51
|
Muthu S, Jeyaraman M, Jain R, Gulati A, Jeyaraman N, Prajwal GS, Mishra PC. Accentuating the sources of mesenchymal stem cells as cellular therapy for osteoarthritis knees-a panoramic review. Stem Cell Investig 2021; 8:13. [PMID: 34386542 PMCID: PMC8327191 DOI: 10.21037/sci-2020-055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/25/2021] [Indexed: 02/05/2023]
Abstract
The large economic burden on the global health care systems is due to the increasing number of symptomatic osteoarthritis (OA) knee patients whereby accounting for greater morbidity and impaired functional quality of life. The recent developments and impulses in molecular and regenerative medicine have paved the way for inducing the biological active cells such as stem cells, bioactive materials, and growth factors towards the healing and tissue regenerative process. Mesenchymal stem cells (MSCs) act as a minimally invasive procedure that bridges the gap between pharmacological treatment and surgical treatment for OA. MSCs are the ideal cell-based therapy for treating disorders under a minimally invasive environment in conjunction with cartilage regeneration. Due to the worldwide recognized animal model for such cell-based therapies, global researchers have started using the various sources of MSCs towards cartilage regeneration. However, there is a lacuna in literature on the comparative efficacy and safety of various sources of MSCs in OA of the knee. Hence, the identification of a potential source for therapeutic use in this clinical scenario remains unclear. In this article, we compared the therapeutic effects of various sources of MSCs in terms of efficacy, safety, differentiation potential, durability, accessibility, allogenic preparation and culture expandability to decide the optimal source of MSCs for OA knee.
Collapse
Affiliation(s)
- Sathish Muthu
- Assistant Orthopaedic Surgeon, Government Hospital, Velayuthampalayam, Karur, Tamil Nadu, India
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
| | - Madhan Jeyaraman
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Rashmi Jain
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Arun Gulati
- Department of Orthopaedics, Kalpana Chawla Government Medical College & Hospital, Karnal, Haryana, India
| | - Naveen Jeyaraman
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
- Department of Orthopaedics, Kasturba Medical College, MAHE University, Manipal, Karnataka, India
| | | | - Prabhu Chandra Mishra
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
| |
Collapse
|
52
|
Kim YS, Suh DS, Tak DH, Chung PK, Koh YG. Mesenchymal Stem Cell Implantation in Knee Osteoarthritis: Midterm Outcomes and Survival Analysis in 467 Patients. Orthop J Sports Med 2020; 8:2325967120969189. [PMID: 33415176 PMCID: PMC7750771 DOI: 10.1177/2325967120969189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background A cell-based tissue engineering approach that uses mesenchymal stem cells (MSCs) has addressed the issue of articular cartilage repair in knees with osteoarthritis (OA). Purpose To evaluate the midterm outcomes, analyze the survival rates, and identify the factors affecting the survival rate of MSC implantation to treat knee OA. Study Design Case series; Level of evidence, 4. Methods We retrospectively evaluated 467 patients (483 knees) who underwent MSC implantation on a fibrin glue scaffold for knee OA with a minimum 5-year follow-up. Clinical outcomes were determined based on the International Knee Documentation Committee (IKDC) and Tegner activity scale results measured preoperatively and during follow-up. Standard radiographs were evaluated using Kellgren-Lawrence grading. Statistical analyses were performed to determine the survival rate and the effect of different factors on the clinical outcomes. Results The mean IKDC scores (baseline, 39.2 ± 7.2; 1 year, 66.6 ± 9.6; 3 years, 67.2 ± 9.9; 5 years, 66.1 ± 9.7; 9 years, 62.8 ± 8.5) and Tegner scores (baseline, 2.3 ± 1.0; 1 year, 3.4 ± 0.9; 3 years, 3.5 ± 0.9; 5 years, 3.4 ± 0.9; 9 years, 3.2 ± 0.9) were significantly improved until 3 years postoperatively and gradually decreased from 3- to 9-year follow-up (P < .05 for all, except for Tegner score at 5 years vs 1 year [P = .237]). Gradual deterioration of radiological outcomes according to the Kellgren-Lawrence grade was found during follow-up. Survival rates based on either a decrease in IKDC or an advancement of radiographic OA with Kellgren-Lawrence scores were 99.8%, 94.5%, and 74.5% at 5, 7, and 9 years, respectively. Based on multivariate analyses, older age and the presence of bipolar kissing lesion were associated with significantly worse outcomes (P = .002 and .013, respectively), and a larger number of MSCs was associated with significantly better outcomes (P < .001) after MSC implantation. Conclusion MSC implantation provided encouraging outcomes with acceptable duration of symptom relief at midterm follow-up in patients with early knee OA. Patient age, presence of bipolar kissing lesion, and number of MSCs were independent factors associated with failure of MSC implantation.
