51
|
Bouklas T, Masone L, Fries BC. Differences in Sirtuin Regulation in Response to Calorie Restriction in Cryptococcus neoformans. J Fungi (Basel) 2018; 4:E26. [PMID: 29463010 PMCID: PMC5872329 DOI: 10.3390/jof4010026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022] Open
Abstract
Cryptococcus neoformans successfully replicates in low glucose in infected patients. In the serotype A strain, H99, growth in this condition prolongs lifespan regulated by SIR2, and can be modulated with SIR2-specific drugs. Previous studies show that lifespan modulation of a cryptococcal population affects its sensitivity to antifungals, and survival in an infection model. Sirtuins and their role in longevity are conserved among fungi; however, the effect of glucose starvation is not confirmed even in Saccharomyces cerevisiae. Lifespan analysis of C. neoformans strains in low glucose showed that 37.5% exhibited pro-longevity, and lifespan of a serotype D strain, RC2, was shortened. Transcriptome comparison of H99 and RC2 under calorie restriction demonstrated differences, confirmed by real-time PCR showing that SIR2, TOR1, SCH9, and PKA1 expression correlated with lifespan response to calorie restriction. As expected, RC2-sir2Δ cells exhibited a shortened lifespan, which was reconstituted. However, shortened lifespan from calorie restriction was independent of SIR2. In contrast to H99 but consistent with altered SIR2 regulation, SIR2-specific drugs did not affect outcome of RC2 infection. These data suggest that SIR2 regulation and response to calorie restriction varies in C. neoformans, which should be considered when Sirtuins are investigated as potential therapy targets for fungal infections.
Collapse
Affiliation(s)
- Tejas Bouklas
- Department of Biomedical Sciences, Long Island University-Post, Brookville, NY 11548, USA.
| | - Lindsey Masone
- Department of Biomedical Sciences, Long Island University-Post, Brookville, NY 11548, USA.
| | - Bettina C Fries
- Department of Medicine (Division of Infectious Diseases) and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794 USA.
| |
Collapse
|
52
|
Borodkina AV, Deryabin PI, Giukova AA, Nikolsky NN. "Social Life" of Senescent Cells: What Is SASP and Why Study It? Acta Naturae 2018; 10:4-14. [PMID: 29713514 PMCID: PMC5916729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 11/21/2022] Open
Abstract
Cellular senescence was first described as a failure of normal human cells to divide indefinitely in culture. Until recently, the emphasis in the study of cell senescence has been focused on the accompanying intracellular processes. The focus of the attention has been on the irreversible growth arrest and two important physiological functions that rely on it: suppression of carcinogenesis due to the proliferation loss of damaged cells, and the acceleration of organism aging due to the deterioration of the tissue repair mechanism with age. However, the advances of the past years have revealed that senescent cells can impact the surrounding tissue microenvironment, and, thus, that the main consequences of senescence are not solely mediated by intracellular alterations. Recent studies have provided evidence that a pool of molecules secreted by senescent cells, including cytokines, chemokines, proteases and growth factors, termed the senescence-associated secretory phenotype (SASP), via autocrine/paracrine pathways can affect neighboring cells. Today it is clear that SASP functionally links cell senescence to various biological processes, such as tissue regeneration and remodeling, embryonic development, inflammation, and tumorigenesis. The present article aims to describe the "social" life of senescent cells: basically, SASP constitution, molecular mechanisms of its regulation, and its functional role.
Collapse
Affiliation(s)
- A. V. Borodkina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia
| | - P. I. Deryabin
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia
| | - A. A. Giukova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia
| | - N. N. Nikolsky
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia
| |
Collapse
|
53
|
The phenomenology of cell size control. Curr Opin Cell Biol 2017; 49:53-58. [DOI: 10.1016/j.ceb.2017.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/05/2017] [Accepted: 11/26/2017] [Indexed: 01/27/2023]
|
54
|
Molon M, Woznicka O, Zebrowski J. Cell wall biosynthesis impairment affects the budding lifespan of the Saccharomyces cerevisiae yeast. Biogerontology 2017; 19:67-79. [PMID: 29189912 PMCID: PMC5765204 DOI: 10.1007/s10522-017-9740-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022]
Abstract
The Saccharomyces cerevisiae yeast is one of the most widely used model in studies of cellular and organismal biology, including as aging and proliferation. Although several constraints of aging and budding lifespan have been identified, these processes have not yet been fully understood. Previous studies of aging in yeast have focused mostly on the molecular basics of the underlying mechanisms, while physical aspects, particularly those related to the cell wall, were rather neglected. In this paper, we examine for the first time, to our knowledge, the impact of cell wall biosynthesis disturbances on the lifespan in the budding yeast. We have used a set of cell wall mutants, including knr4Δ, cts1Δ, chs3Δ, fks1Δ and mnn9Δ, which affect biosynthesis of all major cell wall compounds. Our results indicated that impairment of chitin biosynthesis and cell wall protein mannosylation reduced the budding lifespan, while disruption in the 1,3-β-glucan synthase activity had no adverse effect on that parameter. The impact varied in the severity and the most notable effect was observed for the mnn9Δ mutant. What was interesting, in the case of the dysfunction of the Knr4 protein playing the role of the transcriptional regulator of cell wall chitin and glucan synthesis, the lifespan increased significantly. We also report the phenotypic characteristics of cell wall-associated mutants as revealed by imaging of the cell wall using transmission electron microscopy, scanning electron microscopy and atomic force microscopy. In addition, our findings support the conviction that achievement of the state of hypertrophy may not be the only factor that determines the budding lifespan.
Collapse
Affiliation(s)
- Mateusz Molon
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Olga Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Jacek Zebrowski
- Department of Plant Physiology, Institute of Biotechnology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
55
|
Wang Y, Lo WC, Chou CS. A modeling study of budding yeast colony formation and its relationship to budding pattern and aging. PLoS Comput Biol 2017; 13:e1005843. [PMID: 29121651 PMCID: PMC5697893 DOI: 10.1371/journal.pcbi.1005843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/21/2017] [Accepted: 10/20/2017] [Indexed: 11/23/2022] Open
Abstract
Budding yeast, which undergoes polarized growth during budding and mating, has been a useful model system to study cell polarization. Bud sites are selected differently in haploid and diploid yeast cells: haploid cells bud in an axial manner, while diploid cells bud in a bipolar manner. While previous studies have been focused on the molecular details of the bud site selection and polarity establishment, not much is known about how different budding patterns give rise to different functions at the population level. In this paper, we develop a two-dimensional agent-based model to study budding yeast colonies with cell-type specific biological processes, such as budding, mating, mating type switch, consumption of nutrients, and cell death. The model demonstrates that the axial budding pattern enhances mating probability at an early stage and the bipolar budding pattern improves colony development under nutrient limitation. Our results suggest that the frequency of mating type switch might control the trade-off between diploidization and inbreeding. The effect of cellular aging is also studied through our model. Based on the simulations, colonies initiated by an aged haploid cell show declined mating probability at an early stage and recover as the rejuvenated offsprings become the majority. Colonies initiated with aged diploid cells do not show disadvantage in colony expansion possibly due to the fact that young cells contribute the most to colony expansion. Budding yeast is a model organism in understanding fundamental aspects of eukaryotic cells, such as cell polarization and cell aging. Previously, extensive research has focused on the molecular mechanisms of biological processes in yeast, but many questions regarding yeast budding remain unsolved. For example, how do different budding patterns affect yeast colony growth? How does declined spatial order due to aging impact the colony at the population level? To address these questions, we developed a computational agent-based model, which incorporates key biological processes, the effect of aging, as well as cell-environment interaction. We performed and analyzed a large number of simulations for a variety of situations, and obtained insightful results. We found that axial budding pattern enhances the percentage of diploid cells at early stage and bipolar budding pattern improves colony development under nutrient limitation; the frequency of mating type switch might control the trade-off between diploidization and inbreeding; aging affects the percentage of diploid cells in colonies initiated by a single haploid cell, but does not have much influence in the expansion of colonies initiated by diploid cells. The framework of the model can be extended to study other important systems, such as tissue with stem cell lineage.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| | - Wing-Cheong Lo
- Department of Mathematics, City University of Hong Kong, Hong Kong, China
| | - Ching-Shan Chou
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
56
|
Khan SAR, Qianli D. Impact of green supply chain management practices on firms' performance: an empirical study from the perspective of Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16829-16844. [PMID: 28573559 DOI: 10.1007/s11356-017-9172-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
This article investigates the impact of five determinants of the green supply chain practices on organizational performance in the context of Pakistan manufacturing firms. A sample of 218 firms was collected from the manufacturing industry. The green supply chain practices were measured through five independent variables including green manufacturing, green purchasing, green information systems, cooperation with customers, and eco-design. By using exploratory factor and simultaneous regression analysis, the results indicate that except green purchasing, rests of the four independent variables have been found statistically significant to predict organizational performance. However, the eco-design of green practices followed by green information systems has revealed the greatest impact on organizational performance. Therefore, the managers of the manufacturing firms should not only implement eco-design in their supply chain but also concentrate on proper monitoring and implementation of green information systems to increase their firms' performance. A main contribution of this research from theoretical side is that it is possible to notice a negative effect of "green purchasing" towards organizational performance particularly in the scenario of Pakistan manufacturing industry. Another valuable result is that green purchasing is an important antecedent of firms economic performance in the US manufacturing firms (Green et al. 2012), although not significantly related to organizational performance in our study. In addition, we also discussed research limitations, areas for future research, and implications for practitioners.
