the regulation of PD-L1 on cancer cells. Mol Cancer Res; 15(6); 753-64. ©2017 AACR.
Collapse
Affiliation(s)
- Canan Kasikara
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, New Jersey
| | - Sushil Kumar
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, New Jersey
| | - Stanley Kimani
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, New Jersey
| | - Wen-I Tsou
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, New Jersey
| | - Ke Geng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, New Jersey
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, New Jersey
| | - Ganapathy Sriram
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, New Jersey
| | - Connor Devoe
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, New Jersey
| | - Khanh-Quynh N Nguyen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, New Jersey
| | - Anita Antes
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, New Jersey
| | - Allen Krantz
- Advanced Proteome Therapeutics Corporation, Boston, Massachusetts
| | - Grzegorz Rymarczyk
- Advanced Proteome Therapeutics Corporation, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | | | - Cyril Empig
- Peregrine Pharmaceuticals, Tustin, California
| | | | | | | | | | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, New Jersey
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, New Jersey.
| |
Collapse
|
84
|
MicroPET/CT Imaging of AXL Downregulation by HSP90 Inhibition in Triple-Negative Breast Cancer. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:1686525. [PMID: 29097911 PMCID: PMC5612679 DOI: 10.1155/2017/1686525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/02/2017] [Indexed: 11/17/2022]
Abstract
AXL receptor tyrosine kinase is overexpressed in a number of solid tumor types including triple-negative breast cancer (TNBC). AXL is considered an important regulator of epithelial-to-mesenchymal transition (EMT) and a potential therapeutic target for TNBC. In this work, we used microPET/CT with 64Cu-labeled anti-human AXL antibody (64Cu-anti-hAXL) to noninvasively interrogate the degradation of AXL in vivo in response to 17-allylamino-17-demethoxygeldanamycin (17-AAG), a potent inhibitor of HSP90. 17-AAG treatment caused significant decline in AXL expression in orthotopic TNBC MDA-MB-231 tumors, inhibited EMT, and delayed tumor growth in vivo, resulting in significant reduction in tumor uptake of 64Cu-anti-hAXL as clearly visualized by microPET/CT. Our data indicate that 64Cu-anti-hAXL can be useful for monitoring anti-AXL therapies and for assessing inhibition of HSP90 molecular chaperone using AXL as a molecular surrogate.
Collapse
|
85
|
Gay CM, Balaji K, Byers LA. Giving AXL the axe: targeting AXL in human malignancy. Br J Cancer 2017; 116:415-423. [PMID: 28072762 PMCID: PMC5318970 DOI: 10.1038/bjc.2016.428] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
The receptor tyrosine kinase AXL, activated by a complex interaction between its ligand growth arrest-specific protein 6 and phosphatidylserine, regulates various vital cellular processes, including proliferation, survival, motility, and immunologic response. Although not implicated as an oncogenic driver itself, AXL, a member of the TYRO3, AXL, and MERTK family of receptor tyrosine kinases, is overexpressed in several haematologic and solid malignancies, including acute myeloid leukaemia, non-small cell lung cancer, gastric and colorectal adenocarcinomas, and breast and prostate cancers. In the context of malignancy, evidence suggests that AXL overexpression drives wide-ranging processes, including epithelial to mesenchymal transition, tumour angiogenesis, resistance to chemotherapeutic and targeted agents, and decreased antitumor immune response. As a result, AXL is an attractive candidate not only as a prognostic biomarker in malignancy but also as a target for anticancer therapies. Several AXL inhibitors are currently in preclinical and clinical development. This article reviews the structure, regulation, and function of AXL; the role of AXL in the tumour microenvironment; the development of AXL as a therapeutic target; and areas of ongoing and future investigation.