Collapse
Affiliation(s)
- Yong Sang Kim
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Dong Suk Suh
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Dae Hyun Tak
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Pill Ku Chung
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Yong Gon Koh
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| |
Collapse
|
53
|
Kim YS, Suh DS, Tak DH, Chung PK, Kwon YB, Kim TY, Koh YG. Comparative matched-pair cohort analysis of the short-term clinical outcomes of mesenchymal stem cells versus hyaluronic acid treatments through intra-articular injections for knee osteoarthritis. J Exp Orthop 2020; 7:90. [PMID: 33188474 PMCID: PMC7666263 DOI: 10.1186/s40634-020-00310-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Purpose Intra-articular injection of hyaluronic acid (HA) has shown promises in reducing pain and improving physical function in knee osteoarthritis (OA). Recently, cell-based therapies using mesenchymal stem cells (MSCs) have emerged as potential treatments. However, few studies have compared the treatment outcomes between MSCs and HA. This study aimed to compare the clinical and radiological outcomes of intra-articular injections of MSCs versus HA in patients with knee OA. Methods A cohort of 209 patients with knee OA were retrospectively screened for those who underwent intra-articular injections using MSCs or HA. Thirty MSC-treated patients (MSC group) were pair-matched with thirty HA-treated patients (HA group) based on gender and age. Clinical outcomes were evaluated using the visual analog scale (VAS), International Knee Documentation Committee (IKDC) rating system, and Lysholm scoring system. Radiological evaluation was assessed using the Kellgren-Lawrence (K-L) grading system. Results MSC treatment yielded consistent significant improvements in VAS, IKDC and Lysholm scores. In the HA group, VAS scores significantly decreased at 1 month, slightly increased at 3 months, and increased significantly from 3 months to 1 year after injection. The IKDC and Lysholm scores improved significantly until 3 months, but gradually worsened thereafter. Significantly greater improvements in VAS (P = 0.041), IKDC (P = 0.014), and Lysholm (P = 0.020) scores were observed in the MSC group compared to those in the HA group at 1-year post-treatment. The K-L grade worsened in a few patients, especially those in the HA group, albeit no significant difference. Conclusions MSC group showed better VAS, IKDC, and Lysholm scores at 1-year post-treatment, compared to the HA group, although earlier clinical improvements were superior in the HA group for the initial 3 months. Level of Evidence Therapeutic study, Level III.
Collapse
Affiliation(s)
- Yong Sang Kim
- Department of Orthopaedic Surgery, Center for Stem Cell & Arthritis Research, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul, Republic of Korea
| | - Dong Suk Suh
- Department of Orthopaedic Surgery, Center for Stem Cell & Arthritis Research, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul, Republic of Korea
| | - Dae Hyun Tak
- Department of Orthopaedic Surgery, Center for Stem Cell & Arthritis Research, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul, Republic of Korea
| | - Pill Ku Chung
- Department of Orthopaedic Surgery, Center for Stem Cell & Arthritis Research, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul, Republic of Korea
| | - Yoo Beom Kwon
- Department of Orthopaedic Surgery, Center for Stem Cell & Arthritis Research, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul, Republic of Korea
| | - Tae Yong Kim
- Department of Orthopaedic Surgery, Center for Stem Cell & Arthritis Research, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul, Republic of Korea
| | - Yong Gon Koh
- Department of Orthopaedic Surgery, Center for Stem Cell & Arthritis Research, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul, Republic of Korea.
| |
Collapse
|
54
|
Rodríguez-Fuentes DE, Fernández-Garza LE, Samia-Meza JA, Barrera-Barrera SA, Caplan AI, Barrera-Saldaña HA. Mesenchymal Stem Cells Current Clinical Applications: A Systematic Review. Arch Med Res 2020; 52:93-101. [PMID: 32977984 DOI: 10.1016/j.arcmed.2020.08.006] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/16/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Human Mesenchymal Stem Cells (hMSCs) are multipotent stem cells capable of renewing themselves and differentiation in vitro into different kinds of tissues. In vivo hMSCs are sources of trophic factors modulating the immune system and inducing intrinsic stem cells to repair damaged tissues. Currently, there are multiple clinical trials (CT) using hMSCs for therapeutic purposes in a large number of clinical settings. MATERIAL AND METHODS The search strategy on clinicaltrials.gov has focused on the key term "Mesenchymal Stem Cells", and the inclusion and exclusion criteria were separated into two stages. Stage 1, CT on phases 1-4: location, the field of application, phase, and status. For stage 2, CT that have published outcome results: field of application, treatment, intervention model, source, preparation methods, and results. RESULTS By July 2020, there were a total of 1,138 registered CT. Most studies belong to either phase 2 (61.0%) or phase 1 (30.8%); most of them focused in the fields of traumatology, neurology, cardiology, and immunology. Only 18 clinical trials had published results: the most common source of isolation was bone marrow; the treatment varied from 1-200 M hMSCs; all of them have similar preparation methods; all of them have positive results with no serious adverse effects. CONCLUSIONS There appears to be a broad potential for the clinical use of hMSCs with no reported serious adverse events. There are many trials in progress, their future results will help to explore the therapeutic potential of these promising cellular sources of medicinal signals.
