51
|
Hernández-Reyes C, Schenk ST, Neumann C, Kogel KH, Schikora A. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens. Microb Biotechnol 2014; 7:580-8. [PMID: 25234390 PMCID: PMC4265076 DOI: 10.1111/1751-7915.12177] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 11/28/2022] Open
Abstract
The implementation of beneficial microorganisms for plant protection has a long history. Many rhizobia bacteria are able to influence the immune system of host plants by inducing resistance towards pathogenic microorganisms. In this report, we present a translational approach in which we demonstrate the resistance-inducing effect of Ensifer meliloti (Sinorhizobium meliloti) on crop plants that have a significant impact on the worldwide economy and on human nutrition. Ensifer meliloti is usually associated with root nodulation in legumes and nitrogen fixation. Here, we suggest that the ability of S. meliloti to induce resistance depends on the production of the quorum-sensing molecule, oxo-C14-HSL. The capacity to enhanced resistance provides a possibility to the use these beneficial bacteria in agriculture. Using the Arabidopsis-Salmonella model, we also demonstrate that the application of N-acyl-homoserine lactones-producing bacteria could be a successful strategy to prevent plant-originated infections with human pathogens.
Collapse
Affiliation(s)
- Casandra Hernández-Reyes
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University GiessenHeinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Sebastian T Schenk
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University GiessenHeinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Christina Neumann
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University GiessenHeinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University GiessenHeinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Adam Schikora
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University GiessenHeinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| |
Collapse
|
52
|
Veliz-Vallejos DF, van Noorden GE, Yuan M, Mathesius U. A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation. FRONTIERS IN PLANT SCIENCE 2014; 5:551. [PMID: 25352858 PMCID: PMC4196514 DOI: 10.3389/fpls.2014.00551] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/26/2014] [Indexed: 05/09/2023]
Abstract
N-acyl homoserine lactones (AHLs) act as quorum sensing signals that regulate cell-density dependent behaviors in many gram-negative bacteria, in particular those important for plant-microbe interactions. AHLs can also be recognized by plants, and this may influence their interactions with bacteria. Here we tested whether the exposure to AHLs affects the nodule-forming symbiosis between legume hosts and rhizobia. We treated roots of the model legume, Medicago truncatula, with a range of AHLs either from its specific symbiont, Sinorhizobium meliloti, or from the potential pathogens, Pseudomonas aeruginosa and Agrobacterium vitis. We found increased numbers of nodules formed on root systems treated with the S. meliloti-specific AHL, 3-oxo-C14-homoserine lactone, at a concentration of 1 μM, while the other AHLs did not result in significant changes to nodule numbers. We did not find any evidence for altered nodule invasion by the rhizobia. Quantification of flavonoids that could act as nod gene inducers in S. meliloti did not show any correlation with increased nodule numbers. The effects of AHLs were specific for an increase in nodule numbers, but not lateral root numbers or root length. Increased nodule numbers following 3-oxo-C14-homoserine lactone treatment were under control of autoregulation of nodulation and were still observed in the autoregulation mutant, sunn4 (super numeric nodules4). However, increases in nodule numbers by 3-oxo-C14-homoserine lactone were not found in the ethylene-insensitive sickle mutant. A comparison between M. truncatula with M. sativa (alfalfa) and Trifolium repens (white clover) showed that the observed effects of AHLs on nodule numbers were specific to M. truncatula, despite M. sativa nodulating with the same symbiont. We conclude that plant perception of the S. meliloti-specific 3-oxo-C14-homoserine lactone influences nodule numbers in M. truncatula via an ethylene-dependent, but autoregulation-independent mechanism.
Collapse
Affiliation(s)
| | | | | | - Ulrike Mathesius
- Department of Plant Science, Research School of Biology, Australian National UniversityCanberra, ACT, Australia
| |
Collapse
|
53
|
Quorum sensing activity of Mesorhizobium sp. F7 isolated from potable water. ScientificWorldJournal 2014; 2014:874764. [PMID: 25177734 PMCID: PMC4142172 DOI: 10.1155/2014/874764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 11/18/2022] Open
Abstract
We isolated a bacterial isolate (F7) from potable water. The strain was identified as Mesorhizobium sp. by 16S rDNA gene phylogenetic analysis and screened for N-acyl homoserine lactone (AHL) production by an AHL biosensor. The AHL profile of the isolate was further analyzed using high resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS) which confirmed the production of multiple AHLs, namely, N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL) and N-3-oxo-decanoyl-L-homoserine lactone (3-oxo-C10-HSL). These findings will open the perspective to study the function of these AHLs in plant-microbe interactions.