Collapse
Affiliation(s)
- Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Kavitha Balaji
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
86
|
Davidsen KT, Haaland GS, Lie MK, Lorens JB, Engelsen AST. The Role of Axl Receptor Tyrosine Kinase in Tumor Cell Plasticity and Therapy Resistance. BIOMARKERS OF THE TUMOR MICROENVIRONMENT 2017:351-376. [DOI: 10.1007/978-3-319-39147-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
87
|
Lu Y, Wan J, Yang Z, Lei X, Niu Q, Jiang L, Passtoors WM, Zang A, Fraering PC, Wu F. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells. FASEB J 2016; 31:1382-1397. [PMID: 28034848 PMCID: PMC5349800 DOI: 10.1096/fj.201600702r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/12/2016] [Indexed: 01/23/2023]
Abstract
Deregulation of the TAM (TYRO3, AXL, and MERTK) family of receptor tyrosine kinases (RTKs) has recently been demonstrated to predominately promote survival and chemoresistance of cancer cells. Intramembrane proteolysis mediated by presenilin/γ-secretase is known to regulate the homeostasis of some RTKs. In the present study, we demonstrate that AXL, but not TYRO3 or MERTK, is efficiently and sequentially cleaved by α- and γ-secretases in various types of cancer cell lines. Proteolytic processing of AXL redirected signaling toward a secretase-mediated pathway, away from the classic, well-known, ligand-dependent canonical RTK signaling pathway. The AXL intracellular domain cleavage product, but not full-length AXL, was further shown to translocate into the nucleus via a nuclear localization sequence that harbored a basic HRRKK motif. Of interest, we found that the γ-secretase-uncleavable AXL mutant caused an elevated chemoresistance in non-small-cell lung cancer cells. Altogether, our findings suggest that AXL can undergo sequential processing mediated by various proteases kept in a homeostatic balance. This newly discovered post-translational processing of AXL may provide an explanation for the diverse functions of AXL, especially in the context of drug resistance in cancer cells.-Lu, Y., Wan, J., Yang, Z., Lei, X., Niu, Q., Jiang, L., Passtoors, W. M., Zang, A., Fraering, P. C., Wu, F. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells.
Collapse
Affiliation(s)
- Yinzhong Lu
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wan
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhifeng Yang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiling Lei
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Niu
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lanxin Jiang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Willemijn M Passtoors
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Aiping Zang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Patrick C Fraering
- Brain Mind Institute-School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Foundation Eclosion, Plan-Les-Ouates, Switzerland.,Campus Biotech Innovation Park, Geneva, Switzerland
| | - Fang Wu
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China;
| |
Collapse
|
88
|
Implication of the Receptor Tyrosine Kinase AXL in Head and Neck Cancer Progression. Int J Mol Sci 2016; 18:ijms18010007. [PMID: 28025482 PMCID: PMC5297642 DOI: 10.3390/ijms18010007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 01/16/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a clinical challenge and identification of novel therapeutic targets is necessary. The receptor tyrosine kinase AXL has been implicated in several tumor entities and a selective AXL small molecule inhibitor (BGB324) is currently being tested in clinical trials for patients suffering from non-small cell lung cancer or acute myeloid leukemia. Our study investigates AXL expression during HNSCC progression and its use as a potential therapeutic target in HNSCC. AXL protein expression was determined in a HNSCC cohort (n = 364) using immunohistochemical staining. For functional validation, AXL was either overexpressed or inhibited with BGB324 in HNSCC cell lines to assess proliferation, migration and invasion. We found AXL protein expression increasing during tumor progression with highest expression levels in recurrent tumors. In HNSCC cell lines in vitro, AXL overexpression increased migration as well as invasion. Both properties could be reduced through treatment with BGB324. In contrast, proliferation was neither affected by AXL overexpression nor by inhibition with BGB324. Our patient-derived data and in vitro results show that, in HNSCC, AXL is important for the progression to more advanced tumor stages. Moreover, they suggest that AXL could be a target for precision medicine approaches in this dismal tumor entity.
