51
|
González-González A, García-Sánchez D, Dotta M, Rodríguez-Rey JC, Pérez-Campo FM. Mesenchymal stem cells secretome: The cornerstone of cell-free regenerative medicine. World J Stem Cells 2020; 12:1529-1552. [PMID: 33505599 PMCID: PMC7789121 DOI: 10.4252/wjsc.v12.i12.1529] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/07/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are the most frequently used stem cells in clinical trials due to their easy isolation from various adult tissues, their ability of homing to injury sites and their potential to differentiate into multiple cell types. However, the realization that the beneficial effect of MSCs relies mainly on their paracrine action, rather than on their engraftment in the recipient tissue and subsequent differentiation, has opened the way to cell-free therapeutic strategies in regenerative medicine. All the soluble factors and vesicles secreted by MSCs are commonly known as secretome. MSCs secretome has a key role in cell-to-cell communication and has been proven to be an active mediator of immune-modulation and regeneration both in vitro and in vivo. Moreover, the use of secretome has key advantages over cell-based therapies, such as a lower immunogenicity and easy production, handling and storage. Importantly, MSCs can be modulated to alter their secretome composition to better suit specific therapeutic goals, thus, opening a large number of possibilities. Altogether these advantages now place MSCs secretome at the center of an important number of investigations in different clinical contexts, enabling rapid scientific progress in this field.
Collapse
Affiliation(s)
- Alberto González-González
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - Daniel García-Sánchez
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - Monica Dotta
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - José C Rodríguez-Rey
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - Flor M Pérez-Campo
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain.
| |
Collapse
|
52
|
Shrestha S, Li F, Truong VX, Forsythe JS, Frith JE. Interplay of Hydrogel Composition and Geometry on Human Mesenchymal Stem Cell Osteogenesis. Biomacromolecules 2020; 21:5323-5335. [PMID: 33237736 DOI: 10.1021/acs.biomac.0c01408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microgels are emerging as an outstanding platform for tissue regeneration because they overcome issues associated with conventional bulk/macroscopic hydrogels such as limited cell-cell contact and cell communication and low diffusion rates. Owing to the enhanced mass transfer and injectability via a minimally invasive procedure, these microgels are becoming a promising approach for bone regeneration applications. Nevertheless, there still remains a huge gap between the understanding of how the hydrogel matrix composition can influence cell response and overall tissue formation when switching from bulk formats to microgel format, which is often neglected or rarely studied. Here, we fabricated polyethylene glycol-based microgels and bulk hydrogels incorporating gelatin and hyaluronic acid (HA), either individually or together, and assessed the impact of both hydrogel composition and format upon the osteogenic differentiation of encapsulated human bone marrow-derived mesenchymal stem cells (hBMSCs). Osteogenesis was significantly greater in microgels than bulk hydrogels for both gelatin alone (Gel) and gelatin HA composite (Gel:HA) hydrogels, as determined by the expression of Runt-related transcription factor (Runx2) and alkaline phosphatase (ALP) genes and mineral deposition. Interestingly, Gel and Gel:HA hydrogels behaved differently between bulk and microgel format. In bulk format, overall osteogenic outcomes were better in Gel:HA hydrogels, but in microgel format, while the level of osteogenic gene expression was equivalent between both compositions, the degree of mineralization was reduced in Gel:HA microgels. Investigation into the affinity of hydroxyapatite for the different matrix compositions indicated that the decreased mineralization of Gel:HA microgels was likely due to a low affinity of hydroxyapatite to bind to HA and support mineral deposition, which has a greater impact on microgels than bulk hydrogels. Together, these findings suggest that both hydrogel composition and format can determine the success of tissue formation and that there is a complex interplay of these two factors on both cell behavior and matrix deposition. This has important implications for tissue engineering, showing that hydrogel composition and geometry must be evaluated together when optimizing conditions for cell differentiation and tissue formation.