Collapse
Affiliation(s)
| | - Dong Qianli
- School of Economics and Management, Chang'an University, Xi'an, China
| |
Collapse
|
57
|
Bilinski T, Bylak A, Zadrag-Tecza R. The budding yeast Saccharomyces cerevisiae as a model organism: possible implications for gerontological studies. Biogerontology 2017; 18:631-640. [PMID: 28573416 PMCID: PMC5514200 DOI: 10.1007/s10522-017-9712-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/19/2017] [Indexed: 12/15/2022]
Abstract
Experimental gerontology is based on the fundamental assumption that the aging process has a universal character and that the mechanisms of aging are well-conserved among living things. The consequence of this assumption is the use of various organisms, including unicellular yeast Saccharomyces cerevisiae, as models in gerontology, and direct extrapolation of the conclusions drawn from the studies carried on these organisms to human beings. However, numerous arguments suggest that aging is not universal and its mechanisms are not conserved in a wide range of species. Instead, senescence can be treated as a side effect of the evolution of specific features for systematic group, unrelated to the passage of time. Hence, depending on the properties of the group, the senescence and proximal causes of death could have a diverse nature. We postulate that the selection of a model organism to explain the mechanism of human aging and human longevity should be preceded by the analysis of its potential to extrapolate the results to a wide group of organisms. Considering that gerontology is a human-oriented discipline and that aging involves complex, systemic changes affecting the entire organism, the object of experimental studies should be animals which are closest relatives of human beings in evolutionary terms, rather than lower organisms, which do not have sufficient complexity in terms of tissues and organ structures.
Collapse
Affiliation(s)
- Tomasz Bilinski
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Aneta Bylak
- Department of Ecology and Environmental Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
58
|
Wong TY, Chang CH, Yu CH, Huang LLH. Hyaluronan keeps mesenchymal stem cells quiescent and maintains the differentiation potential over time. Aging Cell 2017; 16:451-460. [PMID: 28474484 PMCID: PMC5418204 DOI: 10.1111/acel.12567] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
Hyaluronan (HA), an abundant polysaccharide found in human bodies, plays a role in the mesenchymal stem cells (MSCs) maintenance. We had previously found that HA prolonged the lifespan, and prevented the cellular aging of murine adipose-derived stromal cells. Recently, we had also summarized the potential pathways associated with HA regulation in human MSCs. In this study, we used the human placenta-derived MSCs (PDMSC) to investigate the effectiveness of HA in maintaining the PDMSC. We found that coating the culture surface coated with 30 μg cm-2 of HA (C) led to cluster growth of PDMSC, and maintained a higher number of PDMSC in quiescence compared to those grown on the normal tissue culture surface (T). PDMSC were treated for either 4 (short-term) or 19 (long-term) consecutive passages. PDMSC which were treated with HA for 19 consecutive passages had reduced cell enlargement, preserved MSCs biomarker expressions and osteogenic potential when compared to those grown only on T. The PDMSC transferred to T condition after long-term HA treatment showed preserved replicative capability compared to those on only T. The telomerase activity of the HA-treated PDMSC was also higher than that of untreated PDMSC. These data suggested a connection between HA and MSC maintenance. We suggest that HA might be regulating the distribution of cytoskeletal proteins on cell spreading in the event of quiescence to preserve MSC stemness. Maintenance of MSCs stemness delayed cellular aging, leading to the anti-aging phenotype of PDMSC.
Collapse
Affiliation(s)
- Tzyy Yue Wong
- Institute of Biotechnology; College of Bioscience and Biotechnology; National Cheng Kung University; Tainan Taiwan
| | - Chiung-Hsin Chang
- Department of Obstetrics and Gynecology; National Cheng Kung University; Tainan Taiwan
| | - Chen-Hsiang Yu
- Department of Obstetrics and Gynecology; National Cheng Kung University; Tainan Taiwan
| | - Lynn L. H. Huang
- Institute of Biotechnology; College of Bioscience and Biotechnology; National Cheng Kung University; Tainan Taiwan
- Department of Biotechnology and Bioindustry Sciences; College of Bioscience and Biotechnology; National Cheng Kung University; Tainan Taiwan
- Institute of Clinical Medicine; College of Medicine; National Cheng Kung University; Tainan Taiwan
- Research Center of Excellence in Regenerative Medicine; National Cheng Kung University; Tainan Taiwan
- Advanced Optoelectronic Technology Center; National Cheng Kung University; Tainan Taiwan
| |
Collapse
|
59
|
Bouklas T, Alonso-Crisóstomo L, Székely T, Diago-Navarro E, Orner EP, Smith K, Munshi MA, Del Poeta M, Balázsi G, Fries BC. Generational distribution of a Candida glabrata population: Resilient old cells prevail, while younger cells dominate in the vulnerable host. PLoS Pathog 2017; 13:e1006355. [PMID: 28489916 PMCID: PMC5440053 DOI: 10.1371/journal.ppat.1006355] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/22/2017] [Accepted: 04/15/2017] [Indexed: 12/15/2022] Open
Abstract
Similar to other yeasts, the human pathogen Candida glabrata ages when it undergoes asymmetric, finite cell divisions, which determines its replicative lifespan. We sought to investigate if and how aging changes resilience of C. glabrata populations in the host environment. Our data demonstrate that old C. glabrata are more resistant to hydrogen peroxide and neutrophil killing, whereas young cells adhere better to epithelial cell layers. Consequently, virulence of old compared to younger C. glabrata cells is enhanced in the Galleria mellonella infection model. Electron microscopy images of old C. glabrata cells indicate a marked increase in cell wall thickness. Comparison of transcriptomes of old and young C. glabrata cells reveals differential regulation of ergosterol and Hog pathway associated genes as well as adhesion proteins, and suggests that aging is accompanied by remodeling of the fungal cell wall. Biochemical analysis supports this conclusion as older cells exhibit a qualitatively different lipid composition, leading to the observed increased emergence of fluconazole resistance when grown in the presence of fluconazole selection pressure. Older C. glabrata cells accumulate during murine and human infection, which is statistically unlikely without very strong selection. Therefore, we tested the hypothesis that neutrophils constitute the predominant selection pressure in vivo. When we altered experimentally the selection pressure by antibody-mediated removal of neutrophils, we observed a significantly younger pathogen population in mice. Mathematical modeling confirmed that differential selection of older cells is sufficient to cause the observed demographic shift in the fungal population. Hence our data support the concept that pathogenesis is affected by the generational age distribution of the infecting C. glabrata population in a host. We conclude that replicative aging constitutes an emerging trait, which is selected by the host and may even play an unanticipated role in the transition from a commensal to a pathogen state.