Collapse
|
89
|
Structure-based optimization of 1H-imidazole-2-carboxamides as Axl kinase inhibitors utilizing a Mer mutant surrogate. Bioorg Med Chem Lett 2016; 27:1099-1104. [PMID: 28082036 DOI: 10.1016/j.bmcl.2016.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/23/2022]
Abstract
Axl has been a target of interest in the oncology field for several years based on its role in various oncogenic processes. To date, no wild-type Axl crystal structure has been reported. Herein, we describe the structure-based optimization of a novel chemotype of Axl inhibitors, 1H-imidazole-2-carboxamide, using a mutated kinase homolog, Mer(I650M), as a crystallographic surrogate. Iterative optimization of the initial lead compound (1) led to compound (21), a selective and potent inhibitor of wild-type Axl. Compound (21) will serve as a useful compound for further in vivo studies.
Collapse
|
90
|
Jin G, Wang Z, Wang J, Zhang L, Chen Y, Yuan P, Liu D. Expression of Axl and its prognostic significance in human breast cancer. Oncol Lett 2016; 13:621-628. [PMID: 28356938 PMCID: PMC5351252 DOI: 10.3892/ol.2016.5524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/27/2016] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most common malignant cancer and second leading cause of cancer-related death among women, and its prevalence continues to increase. Axl overexpression has been identified in the many types of human cancer, and it has been demonstrated to participate in signaling pathways related to carcinogenesis and cancer development. In the present study, Axl expression was examined by performing immunohistochemical staining in 60 breast cancer tumors and 40 benign breast lesions (25 mammary dysplasia and 15 breast fibroadenoma). In total, 34 (56.67%) cancer tissues and 13 (32.5%) benign breast lesions were classified as exhibiting high levels of Axl expression, indicating a significant association between malignancy and high Axl expression. High Axl expression was also associated with estrogen receptor (ER) positivity (P=0.028), progesterone receptor (PR) positivity (P=0.007), and poor tumor differentiation (P=0.033). No significant associations were observed between Axl expression and age, tumor size, lymph node metastasis, tumor node metastasis staging, human epidermal growth factor receptor 2 and Ki67 antigen. The Kaplan-Meier survival analysis and Cox proportional hazard model both demonstrated that there was no statistical difference between Axl expression and breast cancer prognosis. However, it remains unclear whether the expression of Axl is correlated with the prognosis of luminal type breast cancer patients.
Collapse
Affiliation(s)
- Gaoyuan Jin
- Department of Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zhenzhen Wang
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Jianguang Wang
- Department of Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Like Zhang
- Department of Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yanbin Chen
- Department of Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Pengfei Yuan
- Department of Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Dechun Liu
- Department of Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
91
|
Leconet W, Chentouf M, du Manoir S, Chevalier C, Sirvent A, Aït-Arsa I, Busson M, Jarlier M, Radosevic-Robin N, Theillet C, Chalbos D, Pasquet JM, Pèlegrin A, Larbouret C, Robert B. Therapeutic Activity of Anti-AXL Antibody against Triple-Negative Breast Cancer Patient-Derived Xenografts and Metastasis. Clin Cancer Res 2016; 23:2806-2816. [DOI: 10.1158/1078-0432.ccr-16-1316] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/11/2016] [Accepted: 11/10/2016] [Indexed: 11/16/2022]
|
92
|
The Receptor Tyrosine Kinase AXL in Cancer Progression. Cancers (Basel) 2016; 8:cancers8110103. [PMID: 27834845 PMCID: PMC5126763 DOI: 10.3390/cancers8110103] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 02/06/2023] Open
Abstract
The AXL receptor tyrosine kinase (AXL) has emerged as a promising therapeutic target for cancer therapy. Recent studies have revealed a central role of AXL signaling in tumor proliferation, survival, stem cell phenotype, metastasis, and resistance to cancer therapy. Moreover, AXL is expressed within cellular components of the tumor microenvironment where AXL signaling contributes to the immunosuppressive and protumorigenic phenotypes. A variety of AXL inhibitors have been developed and are efficacious in preclinical studies. These agents offer new opportunities for therapeutic intervention in the prevention and treatment of advanced disease. Here we review the literature that has illuminated the cellular and molecular mechanisms by which AXL signaling promotes tumor progression and we will discuss the therapeutic potential of AXL inhibition for cancer therapy.