Collapse
Affiliation(s)
- Surakshya Shrestha
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Fanyi Li
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Vinh X Truong
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| |
Collapse
|
53
|
Posa F, Di Benedetto A, Ravagnan G, Cavalcanti-Adam EA, Lo Muzio L, Percoco G, Mori G. Bioengineering Bone Tissue with 3D Printed Scaffolds in the Presence of Oligostilbenes. MATERIALS 2020; 13:ma13204471. [PMID: 33050281 PMCID: PMC7601568 DOI: 10.3390/ma13204471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/22/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023]
Abstract
Diseases determining bone tissue loss have a high impact on people of any age. Bone healing can be improved using a therapeutic approach based on tissue engineering. Scientific research is demonstrating that among bone regeneration techniques, interesting results, in filling of bone lesions and dehiscence have been obtained using adult mesenchymal stem cells (MSCs) integrated with biocompatible scaffolds. The geometry of the scaffold has critical effects on cell adhesion, proliferation and differentiation. Many cytokines and compounds have been demonstrated to be effective in promoting MSCs osteogenic differentiation. Oligostilbenes, such as Resveratrol (Res) and Polydatin (Pol), can increase MSCs osteoblastic features. 3D printing is an excellent technique to create scaffolds customized for the lesion and thus optimized for the patient. In this work we analyze osteoblastic features of adult MSCs integrated with 3D-printed polycarbonate scaffolds differentiated in the presence of oligostilbenes.
Collapse
Affiliation(s)
- Francesca Posa
- Department of Clinical and Experimental Medicine, University of Foggia, viale Pinto 1, 71122 Foggia, Italy; (A.D.B.); (L.L.M.); (G.M.)
- Department of Biophysical Chemistry, Heidelberg University and Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany;
- Correspondence:
| | - Adriana Di Benedetto
- Department of Clinical and Experimental Medicine, University of Foggia, viale Pinto 1, 71122 Foggia, Italy; (A.D.B.); (L.L.M.); (G.M.)
| | - Giampietro Ravagnan
- Glures srl. Unità Operativa di Napoli, Spin off Accademico dell’Università di Venezia Cà Foscari, Via delle Industrie 19b-30175 Venezia, Italy;
| | - Elisabetta Ada Cavalcanti-Adam
- Department of Biophysical Chemistry, Heidelberg University and Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany;
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, viale Pinto 1, 71122 Foggia, Italy; (A.D.B.); (L.L.M.); (G.M.)
| | - Gianluca Percoco
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy;
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, viale Pinto 1, 71122 Foggia, Italy; (A.D.B.); (L.L.M.); (G.M.)
| |
Collapse
|
54
|
Mohanram Y, Zhang J, Tsiridis E, Yang XB. Comparing bone tissue engineering efficacy of HDPSCs, HBMSCs on 3D biomimetic ABM-P-15 scaffolds in vitro and in vivo. Cytotechnology 2020; 72:715-730. [PMID: 32820463 PMCID: PMC7548016 DOI: 10.1007/s10616-020-00414-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Human bone marrow mesenchymal stem cells (HBMSCs) has been the gold standard for bone regeneration. However, the low proliferation rate and long doubling time limited its clinical applications. This study aims to compare the bone tissue engineering efficacy of human dental pulp stem cells (HDPSCs) with HBMSCs in 2D, and 3D anorganic bone mineral (ABM) coated with a biomimetic collagen peptide (ABM-P-15) for improving bone-forming speed and efficacy in vitro and in vivo. The multipotential of both HDPSCs and HBMSCs have been compared in vitro. The bone formation of HDPSCs on ABM-P-15 was tested using in vivo model. The osteogenic potential of the cells was confirmed by alkaline phosphatase (ALP) and immunohistological staining for osteogenic markers. Enhanced ALP, collagen, lipid droplet, or glycosaminoglycans production were visible in HDPSCs and HBMSCs after osteogenic, adipogenic and chondrogenic induction. HDPSC showed stronger ALP staining compared to HBMSCs. Confocal images showed more viable HDPSCs on both ABM-P-15 and ABM scaffolds compared to HBMSCs on similar scaffolds. ABM-P-15 enhanced cell attachment/spreading/bridging formation on ABM-P-15 scaffolds and significantly increased quantitative ALP specific activities of the HDPSCs and HBMSCs. After 8 weeks in vivo implantation in diffusion chamber model, the HDPSCs on ABM-P-15 scaffolds showed extensive high organised collagenous matrix formation that was positive for COL-I and OCN compared to ABM alone. In conclusion, the HDPSCs have a higher proliferation rate and better osteogenic capacity, which indicated the potential of combining HDPSCs with ABM-P-15 scaffolds for improving bone regeneration speed and efficacy.