Collapse
|
54
|
Schenk ST, Hernández-Reyes C, Samans B, Stein E, Neumann C, Schikora M, Reichelt M, Mithöfer A, Becker A, Kogel KH, Schikora A. N-Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway. THE PLANT CELL 2014; 26:2708-2723. [PMID: 24963057 PMCID: PMC4114961 DOI: 10.1105/tpc.114.126763] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 05/18/2023]
Abstract
The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection.
Collapse
Affiliation(s)
- Sebastian T Schenk
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Casandra Hernández-Reyes
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Birgit Samans
- Department of Plant Breeding, IFZ, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Elke Stein
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Christina Neumann
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Marek Schikora
- Department of Sensor Data and Information Fusion, Fraunhofer FKIE, 53343 Wachtberg, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Plant Defense, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Annette Becker
- Plant Developmental Biology Group, Institute of Botany, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Adam Schikora
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
55
|
Hartmann A, Rothballer M, Hense BA, Schröder P. Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:131. [PMID: 24782873 PMCID: PMC3986513 DOI: 10.3389/fpls.2014.00131] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/19/2014] [Indexed: 05/21/2023]
Affiliation(s)
- Anton Hartmann
- Research Unit Microbe-Plant Interactions, Department of Environmental Sciences, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH)Neuherberg, Germany
- *Correspondence:
| | - Michael Rothballer
- Research Unit Microbe-Plant Interactions, Department of Environmental Sciences, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH)Neuherberg, Germany
| | - Burkhard A. Hense
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH)Neuherberg, Germany
| | - Peter Schröder
- Research Unit Microbe-Plant Interactions, Department of Environmental Sciences, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH)Neuherberg, Germany
| |
Collapse
|
56
|
Schenk ST, Schikora A. AHL-priming functions via oxylipin and salicylic acid. FRONTIERS IN PLANT SCIENCE 2014; 5:784. [PMID: 25642235 PMCID: PMC4294120 DOI: 10.3389/fpls.2014.00784] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/17/2014] [Indexed: 05/18/2023]
Abstract
Collaborative action between the host plant and associated bacteria is crucial for the establishment of an efficient interaction. In bacteria, the synchronized behavior of a population is often achieved by a density-dependent communication called quorum sensing. This behavior is based on signaling molecules, which influence bacterial gene expression. N-acyl homoserine lactones (AHLs) are such molecules in many Gram-negative bacteria. Moreover, some AHLs are responsible for the beneficial effect of bacteria on plants, for example the long chain N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) can prime Arabidopsis and barley plants for an enhanced defense. This AHL-induced resistance phenomenon, named AHL-priming, was observed in several independent laboratories during the last two decades. Very recently, the mechanism of priming with oxo-C14-HSL was shown to depend on an oxylipin and salicylic acid (SA). SA is a key element in plant defense, it accumulates during different plant resistance responses and is the base of systemic acquired resistance. In addition, SA itself can prime plants for an enhanced resistance against pathogen attack. On the other side, oxylipins, including jasmonic acid (JA) and related metabolites, are lipid-derived signaling compounds. Especially the oxidized fatty acid derivative cis-OPDA, which is the precursor of JA, is a newly described player in plant defense. Unlike the antagonistic effect of SA and JA in plant-microbe interactions, the recently described pathway functions through a synergistic effect of oxylipins and SA, and is independent of the JA signaling cascade. Interestingly, the oxo-C14-HSL-induced oxylipin/SA signaling pathway induces stomata defense responses and cell wall strengthening thus prevents pathogen invasion. In this review, we summarize the findings on AHL-priming and the related signaling cascade. In addition, we discuss the potential of AHL-induced resistance in new strategies of plant protection.