Collapse
|
93
|
Balaji K, Vijayaraghavan S, Diao L, Tong P, Fan Y, Carey JP, Bui TN, Warner S, Heymach JV, Hunt KK, Wang J, Byers LA, Keyomarsi K. AXL Inhibition Suppresses the DNA Damage Response and Sensitizes Cells to PARP Inhibition in Multiple Cancers. Mol Cancer Res 2016; 15:45-58. [PMID: 27671334 DOI: 10.1158/1541-7786.mcr-16-0157] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/22/2016] [Accepted: 09/09/2016] [Indexed: 11/16/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is associated with a wide range of changes in cancer cells, including stemness, chemo- and radio-resistance, and metastasis. The mechanistic role of upstream mediators of EMT has not yet been well characterized. Recently, we showed that non-small cell lung cancers (NSCLC) that have undergone EMT overexpress AXL, a receptor tyrosine kinase. AXL is also overexpressed in a subset of triple-negative breast cancers (TNBC) and head and neck squamous cell carcinomas (HNSCC), and its overexpression has been associated with more aggressive tumor behavior and linked to resistance to chemotherapy, radiotherapy, and targeted therapy. Because the DNA repair pathway is also altered in patient tumor specimens overexpressing AXL, it is hypothesized that modulation of AXL in cells that have undergone EMT will sensitize them to agents targeting the DNA repair pathway. Downregulation or inhibition of AXL directly reversed the EMT phenotype, led to decreased expression of DNA repair genes, and diminished efficiency of homologous recombination (HR) and RAD51 foci formation. As a result, AXL inhibition caused a state of HR deficiency in the cells, making them sensitive to inhibition of the DNA repair protein, PARP1. AXL inhibition synergized with PARP inhibition, leading to apoptotic cell death. AXL expression also associated positively with markers of DNA repair across TNBC, HNSCC, and NSCLC patient cohorts. IMPLICATIONS The novel role for AXL in DNA repair, linking it to EMT, suggests that AXL can be an effective therapeutic target in combination with targeted therapy such as PARP inhibitors in several different malignancies. Mol Cancer Res; 15(1); 45-58. ©2016 AACR.
Collapse
Affiliation(s)
- Kavitha Balaji
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd. Unit 1052, Houston, Texas 77030
| | - Smruthi Vijayaraghavan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd. Unit 1052, Houston, Texas 77030
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1410, Houston, Texas 77030
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1410, Houston, Texas 77030
| | - Youhong Fan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0432 Houston, Texas 77030
| | - Jason Pw Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd. Unit 1052, Houston, Texas 77030
| | - Tuyen N Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd. Unit 1052, Houston, Texas 77030
| | | | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0432 Houston, Texas 77030
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street. Unit 1434 Houston, Texas 77030
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1410, Houston, Texas 77030
| | - Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0432 Houston, Texas 77030
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd. Unit 1052, Houston, Texas 77030
| |
Collapse
|
94
|
Moody G, Belmontes B, Masterman S, Wang W, King C, Murawsky C, Tsuruda T, Liu S, Radinsky R, Beltran PJ. Antibody-mediated neutralization of autocrine Gas6 inhibits the growth of pancreatic ductal adenocarcinoma tumors in vivo. Int J Cancer 2016; 139:1340-9. [PMID: 27170265 DOI: 10.1002/ijc.30180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/06/2016] [Accepted: 04/15/2016] [Indexed: 02/02/2023]
Abstract