Collapse
Affiliation(s)
- Yamuna Mohanram
- Biomaterials & Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Level 7, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Jingying Zhang
- Biomaterials & Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Level 7, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.,The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Eleftherios Tsiridis
- Academic Orthopaedic Department, Aristotle University Medical School, 54124, Thessaloniki, Greece
| | - Xuebin B Yang
- Biomaterials & Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Level 7, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
| |
Collapse
|
55
|
Goodman SB, Lin T. Modifying MSC Phenotype to Facilitate Bone Healing: Biological Approaches. Front Bioeng Biotechnol 2020; 8:641. [PMID: 32671040 PMCID: PMC7328340 DOI: 10.3389/fbioe.2020.00641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Healing of fractures and bone defects normally follows an orderly series of events including formation of a hematoma and an initial stage of inflammation, development of soft callus, formation of hard callus, and finally the stage of bone remodeling. In cases of severe musculoskeletal injury due to trauma, infection, irradiation and other adverse stimuli, deficient healing may lead to delayed or non-union; this results in a residual bone defect with instability, pain and loss of function. Modern methods of mechanical stabilization and autologous bone grafting are often successful in achieving fracture union and healing of bone defects; however, in some cases, this treatment is unsuccessful because of inadequate biological factors. Specifically, the systemic and local microenvironment may not be conducive to bone healing because of a loss of the progenitor cell population for bone and vascular lineage cells. Autologous bone grafting can provide the necessary scaffold, progenitor and differentiated lineage cells, and biological cues for bone reconstruction, however, autologous bone graft may be limited in quantity or quality. These unfavorable circumstances are magnified in systemic conditions with chronic inflammation, including obesity, diabetes, chronic renal disease, aging and others. Recently, strategies have been devised to both mitigate the necessity for, and complications from, open procedures for harvesting of autologous bone by using minimally invasive aspiration techniques and concentration of iliac crest bone cells, followed by local injection into the defect site. More elaborate strategies (not yet approved by the U.S. Food and Drug Administration-FDA) include isolation and expansion of subpopulations of the harvested cells, preconditioning of these cells or inserting specific genes to modulate or facilitate bone healing. We review the literature pertinent to the subject of modifying autologous harvested cells including MSCs to facilitate bone healing. Although many of these techniques and technologies are still in the preclinical stage and not yet approved for use in humans by the FDA, novel approaches to accelerate bone healing by modifying cells has great potential to mitigate the physical, economic and social burden of non-healing fractures and bone defects.
Collapse
Affiliation(s)
- Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Tzuhua Lin
- Orthopaedic Research Laboratories, Stanford University, Stanford, CA, United States
| |
Collapse
|
56
|
Somasundaram L, Levy S, Hussein AM, Ehnes DD, Mathieu J, Ruohola-Baker H. Epigenetic metabolites license stem cell states. Curr Top Dev Biol 2020; 138:209-240. [PMID: 32220298 DOI: 10.1016/bs.ctdb.2020.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It has become clear during recent years that stem cells undergo metabolic remodeling during their activation process. While these metabolic switches take place in pluripotency as well as adult stem cell populations, the rules that govern the switch are not clear. In this review, we summarize some of the transitions in adult and pluripotent cell types and will propose that the key function in this process is the generation of epigenetic metabolites that govern critical epigenetic modifications, and therefore stem cell states.