Collapse
Affiliation(s)
| | - Adam Schikora
- *Correspondence: Adam Schikora, Institute for Phytopathology, Research Centre for Biosystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany e-mail:
| |
Collapse
|
57
|
Mandabi A, Ganin H, Krief P, Rayo J, Meijler MM. Karrikins from plant smoke modulate bacterial quorum sensing. Chem Commun (Camb) 2013; 50:5322-5. [PMID: 24327106 DOI: 10.1039/c3cc47501h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discovery that plant smoke contains germination stimuli has led to the identification of a new class of signaling molecules named karrikins. Here we report a potential second role for these molecules: in various bacterial species -A. tumefaciens, P. aeruginosa and V. harveyi- they modulate bacterial quorum-sensing (QS), with very different outcomes.
Collapse
Affiliation(s)
- Aviad Mandabi
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | |
Collapse
|
58
|
Patel HK, Suárez-Moreno ZR, Degrassi G, Subramoni S, González JF, Venturi V. Bacterial LuxR solos have evolved to respond to different molecules including signals from plants. FRONTIERS IN PLANT SCIENCE 2013; 4:447. [PMID: 24273546 DOI: 10.3389/fpls.2013.00447.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/19/2013] [Indexed: 05/26/2023]
Abstract
A future challenge will be understanding the extensive communication that most likely takes place in bacterial interspecies and interkingdom signaling between plants and bacteria. A major bacterial inter-cellular signaling system in Gram-negative bacteria is LuxI/R quorum sensing (QS) based on the production (via the LuxI-family proteins) and detection (via the LuxR-family proteins) of N-acyl homoserine lactones (AHLs) signaling molecules. LuxR proteins which have the same modular structure of QS LuxRs but are devoid of a cognate LuxI AHL synthase are called solos. LuxR solos have been shown to be responsible to respond to exogenous AHLs produced by neighboring cells as well endogenously produced AHLs. It is now also evident that some LuxR proteins have evolved from the ability to binding AHLs and respond to other molecules/signals. For example, recent research has shown that a sub-family of LuxR solos responds to small molecules produced by plants. This indicates the presence of a uni-directional interkingdom signaling system occurring from plants to bacteria. In addition LuxR solos have now been also implicated to respond to endogenously produced signals which are not AHLs. In this Mini Review article we will discuss current trends and implications of the role of LuxR solos in bacterial responses to other signals using proteins related to AHL QS systems.
Collapse
Affiliation(s)
- Hitendra K Patel
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | | | | | | | | | | |
Collapse
|
59
|
Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 2013; 37:634-63. [DOI: 10.1111/1574-6976.12028] [Citation(s) in RCA: 1382] [Impact Index Per Article: 125.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/22/2013] [Accepted: 05/27/2013] [Indexed: 12/18/2022] Open
|
60
|
Zarkani AA, Stein E, Röhrich CR, Schikora M, Evguenieva-Hackenberg E, Degenkolb T, Vilcinskas A, Klug G, Kogel KH, Schikora A. Homoserine lactones influence the reaction of plants to rhizobia. Int J Mol Sci 2013; 14:17122-46. [PMID: 23965976 PMCID: PMC3759955 DOI: 10.3390/ijms140817122] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 01/01/2023] Open
Abstract
Bacterial quorum sensing molecules not only grant the communication within bacterial communities, but also influence eukaryotic hosts. N-acyl-homoserine lactones (AHLs) produced by pathogenic or beneficial bacteria were shown to induce diverse reactions in animals and plants. In plants, the reaction to AHLs depends on the length of the lipid side chain. Here we investigated the impact of two bacteria on Arabidopsis thaliana, which usually enter a close symbiosis with plants from the Fabaceae (legumes) family and produce a long-chain AHL (Sinorhizobium meliloti) or a short-chain AHL (Rhizobium etli). We demonstrate that, similarly to the reaction to pure AHL molecules, the impact, which the inoculation with rhizosphere bacteria has on plants, depends on the type of the produced AHL. The inoculation with oxo-C14-HSL-producing S. meliloti strains enhanced plant resistance towards pathogenic bacteria, whereas the inoculation with an AttM lactonase-expressing S. meliloti strain did not. Inoculation with the oxo-C8-HSL-producing R. etli had no impact on the resistance, which is in agreement with our previous hypothesis. In addition, plants seem to influence the availability of AHLs in the rhizosphere. Taken together, this report provides new insights in the role of N-acyl-homoserine lactones in the inter-kingdom communication at the root surface.