Gas6 and its receptors Axl, Mer and Tyro-3 (TAM) are highly expressed in human malignancy suggesting that signaling through this axis may be tumor-promoting. In pancreatic ductal adenocarcinoma (PDAC), Gas6 and the TAM receptor Axl are frequently co-expressed and their co-expression correlates with poor survival. A strategy was devised to generate fully human neutralizing antibodies against Gas6 using XenoMouse® technology. Hybridoma supernatants were selected based on their ability to inhibit Gas6 binding to the receptor Axl and block Gas6-induced Axl phosphorylation in human cells. Two purified antibodies isolated from the screened hybridomas, GMAB1 and GMAB2, displayed optimal cellular potency which was comparable to that of the soluble extracellular domain of the receptor Axl (Axl-Fc). In vivo characterization of GMAB1 was conducted using a pharmacodynamic assay that measured inhibition of Gas6-induced Akt activation in the mouse spleen. Treatment of mice with a single dose (100-1000 µg) of GMAB1 led to greater than 90% inhibition of Gas6-induced phosphorylated Akt (pAkt) for up to 72 hr. Based on the target coverage observed in the PD assay, the efficacy of GMAB1 was tested against human pancreatic adenocarcinoma xenografts. At doses of 50 µg and 150 µg, twice weekly, GMAB1 was able to inhibit 55% and 76% of tumor growth, respectively (p < 0.001 for both treatments vs. control Ig). When combined with gemcitabine, GMAB1 significantly inhibited tumor growth compared to either agent alone (p < 0.001). Together, the data suggest that Gas6 neutralization may be important as a potential strategy for the treatment of PDAC.
Collapse
Affiliation(s)
- Gordon Moody
- Oncology Research Therapeutic Area, Thousand Oaks, CA
| | | | | | - Wei Wang
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA
| | - Chadwick King
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA
| | | | - Trace Tsuruda
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA
| | - Shuying Liu
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA
| | | | | |
Collapse
|
95
|
Humphrey ES, Su SP, Nagrial AM, Hochgräfe F, Pajic M, Lehrbach GM, Parton RG, Yap AS, Horvath LG, Chang DK, Biankin AV, Wu J, Daly RJ. Resolution of Novel Pancreatic Ductal Adenocarcinoma Subtypes by Global Phosphotyrosine Profiling. Mol Cell Proteomics 2016; 15:2671-85. [PMID: 27259358 PMCID: PMC4974343 DOI: 10.1074/mcp.m116.058313] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/11/2016] [Indexed: 12/20/2022] Open
Abstract
Comprehensive characterization of signaling in pancreatic ductal adenocarcinoma (PDAC) promises to enhance our understanding of the molecular aberrations driving this devastating disease, and may identify novel therapeutic targets as well as biomarkers that enable stratification of patients for optimal therapy. Here, we use immunoaffinity-coupled high-resolution mass spectrometry to characterize global tyrosine phosphorylation patterns across two large panels of human PDAC cell lines: the ATCC series (19 cell lines) and TKCC series (17 cell lines). This resulted in the identification and quantification of over 1800 class 1 tyrosine phosphorylation sites and the consistent segregation of both PDAC cell line series into three subtypes with distinct tyrosine phosphorylation profiles. Subtype-selective signaling networks were characterized by identification of subtype-enriched phosphosites together with pathway and network analyses. This revealed that the three subtypes characteristic of the ATCC series were associated with perturbations in signaling networks associated with cell-cell adhesion and epithelial-mesenchyme transition, mRNA metabolism, and receptor tyrosine kinase (RTK) signaling, respectively. Specifically, the third subtype exhibited enhanced tyrosine phosphorylation of multiple RTKs including the EGFR, ERBB3 and MET. Interestingly, a similar RTK-enriched subtype was identified in the TKCC series, and 'classifier' sites for each series identified using Random Forest models were able to predict the subtypes of the alternate series with high accuracy, highlighting the conservation of the three subtypes across the two series. Finally, RTK-enriched cell lines from both series exhibited enhanced sensitivity to the small molecule EGFR inhibitor erlotinib, indicating that their phosphosignature may provide a predictive biomarker for response to this targeted therapy. These studies highlight how resolution of subtype-selective signaling networks can provide a novel taxonomy for particular cancers, and provide insights into PDAC biology that can be exploited for improved patient management.