Collapse
Affiliation(s)
- Tejas Bouklas
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biomedical Sciences, Long Island University-Post, Brookville, New York, United States of America
| | | | - Tamás Székely
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Elizabeth Diago-Navarro
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
| | - Erika P. Orner
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kalie Smith
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
| | - Mansa A. Munshi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Administration Medical Center, Northport, New York, United States of America
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Bettina C. Fries
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
60
|
Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans. G3-GENES GENOMES GENETICS 2017; 7:355-360. [PMID: 28040776 PMCID: PMC5295585 DOI: 10.1534/g3.116.037986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One of the most critical but still poorly understood aspects of eukaryotic cell proliferation is the basis for commitment to cell division in late G1 phase, called Start in yeast and the Restriction Point in metazoans. In all species, a critical cell size threshold coordinates cell growth with cell division and thereby establishes a homeostatic cell size. While a comprehensive survey of cell size genetic determinism has been performed in the saprophytic yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, very little is known in pathogenic fungi. As a number of critical Start regulators are haploinsufficient for cell size, we applied a quantitative analysis of the size phenome, using elutriation-barcode sequencing methodology, to 5639 barcoded heterozygous deletion strains of the opportunistic yeast Candida albicans. Our screen identified conserved known regulators and biological processes required to maintain size homeostasis in the opportunistic yeast C. albicans. We also identified novel C. albicans-specific size genes and provided a conceptual framework for future mechanistic studies. Interestingly, some of the size genes identified were required for fungal pathogenicity suggesting that cell size homeostasis may be elemental to C. albicans fitness or virulence inside the host.
Collapse
|
61
|
Bouklas T, Jain N, Fries BC. Modulation of Replicative Lifespan in Cryptococcus neoformans: Implications for Virulence. Front Microbiol 2017; 8:98. [PMID: 28194146 PMCID: PMC5276861 DOI: 10.3389/fmicb.2017.00098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/13/2017] [Indexed: 12/12/2022] Open
Abstract
The fungal pathogen, Cryptococcus neoformans, has been shown to undergo replicative aging. Old cells are characterized by advanced generational age and phenotypic changes that appear to mediate enhanced resistance to host and antifungal-based killing. As a consequence of this age-associated resilience, old cells accumulate during chronic infection. Based on these findings, we hypothesized that shifting the generational age of a pathogenic yeast population would alter its vulnerability to the host and affect its virulence. SIR2 is a well-conserved histone deacetylase, and a pivotal target for the development of anti-aging drugs. We tested its effect on C. neoformans’ replicative lifespan (RLS). First, a mutant C. neoformans strain (sir2Δ) was generated, and confirmed a predicted shortened RLS in sir2Δ cells consistent with its known role in aging. Next, RLS analysis showed that treatment of C. neoformans with Sir2p-agonists resulted in a significantly prolonged RLS, whereas treatment with a Sir2p-antagonist shortened RLS. RLS modulating effects were dependent on SIR2 and not observed in sir2Δ cells. Because SIR2 loss resulted in a slightly impaired fitness, effects of genetic RLS modulation on virulence could not be compared with wild type cells. Instead we chose to chemically modulate RLS, and investigated the effect of Sir2p modulating drugs on C. neoformans cells in a Galleria mellonella infection model. Consistent with our hypothesis that shifts in the generational age of the infecting yeast population alters its vulnerability to host cells, we observed decreased virulence of C. neoformans in the Galleria host when RLS was prolonged by treatment with Sir2p agonists. In contrast, treatment with a Sir2p antagonist, which shortens RLS enhanced virulence in Galleria. In addition, combination of Sir2p agonists with antifungal therapy enhanced the antifungal’s effect. Importantly, no difference in virulence was observed with drug treatment when sir2Δ cells were used for infection, which confirmed target specificity and ruled out non-specific effects of the drugs on the Galleria host. Thus, this study suggests that RLS modulating drugs, such as Sir2p agonists, shift lifespan and vulnerability of the fungal population, and should be further investigated as a potential class of novel antifungal drug targets that can enhance antifungal efficacy.
Collapse
Affiliation(s)
- Tejas Bouklas
- Department of Medicine (Division of Infectious Diseases), Stony Brook University, Stony BrookNY, USA; Department of Biomedical Sciences, Long Island University-Post, BrookvilleNY, USA
| | - Neena Jain
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine of Yeshiva University, Bronx NY, USA
| | - Bettina C Fries
- Department of Medicine (Division of Infectious Diseases), Stony Brook University, Stony BrookNY, USA; Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine of Yeshiva University, BronxNY, USA; Department of Molecular Genetics and Microbiology, Stony Brook University, Stony BrookNY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, BronxNY, USA
| |
Collapse
|
62
|
Chen KL, Crane MM, Kaeberlein M. Microfluidic technologies for yeast replicative lifespan studies. Mech Ageing Dev 2017; 161:262-269. [PMID: 27015709 PMCID: PMC5035173 DOI: 10.1016/j.mad.2016.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 01/02/2023]
Abstract
The budding yeast Saccharomyces cerevisiae has been used as a model organism for the study of aging for over 50 years. In this time, the canonical aging experiment-replicative lifespan analysis by manual microdissection-has remained essentially unchanged. Recently, microfluidic technologies have been developed that may be able to substitute for this time- and labor-intensive procedure. These technologies also allow cell physiology to be observed throughout the entire lifetime. Here, we review these devices, novel observations they have made possible, and some of the current system limitations.
Collapse
Affiliation(s)
- Kenneth L Chen
- Department of Pathology, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA; Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Matthew M Crane
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
63
|
Sharma S, Mishra R, Bigham GE, Wehman B, Khan MM, Xu H, Saha P, Goo YA, Datla SR, Chen L, Tulapurkar ME, Taylor BS, Yang P, Karathanasis S, Goodlett DR, Kaushal S. A Deep Proteome Analysis Identifies the Complete Secretome as the Functional Unit of Human Cardiac Progenitor Cells. Circ Res 2016; 120:816-834. [PMID: 27908912 DOI: 10.1161/circresaha.116.309782] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022]
Abstract
RATIONALE Cardiac progenitor cells are an attractive cell type for tissue regeneration, but their mechanism for myocardial remodeling is still unclear. OBJECTIVE This investigation determines how chronological age influences the phenotypic characteristics and the secretome of human cardiac progenitor cells (CPCs), and their potential to recover injured myocardium. METHODS AND RESULTS Adult (aCPCs) and neonatal (nCPCs) cells were derived from patients aged >40 years or <1 month, respectively, and their functional potential was determined in a rodent myocardial infarction model. A more robust in vitro proliferative capacity of nCPCs, compared with aCPCs, correlated with significantly greater myocardial recovery mediated by nCPCs in vivo. Strikingly, a single injection of nCPC-derived total conditioned media was significantly more effective than nCPCs, aCPC-derived TCM, or nCPC-derived exosomes in recovering cardiac function, stimulating neovascularization, and promoting myocardial remodeling. High-resolution accurate mass spectrometry with reverse phase liquid chromatography fractionation and mass spectrometry was used to identify proteins in the secretome of aCPCs and nCPCs, and the literature-based networking software identified specific pathways affected by the secretome of CPCs in the setting of myocardial infarction. Examining the TCM, we quantified changes in the expression pattern of 804 proteins in nCPC-derived TCM and 513 proteins in aCPC-derived TCM. The literature-based proteomic network analysis identified that 46 and 6 canonical signaling pathways were significantly targeted by nCPC-derived TCM and aCPC-derived TCM, respectively. One leading candidate pathway is heat-shock factor-1, potentially affecting 8 identified pathways for nCPC-derived TCM but none for aCPC-derived TCM. To validate this prediction, we demonstrated that the modulation of heat-shock factor-1 by knockdown in nCPCs or overexpression in aCPCs significantly altered the quality of their secretome. CONCLUSIONS A deep proteomic analysis revealed both detailed and global mechanisms underlying the chronological age-based differences in the ability of CPCs to promote myocardial recovery via the components of their secretome.