Collapse
Affiliation(s)
- Azhar A. Zarkani
- Institute of Phytopathology and Applied Zoology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany; E-Mails: (A.A.Z.); (E.S.); (T.D.); (A.V.); (K.-H.K.)
| | - Elke Stein
- Institute of Phytopathology and Applied Zoology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany; E-Mails: (A.A.Z.); (E.S.); (T.D.); (A.V.); (K.-H.K.)
| | - Christian R. Röhrich
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, D-35394 Giessen, Germany; E-Mail:
| | - Marek Schikora
- Department Sensor Data and Information Fusion, Fraunhofer FKIE, 53343 Wachtberg, Germany; E-Mail:
| | - Elena Evguenieva-Hackenberg
- Institute of Microbiology and Molecular Biology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany; E-Mails: (E.E.-H.); (G.K.)
| | - Thomas Degenkolb
- Institute of Phytopathology and Applied Zoology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany; E-Mails: (A.A.Z.); (E.S.); (T.D.); (A.V.); (K.-H.K.)
| | - Andreas Vilcinskas
- Institute of Phytopathology and Applied Zoology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany; E-Mails: (A.A.Z.); (E.S.); (T.D.); (A.V.); (K.-H.K.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, D-35394 Giessen, Germany; E-Mail:
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany; E-Mails: (E.E.-H.); (G.K.)
| | - Karl-Heinz Kogel
- Institute of Phytopathology and Applied Zoology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany; E-Mails: (A.A.Z.); (E.S.); (T.D.); (A.V.); (K.-H.K.)
| | - Adam Schikora
- Institute of Phytopathology and Applied Zoology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany; E-Mails: (A.A.Z.); (E.S.); (T.D.); (A.V.); (K.-H.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-641-99-37497; Fax: +49-641-99-37499
| |
Collapse
|
61
|
Bakker PAHM, Berendsen RL, Doornbos RF, Wintermans PCA, Pieterse CMJ. The rhizosphere revisited: root microbiomics. FRONTIERS IN PLANT SCIENCE 2013; 4:165. [PMID: 23755059 PMCID: PMC3667247 DOI: 10.3389/fpls.2013.00165] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/10/2013] [Indexed: 05/18/2023]
Abstract
The rhizosphere was defined over 100 years ago as the zone around the root where microorganisms and processes important for plant growth and health are located. Recent studies show that the diversity of microorganisms associated with the root system is enormous. This rhizosphere microbiome extends the functional repertoire of the plant beyond imagination. The rhizosphere microbiome of Arabidopsis thaliana is currently being studied for the obvious reason that it allows the use of the extensive toolbox that comes with this model plant. Deciphering plant traits that drive selection and activities of the microbiome is now a major challenge in which Arabidopsis will undoubtedly be a major research object. Here we review recent microbiome studies and discuss future research directions and applicability of the generated knowledge.
Collapse
Affiliation(s)
- Peter A. H. M. Bakker
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | | | | | | | | |
Collapse
|
62
|
González JF, Venturi V. A novel widespread interkingdom signaling circuit. TRENDS IN PLANT SCIENCE 2013; 18:167-74. [PMID: 23089307 DOI: 10.1016/j.tplants.2012.09.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/14/2012] [Accepted: 09/21/2012] [Indexed: 05/08/2023]
Abstract
Extensive communication is believed to occur between eukaryotes and prokaryotes via signaling molecules; this field of research is now called interkingdom signaling. Recently, it has been discovered that many different plant-associated bacteria possess a protein closely related to the quorum-sensing (QS) LuxR-family protein that binds and responds to plant compounds. This LuxR protein does not have a cognate N-acyl homoserine lactone (AHL) signal synthase and therefore is regarded as a 'solo' or 'orphan'. The protein is involved in interkingdom signaling in rhizobia, xanthomonads, and pseudomonads, regulating processes important for plant-bacteria interaction. In this review, we focus on this new interkingdom signaling circuit, which is widespread among pathogenic and beneficial plant-associated bacteria.