Collapse
Affiliation(s)
- Emily S Humphrey
- From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; §St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Shih-Ping Su
- ¶Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Level 1, Building 77, Monash University, VIC 3800, Australia
| | - Adnan M Nagrial
- From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; §St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Falko Hochgräfe
- ‖Competence Center Functional Genomics, University of Greifswald, F.-L-Jahnstr. 15, 17489 Greifswald, Germany
| | - Marina Pajic
- From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; §St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Gillian M Lehrbach
- From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia
| | - Robert G Parton
- **Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane QLD 4072, Australia
| | - Alpha S Yap
- **Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane QLD 4072, Australia
| | - Lisa G Horvath
- From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; ‡‡Chris O'Brien Lifehouse, Missenden Road, Camperdown, NSW 2050, Australia
| | - David K Chang
- §§Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Andrew V Biankin
- §§Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK;
| | - Jianmin Wu
- ¶¶Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, 52 Fu-Cheng Road, Hai-Dian District, Beijing 100142, China From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; §St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia;
| | - Roger J Daly
- ¶Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Level 1, Building 77, Monash University, VIC 3800, Australia;
| |
Collapse
|
96
|
Abstract
AXL is a tyrosine kinase receptor activated by GAS6 and regulates cancer cell proliferation migration and angiogenesis. We studied AXL as new therapeutic target in colorectal cancer (CRC). Expression and activation of AXL and GAS6 were evaluated in a panel of human CRC cell lines. AXL gene silencing or pharmacologic inhibition with foretinib suppressed proliferation, migration and survival in CRC cells. In an orthotopic colon model of human HCT116 CRC cells overexpressing AXL, foretinib treatment caused significant inhibition of tumour growth and peritoneal metastatic spreading. AXL and GAS6 overexpression by immunohistochemistry (IHC) were found in 76,7% and 73.5%, respectively, of 223 human CRC specimens, correlating with less differentiated histological grading. GAS6 overexpression was associated with nodes involvement and tumour stage. AXL gene was found amplified by Fluorescence in situ hybridization (FISH) in 8/146 cases (5,4%) of CRC samples. Taken together, AXL inhibition could represent a novel therapeutic approach in CRC.
Collapse
|
97
|
Tan L, Zhang Z, Gao D, Luo J, Tu ZC, Li Z, Peng L, Ren X, Ding K. 4-Oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as New Axl Kinase Inhibitors. J Med Chem 2016; 59:6807-25. [PMID: 27379978 DOI: 10.1021/acs.jmedchem.6b00608] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Li Tan
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhang Zhang
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Donglin Gao
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jinfeng Luo
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zheng-Chao Tu
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zhengqiu Li
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lijie Peng
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaomei Ren
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
98
|
Abstract
The interaction between Axl receptor tyrosine kinase and its main ligand Gas6 has been implicated in the progression of a wide number of malignancies. More recently, overexpression of Axl has emerged as a key molecular determinant underlying the development of acquired resistance to targeted anticancer agents. The activation of Axl is overexpression-dependent and controls a number of hallmarks of cancer progression including proliferation, migration, resistance to apoptosis and survival through a complex network of intracellular second messengers. Axl has been noted to influence clinically meaningful end points including metastatic recurrence and survival in the vast majority of tumour types. With Axl inhibitors having gained momentum as novel anticancer therapies, we provide an overview of the biological and clinical relevance of this molecular pathway, outlining the main directions of research.