Collapse
Affiliation(s)
- Sudhish Sharma
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Rachana Mishra
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Grace E Bigham
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Brody Wehman
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Mohd M Khan
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Huichun Xu
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Progyaparamita Saha
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Young Ah Goo
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Srinivasa Raju Datla
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Ling Chen
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Mohan E Tulapurkar
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Bradley S Taylor
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Peixin Yang
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Sotirios Karathanasis
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - David R Goodlett
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Sunjay Kaushal
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.).
| |
Collapse
|
64
|
Janssens GE, Veenhoff LM. The Natural Variation in Lifespans of Single Yeast Cells Is Related to Variation in Cell Size, Ribosomal Protein, and Division Time. PLoS One 2016; 11:e0167394. [PMID: 27907085 PMCID: PMC5132237 DOI: 10.1371/journal.pone.0167394] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
There is a large variability in lifespans of individuals even if they are genetically identical and raised under the same environmental conditions. Our recent system wide study of replicative aging in baker’s yeast predicts that protein biogenesis is a driver of aging. Here, we address how the natural variation in replicative lifespan within wild-type populations of yeast cells correlates to three biogenesis-related parameters, namely cell size, ribosomal protein Rpl13A-GFP levels, and division times. Imaging wild type yeast cells in microfluidic devices we observe that in all cells and at all ages, the division times as well as the increase in cell size that single yeast undergo while aging negatively correlate to their lifespan. In the longer-lived cells Rpl13A-GFP levels also negatively correlate to lifespan. Interestingly however, at young ages in the population, ribosome concentration was lowest in the cells that increased the most in size and had shorter lifespans. The correlations between these molecular and cellular properties related to biogenesis and lifespan explain a small portion of the variation in lifespans of individual cells, consistent with the highly individual and multifactorial nature of aging.
Collapse
Affiliation(s)
- Georges E. Janssens
- European Research Institute for the Biology of Ageing, University of Groningen University Medical Centre Groningen, Groningen, The Netherlands
| | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen University Medical Centre Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
65
|
Bisschops MMM, Luttik MAH, Doerr A, Verheijen PJT, Bruggeman F, Pronk JT, Daran-Lapujade P. Extreme calorie restriction in yeast retentostats induces uniform non-quiescent growth arrest. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:231-242. [PMID: 27818273 DOI: 10.1016/j.bbamcr.2016.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
Non-dividing Saccharomyces cerevisiae cultures are highly relevant for fundamental and applied studies. However, cultivation conditions in which non-dividing cells retain substantial metabolic activity are lacking. Unlike stationary-phase (SP) batch cultures, the current experimental paradigm for non-dividing yeast cultures, cultivation under extreme calorie restriction (ECR) in retentostat enables non-dividing yeast cells to retain substantial metabolic activity and to prevent rapid cellular deterioration. Distribution of F-actin structures and single-cell copy numbers of specific transcripts revealed that cultivation under ECR yields highly homogeneous cultures, in contrast to SP cultures that differentiate into quiescent and non-quiescent subpopulations. Combined with previous physiological studies, these results indicate that yeast cells subjected to ECR survive in an extended G1 phase. This study demonstrates that yeast cells exposed to ECR differ from carbon-starved cells and offer a promising experimental model for studying non-dividing, metabolically active, and robust eukaryotic cells.
Collapse
Affiliation(s)
- Markus M M Bisschops
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Marijke A H Luttik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Anne Doerr
- Systems Bioinformatics, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Peter J T Verheijen
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Frank Bruggeman
- Systems Bioinformatics, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
66
|
Zadrag-Tecza R, Skoneczna A. Reproductive potential and instability of the rDNA region of the Saccharomyces cerevisiae yeast: Common or separate mechanisms of regulation? Exp Gerontol 2016; 84:29-39. [DOI: 10.1016/j.exger.2016.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022]
|
67
|
Kulatunga D, Dananjaya S, Godahewa GI, Lee J, De Zoysa M. Chitosan silver nanocomposite (CAgNC) as an antifungal agent against Candida albicans. Med Mycol 2016; 55:213-222. [PMID: 27495320 DOI: 10.1093/mmy/myw053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 01/20/2016] [Accepted: 04/29/2016] [Indexed: 12/19/2022] Open
Abstract
Due to limited numbers of antifungal drugs and emergence of drug resistance have directed to develop nonconventional therapeutic agents against fungal pathogen Candida albicans. In this study, anticandidal activity of chitosan silver nanocomposite (CAgNC) was tested against C. albicans Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of CAgNC were determined as 25 and 100 μg/ml, respectively. Electron microscopic image results confirmed the ultrastructural cell wall deformities and injuries caused by CAgNC. Propidium iodide (PI) penetration into the CAgNC treated cells could be considered as an evidence for loss of cell membrane integrity and cell death at MFC. Level of intracellular reactive oxygen species (ROS) was increased, while cell viability was decreased with the increased of CAgNC concentrations. In our protein profile results, several induced proteins were observed under CAgNC treatment, and they could be related to multidrug and stress resistant proteins such as CDR1 (55 kDa) and CaHSP70 based on the protein band size. CAgNC mediated cell wall damage, loss of cell membrane integrity, elevated ROS level, and associated oxidative stress have been identified as the main causative factors for the anticandidal activity. Overall results from our study indicated that CAgNC could affect negatively on physiological and biochemical functions of C. albicans suggesting CAgNC as a potential alternative for antifungal chemotherapy.
Collapse
Affiliation(s)
- Dcm Kulatunga
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Shs Dananjaya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.,Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea .,Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| |
Collapse
|
68
|
Haandbæk N, Bürgel SC, Rudolf F, Heer F, Hierlemann A. Characterization of Single Yeast Cell Phenotypes Using Microfluidic Impedance Cytometry and Optical Imaging. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00286] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Niels Haandbæk
- Department
of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Sebastian C. Bürgel
- Department
of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Fabian Rudolf
- Department
of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Flavio Heer
- Zurich Instruments AG, Technoparkstrasse
1, 8005, Zurich, Switzerland
| | - Andreas Hierlemann
- Department
of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| |
Collapse
|
69
|
Molon M, Szajwaj M, Tchorzewski M, Skoczowski A, Niewiadomska E, Zadrag-Tecza R. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast. AGE (DORDRECHT, NETHERLANDS) 2016; 38:11. [PMID: 26783001 PMCID: PMC5005888 DOI: 10.1007/s11357-015-9868-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/22/2015] [Indexed: 05/13/2023]
Abstract
Despite many controversies, the yeast Saccharomyces cerevisiae continues to be used as a model organism for the study of aging. Numerous theories and hypotheses have been created for several decades, yet basic mechanisms of aging have remained unclear. Therefore, the principal aim of this work is to propose a possible mechanism leading to increased longevity in yeast. In this paper, we suggest for the first time that there is a link between decreased metabolic activity, fertility and longevity expressed as time of life in yeast. Determination of reproductive potential and total lifespan with the use of fob1Δ and sfp1Δ mutants allows us to compare the "longevity" presented as the number of produced daughters with the longevity expressed as the time of life. The results of analyses presented in this paper suggest the need for a change in the definition of longevity of yeast by taking into consideration the time parameter. The mutants that have been described as "long-lived" in the literature, such as the fob1Δ mutant, have an increased reproductive potential but live no longer than their standard counterparts. On the other hand, the sfp1Δ mutant and the wild-type strain produce a similar number of daughter cells, but the former lives much longer. Our results demonstrate a correlation between the decreased efficiency of the translational apparatus and the longevity of the sfp1Δ mutant. We suggest that a possible factor regulating the lifespan is the rate of cell metabolism. To measure the basic metabolism of the yeast cells, we used the isothermal microcalorimetry method. In the case of sfp1Δ, the flow of energy, ATP concentration, polysome profile and translational fitness are significantly lower in comparison with the wild-type strain and the fob1Δ mutant.