Collapse
Affiliation(s)
- Logeshwaran Somasundaram
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Shiri Levy
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Abdiasis M Hussein
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Devon D Ehnes
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States; Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.
| |
Collapse
|
57
|
Improved therapeutics of modified mesenchymal stem cells: an update. J Transl Med 2020; 18:42. [PMID: 32000804 PMCID: PMC6993499 DOI: 10.1186/s12967-020-02234-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) have attracted intense interest due to their powerful intrinsic properties of self-regeneration, immunomodulation and multi-potency, as well as being readily available and easy to isolate and culture. Notwithstanding, MSC based therapy suffers reduced efficacy due to several challenges which include unfavorable microenvironmental factors in vitro and in vivo. Body In the quest to circumvent these challenges, several modification techniques have been applied to the naïve MSC to improve its inherent therapeutic properties. These modification approaches can be broadly divided into two groups to include genetic modification and preconditioning modification (using drugs, growth factors and other molecules). This field has witnessed great progress and continues to gather interest and novelty. We review these innovative approaches in not only maintaining, but also enhancing the inherent biological activities and therapeutics of MSCs with respect to migration, homing to target site, adhesion, survival and reduced premature senescence. We discuss the application of the improved modified MSC in some selected human diseases. Possible ways of yet better enhancing the therapeutic outcome and overcoming challenges of MSC modification in the future are also elaborated. Conclusion The importance of prosurvival and promigratory abilities of MSCs in their therapeutic applications can never be overemphasized. These abilities are maintained and even further enhanced via MSC modifications against the inhospitable microenvironment during culture and transplantation. This is a turning point in MSC-based therapy with promising preclinical studies and higher future prospect.
Collapse
|
58
|
FGF-2-Induced Human Amniotic Mesenchymal Stem Cells Seeded on a Human Acellular Amniotic Membrane Scaffold Accelerated Tendon-to-Bone Healing in a Rabbit Extra-Articular Model. Stem Cells Int 2020; 2020:4701476. [PMID: 32399042 PMCID: PMC7199597 DOI: 10.1155/2020/4701476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/02/2019] [Accepted: 12/14/2019] [Indexed: 01/26/2023] Open
Abstract
Background FGF-2 (basic fibroblast growth factor) has a positive effect on the proliferation and differentiation of many kinds of MSCs. Therefore, it represents an ideal molecule to facilitate tendon-to-bone healing. Nonetheless, no studies have investigated the application of FGF-2-induced human amniotic mesenchymal stem cells (hAMSCs) to accelerate tendon-to-bone healing in vivo. Objective The purpose of this study was to explore the effect of FGF-2 on chondrogenic differentiation of hAMSCs in vitro and the effect of FGF-2-induced hAMSCs combined with a human acellular amniotic membrane (HAAM) scaffold on tendon-to-bone healing in vivo. Methods In vitro, hAMSCs were transfected with a lentivirus carrying the FGF-2 gene, and the potential for chondrogenic differentiation of hAMSCs induced by the FGF-2 gene was assessed using immunofluorescence and toluidine blue (TB) staining. HAAM scaffold was prepared, and hematoxylin and eosin (HE) staining and scanning electron microscopy (SEM) were used to observe the microstructure of the HAAM scaffold. hAMSCs transfected with and without FGF-2 were seeded on the HAAM scaffold at a density of 3 × 105 cells/well. Immunofluorescence staining of vimentin and phalloidin staining were used to confirm cell adherence and growth on the HAAM scaffold. In vivo, the rabbit extra-articular tendon-to-bone healing model was created using the right hind limb of 40 New Zealand White rabbits. Grafts mimicking tendon-to-bone interface (TBI) injury were created and subjected to treatment with the HAAM scaffold loaded with FGF-2-induced hAMSCs, HAAM scaffold loaded with hAMSCs only, HAAM scaffold, and no special treatment. Macroscopic observation, imageological analysis, histological assessment, and biomechanical analysis were conducted to evaluate tendon-to-bone healing after 3 months. Results In vitro, cartilage-specific marker staining was positive for the FGF-2 overexpression group. The HAAM scaffold displayed a netted structure and mass extracellular matrix structure. hAMSCs or hAMSCs transfected with FGF-2 survived on the HAAM scaffold and grew well. In vivo, the group treated with HAAM scaffold loaded with FGF-2-induced hAMSCs had the narrowest bone tunnel after three months as compared with other groups. In addition, macroscopic and histological scores were higher for this group than for the other groups, along with the best mechanical strength. Conclusion hAMSCs transfected with FGF-2 combined with the HAAM scaffold could accelerate tendon-to-bone healing in a rabbit extra-articular model.
Collapse
|