Collapse
Affiliation(s)
- Juan F González
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | |
Collapse
|
63
|
Patel HK, Suárez-Moreno ZR, Degrassi G, Subramoni S, González JF, Venturi V. Bacterial LuxR solos have evolved to respond to different molecules including signals from plants. FRONTIERS IN PLANT SCIENCE 2013; 4:447. [PMID: 24273546 PMCID: PMC3824090 DOI: 10.3389/fpls.2013.00447] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/19/2013] [Indexed: 05/08/2023]
Abstract
A future challenge will be understanding the extensive communication that most likely takes place in bacterial interspecies and interkingdom signaling between plants and bacteria. A major bacterial inter-cellular signaling system in Gram-negative bacteria is LuxI/R quorum sensing (QS) based on the production (via the LuxI-family proteins) and detection (via the LuxR-family proteins) of N-acyl homoserine lactones (AHLs) signaling molecules. LuxR proteins which have the same modular structure of QS LuxRs but are devoid of a cognate LuxI AHL synthase are called solos. LuxR solos have been shown to be responsible to respond to exogenous AHLs produced by neighboring cells as well endogenously produced AHLs. It is now also evident that some LuxR proteins have evolved from the ability to binding AHLs and respond to other molecules/signals. For example, recent research has shown that a sub-family of LuxR solos responds to small molecules produced by plants. This indicates the presence of a uni-directional interkingdom signaling system occurring from plants to bacteria. In addition LuxR solos have now been also implicated to respond to endogenously produced signals which are not AHLs. In this Mini Review article we will discuss current trends and implications of the role of LuxR solos in bacterial responses to other signals using proteins related to AHL QS systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Vittorio Venturi
- *Correspondence: Vittorio Venturi, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy e-mail:
| |
Collapse
|
64
|
Venturi V, Fuqua C. Chemical signaling between plants and plant-pathogenic bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:17-37. [PMID: 23915131 DOI: 10.1146/annurev-phyto-082712-102239] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Studies of chemical signaling between plants and bacteria in the past have been largely confined to two models: the rhizobial-legume symbiotic association and pathogenesis between agrobacteria and their host plants. Recent studies are beginning to provide evidence that many plant-associated bacteria undergo chemical signaling with the plant host via low-molecular-weight compounds. Plant-produced compounds interact with bacterial regulatory proteins that then affect gene expression. Similarly, bacterial quorum-sensing signals result in a range of functional responses in plants. This review attempts to highlight current knowledge in chemical signaling that takes place between pathogenic bacteria and plants. This chemical communication between plant and bacteria, also referred to as interkingdom signaling, will likely become a major research field in the future, as it allows the design of specific strategies to create plants that are resistant to plant pathogens.
Collapse
Affiliation(s)
- Vittorio Venturi
- International Center for Genetic Engineering and Biotechnology, 34149 Trieste, Italy.
| | | |
Collapse
|
65
|
Hartmann A, Schikora A. Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J Chem Ecol 2012; 38:704-13. [PMID: 22648507 DOI: 10.1007/s10886-012-0141-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 11/30/2022]
Abstract
Many environmental and interactive important traits of bacteria, such as antibiotic, siderophore or exoenzyme (like cellulose, pectinase) production, virulence factors of pathogens, as well as symbiotic interactions, are regulated in a population density-dependent manner by using small signaling molecules. This phenomenon, called quorum sensing (QS), is widespread among bacteria. Many different bacterial species are communicating or "speaking" through diffusible small molecules. The production often is sophisticatedly regulated via an autoinducing mechanism. A good example is the production of N-acyl homoserine lactones (AHL), which occur in many variations of molecular structure in a wide variety of Gram-negative bacteria. In Gram-positive bacteria, other compounds, such as peptides, regulate cellular activity and behavior by sensing the cell density. The degradation of the signaling molecule--called quorum quenching--is probably another important integral part in the complex quorum sensing circuit. Most interestingly, bacterial quorum sensing molecules also are recognized by eukaryotes that are colonized by QS-active bacteria. In this case, the cross-kingdom interaction can lead to specific adjustment and physiological adaptations in the colonized eukaryote. The responses are manifold, such as modifications of the defense system, modulation of the immune response, or changes in the hormonal status and growth responses. Thus, the interaction with the quorum sensing signaling molecules of bacteria can profoundly change the physiology of higher organisms too. Higher organisms are obligatorily associated with microbial communities, and these truly multi-organismic consortia, which are also called holobionts, can actually be steered via multiple interlinked signaling substances that originate not only from the host but also from the associated bacteria.
Collapse
Affiliation(s)
- Anton Hartmann
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Research Unit Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
| | | |
Collapse
|