Collapse
Affiliation(s)
- Mateusz Molon
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, Rzeszow, 35-601, Poland.
| | - Monika Szajwaj
- Department of Molecular Biology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Marek Tchorzewski
- Department of Molecular Biology, Maria Curie-Sklodowska University, Lublin, Poland
| | | | - Ewa Niewiadomska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Renata Zadrag-Tecza
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, Rzeszow, 35-601, Poland
| |
Collapse
|
70
|
Song R, Peng W, Liu P, Acar M. A cell size- and cell cycle-aware stochastic model for predicting time-dynamic gene network activity in individual cells. BMC SYSTEMS BIOLOGY 2015; 9:91. [PMID: 26646617 PMCID: PMC4673848 DOI: 10.1186/s12918-015-0240-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/02/2015] [Indexed: 11/29/2022]
Abstract
Background Despite the development of various modeling approaches to predict gene network activity, a time dynamic stochastic model taking into account real-time changes in cell volume and cell cycle stages is still missing. Results Here we present a stochastic single-cell model that can be applied to any eukaryotic gene network with any number of components. The model tracks changes in cell volume, DNA replication, and cell division, and dynamically adjusts rates of stochastic reactions based on this information. By tracking cell division, the model can maintain cell lineage information, allowing the researcher to trace the descendants of any single cell and therefore study cell lineage effects. To test the predictive power of our model, we applied it to the canonical galactose network of the yeast Saccharomyces cerevisiae. Using a minimal set of free parameters and across several galactose induction conditions, the model effectively captured several details of the experimentally-obtained single-cell network activity levels as well as phenotypic switching rates. Conclusion Our model can readily be customized to model any gene network in any of the commonly used cells types, offering a novel and user-friendly stochastic modeling capability to the systems biology field. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0240-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruijie Song
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT, 06511, USA. .,Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT, 06516, USA.
| | - Weilin Peng
- Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT, 06516, USA. .,Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.
| | - Ping Liu
- Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT, 06516, USA. .,Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.
| | - Murat Acar
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT, 06511, USA. .,Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT, 06516, USA. .,Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA. .,Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, 06511, USA.
| |
Collapse
|
71
|
Abstract
The budding yeast has served as a useful model organism in aging studies, leading to the identification of genetic determinants of longevity, many of which are conserved in higher eukaryotes. However, factors that promote longevity in laboratory setting often have severe fitness disadvantage in the wild. Here, to obtain an unbiased view on longevity regulation we analyzed how replicative lifespan is shaped by transcriptional, translational, metabolic, and morphological factors across 22 wild-type Saccharomyces cerevisiae isolates. We observed significant differences in lifespan across these strains and found that their longevity is strongly associated with up-regulation of oxidative phosphorylation and respiration and down-regulation of amino acid and nitrogen compound biosynthesis. Since calorie restriction and TOR signaling also extend lifespan by adjusting many of the identified pathways, the data suggest that natural plasticity of yeast lifespan is shaped by processes that not only do not impose cost on fitness, but are amenable to dietary intervention.
Collapse
|
72
|
Bouklas T, Fries BC. Aging: an emergent phenotypic trait that contributes to the virulence of Cryptococcus neoformans. Future Microbiol 2015; 10:191-7. [PMID: 25689531 DOI: 10.2217/fmb.14.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The pathogenic fungus, Cryptococcus neoformans, is known to undergo phenotypic variation, which affects its virulence in the host. Recent investigations on C. neoformans cells in humans have validated the concept that phenotypic variation is present and relevant for the outcome of chronic cryptococcosis. The C. neoformans capsule is not the only trait that varies among strains. An emerging variant is the "old cell phenotype" generated when C. neoformans undergoes replicative aging. This phenotype, which other than larger size also exhibits a thickened cell wall, inhibits phagocytosis and killing by antifungals in vitro. In concert with the finding that old cells accumulate in vivo, this emergent trait could have significant impact on cryptococcal virulence and infection, and contribute to treatment failure.
Collapse
Affiliation(s)
- Tejas Bouklas
- Division of Infectious Diseases, Department of Medicine, Health Sciences Center T15-080, Stony Brook University Medical Center, Stony Brook, NY 11794-8153, USA
| | | |
Collapse
|
73
|
Li Q, Rycaj K, Chen X, Tang DG. Cancer stem cells and cell size: A causal link? Semin Cancer Biol 2015; 35:191-9. [PMID: 26241348 DOI: 10.1016/j.semcancer.2015.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 12/18/2022]
Abstract
The majority of normal animal cells are 10-20 μm in diameter. Many signaling mechanisms, notably PI3K/Akt/mTOR, Myc, and Hippo pathways, tightly control and coordinate cell growth, cell size, cell division, and cell number during homeostasis. These regulatory mechanisms are frequently deregulated during tumorigenesis resulting in wide variations in cell sizes and increased proliferation in cancer cells. Here, we first review the evidence that primitive stem cells in adult tissues are quiescent and generally smaller than their differentiated progeny, suggesting a correlation between small cell sizes with the stemness. Conversely, increased cell size positively correlates with differentiation phenotypes. We then discuss cancer stem cells (CSCs) and present some evidence that correlates cell sizes with CSC activity. Overall, a causal link between CSCs and cell size is relatively weak and remains to be rigorously assessed. In the future, optimizing methods for isolating cells based on size should help elucidate the connection between cancer cell size and CSC characteristics.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Kiera Rycaj
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Xin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
| | - Dean G Tang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX 78957, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
74
|
Tsang F, Lin SJ. Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD + homeostasis and contributes to longevity. ACTA ACUST UNITED AC 2015; 10:333-357. [PMID: 27683589 DOI: 10.1007/s11515-015-1367-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis.
Collapse
Affiliation(s)
- Felicia Tsang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
75
|
Jo MC, Liu W, Gu L, Dang W, Qin L. High-throughput analysis of yeast replicative aging using a microfluidic system. Proc Natl Acad Sci U S A 2015; 112:9364-9. [PMID: 26170317 PMCID: PMC4522780 DOI: 10.1073/pnas.1510328112] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction.
Collapse
Affiliation(s)
- Myeong Chan Jo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065
| | - Wei Liu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Liang Gu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030
| | - Weiwei Dang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065;
| |
Collapse
|
76
|
Arlia-Ciommo A, Piano A, Leonov A, Svistkova V, Titorenko VI. Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan. Cell Cycle 2015; 13:3336-49. [PMID: 25485579 PMCID: PMC4614525 DOI: 10.4161/15384101.2014.965063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent findings suggest that evolutionarily distant organisms share the key features of the aging process and exhibit similar mechanisms of its modulation by certain genetic, dietary and pharmacological interventions. The scope of this review is to analyze mechanisms that in the yeast Saccharomyces cerevisiae underlie: (1) the replicative and chronological modes of aging; (2) the convergence of these 2 modes of aging into a single aging process; (3) a programmed differentiation of aging cell communities in liquid media and on solid surfaces; and (4) longevity-defining responses of cells to some chemical compounds released to an ecosystem by other organisms populating it. Based on such analysis, we conclude that all these mechanisms are programs for upholding the long-term survival of the entire yeast population inhabiting an ecological niche; however, none of these mechanisms is a ʺprogram of agingʺ - i.e., a program for progressing through consecutive steps of the aging process.