Collapse
Affiliation(s)
- Matthew Brown
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - James R M Black
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
99
|
Iaboni M, Russo V, Fontanella R, Roscigno G, Fiore D, Donnarumma E, Esposito CL, Quintavalle C, Giangrande PH, de Franciscis V, Condorelli G. Aptamer-miRNA-212 Conjugate Sensitizes NSCLC Cells to TRAIL. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e289. [PMID: 27111415 PMCID: PMC5014461 DOI: 10.1038/mtna.2016.5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/29/2015] [Indexed: 12/03/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent for its remarkable ability to selectively induce apoptosis in cancer cells, without affecting the viability of healthy bystander cells. The TRAIL tumor suppressor pathway is deregulated in many human malignancies including lung cancer. In human non-small cell lung cancer (NSCLC) cells, sensitization to TRAIL therapy can be restored by increasing the expression levels of the tumor suppressor microRNA-212 (miR-212) leading to inhibition of the anti-apoptotic protein PED/PEA-15 implicated in treatment resistance. In this study, we exploited a previously described RNA aptamer inhibitor of the tyrosine kinase receptor Axl (GL21.T) expressed on lung cancer cells, as a means to deliver miR-212 into human NSCLC cells expressing Axl. We demonstrate efficient delivery of miR-212 following conjugation of the miR to GL21.T (GL21.T-miR212 chimera). We show that the chimera downregulates PED and restores TRAIL-mediate cytotoxicity in cancer cells. Importantly, treatment of Axl+ lung cancer cells with the chimera resulted in (i) an increase in caspase activation and (ii) a reduction of cell viability in combination with TRAIL therapy. In conclusion, we demonstrate that the GL21.T-miR212 chimera can be employed as an adjuvant to TRAIL therapy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Margherita Iaboni
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
| | - Valentina Russo
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
| | | | | | - Danilo Fiore
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
| | | | | | - Cristina Quintavalle
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
| | | | | | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
- IEOS, CNR, Naples, Italy
| |
Collapse
|
100
|
Serbo JV, Kuo S, Lewis S, Lehmann M, Li J, Gracias DH, Romer LH. Patterning of Fibroblast and Matrix Anisotropy within 3D Confinement is Driven by the Cytoskeleton. Adv Healthc Mater 2016; 5:146-58. [PMID: 26033825 PMCID: PMC5817161 DOI: 10.1002/adhm.201500030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/12/2015] [Indexed: 12/16/2022]
Abstract
Effects of 3D confinement on cellular growth and matrix assembly are important in tissue engineering, developmental biology, and regenerative medicine. Polydimethylsiloxane wells with varying anisotropy are microfabicated using soft-lithography. Microcontact printing of bovine serum albumin is used to block cell adhesion to surfaces between wells. The orientations of fibroblast stress fibers, microtubules, and fibronectin fibrils are examined 1 day after cell seeding using laser scanning confocal microscopy, and anisotropy is quantified using a custom autocorrelation analysis. Actin, microtubules, and fibronectin exhibit higher anisotropy coefficients for cells grown in rectangular wells with aspect ratios of 1:4 and 1:8, as compared to those in wells with lower aspect ratios or in square wells. The effects of disabling individual cytoskeletal components on fibroblast responses to anisotropy are then tested by applying actin or microtubule polymerization inhibitors, Rho kinase inhibitor, or by siRNA-mediated knockdown of AXL or cofilin-1. Latrunculin A decreases cytoskeletal and matrix anisotropy, nocodazole ablates both, and Y27632 mutes cellular polarity while decreasing matrix anisotropy. AXL siRNA knockdown has little effect, as does siRNA knockdown of cofilin-1. These data identify several specific cytoskeletal strategies as targets for the manipulation of anisotropy in 3D tissue constructs.
Collapse
Affiliation(s)
- Janna V. Serbo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scot Kuo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shawna Lewis
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Lehmann
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jiuru Li
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lewis H. Romer
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|