Collapse
Key Words
- D, diauxic growth phase
- ERCs, extrachromosomal rDNA circles
- IPOD, insoluble protein deposit
- JUNQ, juxtanuclear quality control compartment
- L, logarithmic growth phase
- MBS, the mitochondrial back-signaling pathway
- MTC, the mitochondrial translation control signaling pathway
- NPCs, nuclear pore complexes
- NQ, non-quiescent cells
- PD, post-diauxic growth phase
- Q, quiescent cells
- ROS, reactive oxygen species
- RTG, the mitochondrial retrograde signaling pathway
- Ras/cAMP/PKA, the Ras family GTPase/cAMP/protein kinase A signaling pathway
- ST, stationary growth phase
- TOR/Sch9, the target of rapamycin/serine-threonine protein kinase Sch9 signaling pathway
- UPRER, the unfolded protein response pathway in the endoplasmic reticulum
- UPRmt, the unfolded protein response pathway in mitochondria
- cell growth and proliferation
- cell survival
- cellular aging
- ecosystems
- evolution
- longevity
- programmed cell death
- yeast
- yeast colony
- yeast replicative and chronological aging
Collapse
|
77
|
Spiesser TW, Kühn C, Krantz M, Klipp E. Bud-Localization of CLB2 mRNA Can Constitute a Growth Rate Dependent Daughter Sizer. PLoS Comput Biol 2015; 11:e1004223. [PMID: 25910075 PMCID: PMC4429581 DOI: 10.1371/journal.pcbi.1004223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
Maintenance of cellular size is a fundamental systems level process that requires balancing of cell growth with proliferation. This is achieved via the cell division cycle, which is driven by the sequential accumulation and destruction of cyclins. The regulatory network around these cyclins, particularly in G1, has been interpreted as a size control network in budding yeast, and cell size as being decisive for the START transition. However, it is not clear why disruptions in the G1 network may lead to altered size rather than loss of size control, or why the S-G2-M duration also depends on nutrients. With a mathematical population model comprised of individually growing cells, we show that cyclin translation would suffice to explain the observed growth rate dependence of cell volume at START. Moreover, we assess the impact of the observed bud-localisation of the G2 cyclin CLB2 mRNA, and find that localised cyclin translation could provide an efficient mechanism for measuring the biosynthetic capacity in specific compartments: The mother in G1, and the growing bud in G2. Hence, iteration of the same principle can ensure that the mother cell is strong enough to grow a bud, and that the bud is strong enough for independent life. Cell sizes emerge in the model, which predicts that a single CDK-cyclin pair per growth phase suffices for size control in budding yeast, despite the necessity of the cell cycle network around the cyclins to integrate other cues. Size control seems to be exerted twice, where the G2/M control affects bud size through bud-localized translation of CLB2 mRNA, explaining the dependence of the S-G2-M duration on nutrients. Taken together, our findings suggest that cell size is an emergent rather than a regulatory property of the network linking growth and proliferation.
Collapse
Affiliation(s)
- Thomas W. Spiesser
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail: (TWS); (EK)
| | - Clemens Kühn
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Krantz
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail: (TWS); (EK)
| |
Collapse
|
78
|
Smith J, Wright J, Schneider BL. A budding yeast's perspective on aging: the shape I'm in. Exp Biol Med (Maywood) 2015; 240:701-10. [PMID: 25819684 DOI: 10.1177/1535370215577584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aging is exemplified by progressive, deleterious changes that increase the probability of death. However, while the effects of age are easy to recognize, identification of the processes involved has proved to be much more difficult. Somewhat surprisingly, research using the budding yeast has had a profound impact on our current understanding of the mechanisms involved in aging. Herein, we examine the biological significance and implications surrounding the observation that genetic pathways involved in the modulation of aging and the determination of lifespan in yeast are highly complicated and conserved.
Collapse
Affiliation(s)
- Jessica Smith
- Department of Medical Education and Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jill Wright
- Department of Medical Education and Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Brandt L Schneider
- Department of Medical Education and Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
79
|
He C, Tsuchiyama SK, Nguyen QT, Plyusnina EN, Terrill SR, Sahibzada S, Patel B, Faulkner AR, Shaposhnikov MV, Tian R, Tsuchiya M, Kaeberlein M, Moskalev AA, Kennedy BK, Polymenis M. Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import. PLoS Genet 2014; 10:e1004860. [PMID: 25521617 PMCID: PMC4270464 DOI: 10.1371/journal.pgen.1004860] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022] Open
Abstract
The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life. Aging is the greatest risk factor for many diseases, which together account for the majority of global deaths and healthcare costs. Here we show that the common drug ibuprofen increases the lifespan of yeast, worms and flies, indicative of conserved longevity effects. In budding yeast, an excellent model of cellular longevity mechanisms, ibuprofen's pro-longevity action is independent of its known anti-inflammatory role. We show that the critical function of ibuprofen in longevity is to inhibit the uptake of aromatic amino acids, by destabilizing the high-affinity tryptophan permease. We further show that ibuprofen alters cell cycle progression. Mirroring the effects of ibuprofen, we found that most yeast long-lived mutants were also similarly affected in cell cycle progression. These findings identify a safe drug that extends the lifespan of divergent organisms and reveal fundamental cellular properties associated with longevity.
Collapse
Affiliation(s)
- Chong He
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Scott K. Tsuchiyama
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Quynh T. Nguyen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Ekaterina N. Plyusnina
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Syktyvkar State University, Syktyvkar, Russia
| | - Samuel R. Terrill
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Sarah Sahibzada
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Bhumil Patel
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Alena R. Faulkner
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Mikhail V. Shaposhnikov
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Syktyvkar State University, Syktyvkar, Russia
| | - Ruilin Tian
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Mitsuhiro Tsuchiya
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Alexey A. Moskalev
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Syktyvkar State University, Syktyvkar, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Brian K. Kennedy
- Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail: (BKK); (MP)
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (BKK); (MP)
| |
Collapse
|
80
|
Bouklas T, Fries BC. Aging as an emergent factor that contributes to phenotypic variation in Cryptococcus neoformans. Fungal Genet Biol 2014; 78:59-64. [PMID: 25307541 DOI: 10.1016/j.fgb.2014.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 12/15/2022]
Abstract
Cryptococcus neoformans, similar to other eukaryotes, undergoes replicative aging. Replicative life spans have been determined for clinical C. neoformans strains, and although they are a reproducible trait, life spans vary considerably among strains. C. neoformans has been proposed as an ideal model organism to investigate the contribution of replicative aging in a fungal pathogen population to emerging phenotypic variation during chronic cryptococcal infections. C. neoformans cells of advanced generational age manifest a distinct phenotype; specifically, a larger cell size, a thicker cell wall, drug resistance, as well as resistance to hydrogen peroxide-mediated killing. Consequently, old cells are selected in the host environment during chronic infection and aging could be an unanticipated mechanism of pathogen adaptation that contributes to persistent disease. Aging as a natural process of phenotypic variation should be further studied as it likely is also relevant for other eukaryotic pathogen populations that undergo asymmetric replicative aging.
Collapse
Affiliation(s)
- Tejas Bouklas
- Department of Medicine (Division of Infectious Diseases), Stony Brook University, Stony Brook, NY, USA
| | - Bettina C Fries
- Department of Medicine (Division of Infectious Diseases), Stony Brook University, Stony Brook, NY, USA; Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
81
|
Corrêa LFDM, Passos FJV, Viloria MIV, Martins Filho OA, de Carvalho AT, Passos FML. Signals of aging associated with lower growth rates in Kluyveromyces lactis cultures under nitrogen limitation. Can J Microbiol 2014; 60:605-12. [PMID: 25204685 DOI: 10.1139/cjm-2014-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of aging on the specific growth rate of Kluyveromyces lactis cultures, as a function of (NH4)2SO4 concentration, were evaluated. The growth kinetic parameters maximum specific growth rate and saturation constant for (NH4)2SO4 were calculated to be 0.44 h(-1) and 0.15 mmol·L(-1), respectively. Batch cultures were allowed to age for 16 days without influence of cell density or starvation. The specific growth rates of these cultures were determined each day and decreased as the population aged at different nitrogen concentrations. Aging signals (N-acetylglucosamine content of the cell wall, cell dimensions, and apoptosis markers) were measured. Apoptosis markers were detected after 5 days at limiting (NH4)2SO4 concentrations (0.57, 3.80, and 7.60 mmol·L(-1)) but only after 8 days at a nonlimiting (NH4)2SO4 concentration (38.0 mmol·L(-1)). Similarly, continuous cultures of K. lactis performed under nitrogen limitation and, at lower dilution rates, accumulated cells exhibiting aging signals. The results demonstrate that aging affects growth rate and raise the question of whether nitrogen limitation accelerates aging. Because aging is correlated with growth rate, and each dilution rate of the continuous cultures tends to select and accumulate cells with a respective age, cultures growing at lower growth rates can be useful to investigate yeast physiological responses, including aging.
Collapse
Affiliation(s)
- Lygia Fátima da Mata Corrêa
- a Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs s/n 36571-000, Laboratório de Fisiologia de Microrganismos, BIOAGRO, Viçosa - MG, Brasil
| | | | | | | | | | | |
Collapse
|
82
|
Kato M, Lin SJ. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. DNA Repair (Amst) 2014; 23:49-58. [PMID: 25096760 DOI: 10.1016/j.dnarep.2014.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/06/2014] [Accepted: 07/11/2014] [Indexed: 12/21/2022]
Abstract
Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates shuttle between different cellular compartments. Together, these studies provide a molecular basis for how NAD(+) homeostasis factors and the interacting signaling pathways confer metabolic flexibility and contribute to maintaining cell fitness and genome stability.
Collapse
Affiliation(s)
- Michiko Kato
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, One Shields Ave., Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
83
|
Soma S, Yang K, Morales MI, Polymenis M. Multiple metabolic requirements for size homeostasis and initiation of division in Saccharomyces cerevisiae. MICROBIAL CELL 2014; 1:256-266. [PMID: 28357252 PMCID: PMC5349232 DOI: 10.15698/mic2014.08.160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most cells must grow before they can divide, but it is not known how cells
determine when they have grown enough so they can commit to a new round of cell
division. Several parameters affect the timing of initiation of division: cell
size at birth, the size cells have to reach when they commit to division, and
how fast they reach that size. We report that Saccharomyces
cerevisiae mutants in metabolic and biosynthetic pathways differ in
these variables, controlling the timing of initiation of cell division in
various ways. Some mutants affect the size at birth, size at initiation of
division, the rate of increase in size, or any combination of the above.
Furthermore, we show that adenylate kinase, encoded by ADK1, is
a significant determinant of the efficiency of size control mechanisms. Finally,
our data argue strongly that the cell size at division is not necessarily a
function of the rate cells increase in size in the G1 phase of the cell cycle.
Taken together, these findings reveal an unexpected diversity in the G1 cell
cycle phenotypes of metabolic and biosynthetic mutants, suggesting that growth
requirements for cell division are multiple, distinct and imposed throughout the
G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Shivatheja Soma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kailu Yang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Maria I Morales
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
84
|
|
85
|
Denoth Lippuner A, Julou T, Barral Y. Budding yeast as a model organism to study the effects of age. FEMS Microbiol Rev 2014; 38:300-25. [PMID: 24484434 DOI: 10.1111/1574-6976.12060] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/13/2013] [Accepted: 01/06/2014] [Indexed: 12/20/2022] Open
Abstract
Although a budding yeast culture can be propagated eternally, individual yeast cells age and eventually die. The detailed knowledge of this unicellular eukaryotic species as well as the powerful tools developed to study its physiology makes budding yeast an ideal model organism to study the mechanisms involved in aging. Considering both detrimental and positive aspects of age, we review changes occurring during aging both at the whole-cell level and at the intracellular level. The possible mechanisms allowing old cells to produce rejuvenated progeny are described in terms of accumulation and inheritance of aging factors. Based on the dynamic changes associated with age, we distinguish different stages of age: early age, during which changes do not impair cell growth; intermediate age, during which aging factors start to accumulate; and late age, which corresponds to the last divisions before death. For each aging factor, we examine its asymmetric segregation and whether it plays a causal role in aging. Using the example of caloric restriction, we describe how the aging process can be modulated at different levels and how changes in different organelles might interplay with each other. Finally, we discuss the beneficial aspects that might be associated with age.
Collapse
|
86
|
A pharmaco-epistasis strategy reveals a new cell size controlling pathway in yeast. Mol Syst Biol 2013; 9:707. [PMID: 24217298 PMCID: PMC4039374 DOI: 10.1038/msb.2013.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/27/2013] [Indexed: 01/03/2023] Open
Abstract
Pharmaco-epistasis analyses using drugs mimicking cell size mutations in yeast uncovered a novel pathway in cell size homeostasis regulation. This pathway involves the sirtuin Sir2, the large ribosomal subunit (60S) and the Swi4/Swi6 transcription factors. ![]()
Drug–gene epistatic interactions with nicotinamide and diazaborine were analyzed using 189 previously identified small and 155 large mutants, showing that cell size homeostasis is the result of signals emanating from several independent pathways. Ribosome biogenesis affects cell size homeostasis in different ways. Modulation of cell size by Sir2 correlates with NAD+ intracellular variation. No simple causal relationship was found between cell size and replicative aging even though both Sir2 and the 60S ribosomal subunit are contributing to these two complex traits.
Cell size is a complex quantitative trait resulting from interactions between intricate genetic networks and environmental conditions. Here, taking advantage of previous studies that uncovered hundreds of genes affecting budding yeast cell size homeostasis, we performed a wide pharmaco-epistasis analysis using drugs mimicking cell size mutations. Simple epistasis relationship emerging from this approach allowed us to characterize a new cell size homeostasis pathway comprising the sirtuin Sir2, downstream effectors including the large ribosomal subunit (60S) and the transcriptional regulators Swi4 and Swi6. We showed that this Sir2/60S signaling route acts independently of other previously described cell size controlling pathways and may integrate the metabolic status of the cell through NAD+ intracellular concentration. Finally, although Sir2 and the 60S subunits regulate both cell size and replicative aging, we found that there is no clear causal relationship between these two complex traits. This study sheds light on a pathway of >50 genes and illustrates how pharmaco-epistasis applied to yeast offers a potent experimental framework to explore complex genotype/phenotype relationships.
Collapse
|
87
|
Wright J, Schneider BL. Cell size control is sirtuin(ly) exciting. Mol Syst Biol 2013; 9:706. [PMID: 24217297 PMCID: PMC4039377 DOI: 10.1038/msb.2013.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jill Wright
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Brandt L Schneider
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
88
|
Lin SJ, Austriaco N. Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans. FEMS Yeast Res 2013; 14:119-35. [PMID: 24205865 DOI: 10.1111/1567-1364.12113] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/18/2013] [Accepted: 10/10/2013] [Indexed: 12/22/2022] Open
Abstract
How do cells age and die? For the past 20 years, the budding yeast, Saccharomyces cerevisiae, has been used as a model organism to uncover the genes that regulate lifespan and cell death. More recently, investigators have begun to interrogate the other yeasts, the fission yeast, Schizosaccharomyces pombe, and the human fungal pathogen, Candida albicans, to determine if similar longevity and cell death pathways exist in these organisms. After summarizing the longevity and cell death phenotypes in S. cerevisiae, this mini-review surveys the progress made in the study of both aging and programed cell death (PCD) in the yeast models, with a focus on the biology of S. pombe and C. albicans. Particular emphasis is placed on the similarities and differences between the two types of aging, replicative aging, and chronological aging, and between the three types of cell death, intrinsic apoptosis, autophagic cell death, and regulated necrosis, found in these yeasts. The development of the additional microbial models for aging and PCD in the other yeasts may help further elucidate the mechanisms of longevity and cell death regulation in eukaryotes.
Collapse
Affiliation(s)
- Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | | |
Collapse
|
89
|
Bouklas T, Fries BC. Cryptococcus neoformans constitutes an ideal model organism to unravel the contribution of cellular aging to the virulence of chronic infections. Curr Opin Microbiol 2013; 16:391-7. [PMID: 23631868 DOI: 10.1016/j.mib.2013.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/21/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
Aging affects all organisms, from unicellular yeasts to multicellular humans. Studies in model organisms demonstrate that the pathways that mediate the two forms of aging, replicative and chronological, are highly conserved. Most studies are focused on the effect of aging on an individual cell rather than a whole population. Complex longevity regulation, however, makes aging a highly adaptive trait that is subject to natural selection. Recent studies have shed light on the potential relevance of aging in fungal pathogens, which undergo replicative aging when they expand in the host environment. Hence, pathogens causing chronic infections can constitute ideal model organisms in unraveling the contribution of selection to aging within a population and help elucidate the contribution of aging itself to the virulence of infections.
Collapse
Affiliation(s)
- Tejas Bouklas
- Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
90
|
Metabolic changes during cellular senescence investigated by proton NMR-spectroscopy. Mech Ageing Dev 2013; 134:130-8. [PMID: 23416267 DOI: 10.1016/j.mad.2013.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/10/2012] [Accepted: 02/02/2013] [Indexed: 11/21/2022]
Abstract
Cellular senescence is of growing interest due to its role in tumour suppression and its contribution to organismic ageing. This cellular state can be reached by replicative loss of telomeres or certain stresses in cell culture and is characterized by the termination of cell division; however, the cells remain metabolically active. To identify metabolites that are characteristic for senescent cells, extracts of human embryonic lung fibroblast (WI-38 cell line) have been investigated with NMR spectroscopy. Three different types of senescence have been characterized: replicative senescence, DNA damage-induced senescence (etoposide treatment) and oncogene-induced senescence (hyperactive RAF kinase). The metabolite pattern allows (I) discrimination of senescent and control cells and (II) discrimination of the three senescence types. Senescent cells show an increased ratio of glycerophosphocholine to phosphocholine independent from the type of senescence. The increase in glycerophosphocholine implicates a key role of phospholipid metabolism in cellular senescence. The observed changes in the choline metabolism are diametrically opposite to the well-known changes in choline metabolism of tumour cells. As tumours responding to chemotherapeutic agents show a "glycerophosphocholine-to-phosphocholine switch" i.e. an increase in glycerophosphocholine, our metabolic data suggests that these malignant cells enter a senescent state emphasizing the role of senescence in tumour suppression.
Collapse
|
91
|
Dungrawala H, Hua H, Wright J, Abraham L, Kasemsri T, McDowell A, Stilwell J, Schneider BL. Identification of new cell size control genes in S. cerevisiae. Cell Div 2012; 7:24. [PMID: 23234503 PMCID: PMC3541103 DOI: 10.1186/1747-1028-7-24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/04/2012] [Indexed: 12/13/2022] Open
Abstract
Cell size homeostasis is a conserved attribute in many eukaryotic species involving a tight regulation between the processes of growth and proliferation. In budding yeast S. cerevisiae, growth to a “critical cell size” must be achieved before a cell can progress past START and commit to cell division. Numerous studies have shown that progression past START is actively regulated by cell size control genes, many of which have implications in cell cycle control and cancer. Two initial screens identified genes that strongly modulate cell size in yeast. Since a second generation yeast gene knockout collection has been generated, we screened an additional 779 yeast knockouts containing 435 new ORFs (~7% of the yeast genome) to supplement previous cell size screens. Upon completion, 10 new strong size mutants were identified: nine in log-phase cells and one in saturation-phase cells, and 97% of the yeast genome has now been screened for cell size mutations. The majority of the logarithmic phase size mutants have functions associated with translation further implicating the central role of growth control in the cell division process. Genetic analyses suggest ECM9 is directly associated with the START transition. Further, the small (whi) mutants mrpl49Δ and cbs1Δ are dependent on CLN3 for cell size effects. In depth analyses of new size mutants may facilitate a better understanding of the processes that govern cell size homeostasis.
Collapse
Affiliation(s)
- Huzefa Dungrawala
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th St Rm, 5C119, Lubbock, TX, 79430, USA.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Wright J, Dungrawala H, Bright RK, Schneider BL. A growing role for hypertrophy in senescence. FEMS Yeast Res 2012; 13:2-6. [PMID: 23107076 DOI: 10.1111/1567-1364.12015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
93
|
Polymenis M, Kennedy BK. Chronological and replicative lifespan in yeast: do they meet in the middle? Cell Cycle 2012; 11:3531-2. [PMID: 22951539 PMCID: PMC3478299 DOI: 10.4161/cc.22041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael Polymenis
- Department of Biochemistry and Biophysics; Texas A&M University, College Station, TX, USA.
| | | |
Collapse
|
94
|
Ferrezuelo F, Colomina N, Palmisano A, Garí E, Gallego C, Csikász-Nagy A, Aldea M. The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation. Nat Commun 2012; 3:1012. [DOI: 10.1038/ncomms2015] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 07/20/2012] [Indexed: 11/09/2022] Open
|
95
|
Murakami C, Delaney JR, Chou A, Carr D, Schleit J, Sutphin GL, An EH, Castanza AS, Fletcher M, Goswami S, Higgins S, Holmberg M, Hui J, Jelic M, Jeong KS, Kim JR, Klum S, Liao E, Lin MS, Lo W, Miller H, Moller R, Peng ZJ, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Schuster A, Singh M, Spector BL, Vander Wende H, Wang AM, Wasko BM, Olsen B, Kaeberlein M. pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast. Cell Cycle 2012; 11:3087-96. [PMID: 22871733 DOI: 10.4161/cc.21465] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chronological and replicative aging have been studied in yeast as alternative paradigms for post-mitotic and mitotic aging, respectively. It has been known for more than a decade that cells of the S288C background aged chronologically in rich medium have reduced replicative lifespan relative to chronologically young cells. Here we report replication of this observation in the diploid BY4743 strain background. We further show that the reduction in replicative lifespan from chronological aging is accelerated when cells are chronologically aged under standard conditions in synthetic complete medium rather than rich medium. The loss of replicative potential with chronological age is attenuated by buffering the pH of the chronological aging medium to 6.0, an intervention that we have previously shown can extend chronological lifespan. These data demonstrate that extracellular acidification of the culture medium can cause intracellular damage in the chronologically aging population that is asymmetrically segregated by the mother cell to limit subsequent replicative lifespan.
Collapse
|
96
|
Abstract
Cell size varies widely among different organisms as well as within the same organism in different tissue types and during development, which places variable metabolic and functional demands on organelles and internal structures. A fundamental question is how essential subcellular components scale to accommodate cell size differences. Nuclear transport has emerged as a conserved means of scaling nuclear size. A meiotic spindle scaling factor has been identified as the microtubule-severing protein katanin, which is differentially regulated by phosphorylation in two different-sized frog species. Anaphase mechanisms and levels of chromatin compaction both act to coordinate cell size with spindle and chromosome dimensions to ensure accurate genome distribution during cell division. Scaling relationships and mechanisms for many membrane-bound compartments remain largely unknown and are complicated by their heterogeneity and dynamic nature. This review summarizes cell and organelle size relationships and the experimental approaches that have elucidated mechanisms of intracellular scaling.
Collapse
Affiliation(s)
- Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA.
| | | |
Collapse
|
97
|
|
98
|
Ganley AR, Breitenbach M, Kennedy BK, Kobayashi T. Yeast hypertrophy: cause or consequence of aging? Reply to Bilinski et al. FEMS Yeast Res 2012; 12:267-8. [DOI: 10.1111/j.1567-1364.2012.00796.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
| | | | | | - Takehiko Kobayashi
- Division of Cytogenetics; National Institute of Genetics; Mishima; Japan
| |
Collapse
|
99
|
Kaeberlein M. Hypertrophy and senescence factors in yeast aging. A reply to Bilinski et al. FEMS Yeast Res 2012; 12:269-70. [DOI: 10.1111/j.1567-1364.2012.00798.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
100
|
Biliński T, Zadrąg-Tęcza R, Bartosz G. Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast. FEMS Yeast Res 2011; 12:97-101. [PMID: 22093953 DOI: 10.1111/j.1567-1364.2011.00759.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 10/28/2011] [Indexed: 01/28/2023] Open
Abstract
This paper summarizes numerous arguments demonstrating that the hypothesis of accumulation of the senescence factor, which was the basis for introducing yeast to the group of model organisms of gerontology, finds no experimental support. Among several candidates for the role of the causative agents of replicative aging, only one - hypertrophy - always accompanies symptoms of aging, not only in Saccharomyces cerevisiae, but also in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Tomasz Biliński
- Department of Biochemistry and Cell Biology, University of Rzeszów, Rzeszów, Poland.
| | | | | |
Collapse
|