Collapse
Affiliation(s)
| | - Luis E Fernández-Garza
- Innbiogem SC en el Laboratorio Nacional de Servicios Especializados de Investigación, Desarrollo e Innovación en Medicamentos Químicos y Biotecnológicos CONACyT, Monterrey, NL, México
| | - John A Samia-Meza
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, NL, México
| | | | - Arnold I Caplan
- Skeletal Research Center, Department of Biology Case Western Reserve University, Cleveland, Ohio, USA
| | - Hugo A Barrera-Saldaña
- Innbiogem SC en el Laboratorio Nacional de Servicios Especializados de Investigación, Desarrollo e Innovación en Medicamentos Químicos y Biotecnológicos CONACyT, Monterrey, NL, México.
| |
Collapse
|
55
|
Canham MA, Campbell JDM, Mountford JC. The use of mesenchymal stromal cells in the treatment of coronavirus disease 2019. J Transl Med 2020; 18:359. [PMID: 32958009 PMCID: PMC7503434 DOI: 10.1186/s12967-020-02532-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
More than seven months into the coronavirus disease -19 (COVID-19) pandemic, infection from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to over 21.2 million cases and resulted in over 760,000 deaths worldwide so far. As a result, COVID-19 has changed all our lives as we battle to curtail the spread of the infection in the absence of specific therapies against coronaviruses and in anticipation of a proven safe and efficacious vaccine. Common with previous outbreaks of coronavirus infections, SARS and Middle East respiratory syndrome, COVID-19 can lead to acute respiratory distress syndrome (ARDS) that arises due to an imbalanced immune response. While several repurposed antiviral and host-response drugs are under examination as potential treatments, other novel therapeutics are also being explored to alleviate the effects on critically ill patients. The use of mesenchymal stromal cells (MSCs) for COVID-19 has become an attractive avenue down which almost 70 different clinical trial teams have ventured. Successfully trialled for the treatment of other conditions such as multiple sclerosis, osteoarthritis and graft versus host disease, MSCs possess both regenerative and immunomodulatory properties, the latter of which can be harnessed to reduce the severity and longevity of ARDS in patients under intensive care due to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Maurice A Canham
- Tissues, Cells & Advanced Therapeutics, Scottish National Blood Transfusion Service, The Jack Copland Centre, 52 Research Avenue North, Edinburgh, EH14 4BE, UK.
| | - John D M Campbell
- Tissues, Cells & Advanced Therapeutics, Scottish National Blood Transfusion Service, The Jack Copland Centre, 52 Research Avenue North, Edinburgh, EH14 4BE, UK
| | - Joanne C Mountford
- Tissues, Cells & Advanced Therapeutics, Scottish National Blood Transfusion Service, The Jack Copland Centre, 52 Research Avenue North, Edinburgh, EH14 4BE, UK
| |
Collapse
|
56
|
Tanideh N, Ashkani-Esfahani S, Sadeghi F, Koohi-Hosseinabadi O, Irajie C, Iraji A, Lubberts B, Mohammadi Samani S. The protective effects of grape seed oil on induced osteoarthritis of the knee in male rat models. J Orthop Surg Res 2020; 15:400. [PMID: 32912277 PMCID: PMC7488061 DOI: 10.1186/s13018-020-01932-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Background Osteoarthritis (OA), though being treated via various methods and medicines, is still a major healthcare concern mostly due to the increase in diagnosis of these age-related diseases. The present study aimed at investigating the effects of oral and intra articular injection of grape seed oil on OA in male rat models. Methods and materials Seventy male rats were selected and their anterior cruciate ligament was cut to induce OA. They were divided into 7 groups (n = 10): C1, no treatment; C2, receiving 300 mg/day of Piascledine per os (PO); C3, 1 mg sodium hyaluronate intra-articularly in days 1, 7, 14; C4, 1 mg methyl-prednisolone acetate intra-articularly; E1, avocado and grape seed oil combination (2:1, 300 mg/day) PO; E2, 500 mg/day of grape seed oil PO; E3, 200 mg/day grape seed oil intra-articularly. After 10 weeks, the rats were anesthetized and evaluated radiologically and histopathologically. P value ≤ 0.05 was considered as statistically significant. Results All the groups made significant differences with C1 regarding all inspected radiological criteria (P ≤ 0.05). E1 and E3 showed significantly better effects on medial femoral condyle, medial tibial condyle, joint space width, total osteophyte, and OA scores (P ≤ 0.04). Joint surface, matrix, cell distribution, cell population viability, calcification, and subchondral bone in treatment groups had significantly better scores versus C1 (P ≤ 0.04). E1 and E3 had significantly superior results regarding joint surface, cell viability, and calcification (P ≤ 0.04). Conclusions Grape seed oil has protective effects, both in injectable form and PO in combination with avocado, on OA in rats. Further clinical trials are necessary.
Collapse
Affiliation(s)
- Nader Tanideh
- Stem cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheil Ashkani-Esfahani
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Foot and Ankle Research and Innovation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Farid Sadeghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Koohi-Hosseinabadi
- Stem cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aida Iraji
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bart Lubberts
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Foot and Ankle Research and Innovation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soleiman Mohammadi Samani
- Center of Nanotechnology in Drug Delivery, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
57
|
Ye C, Chen J, Qu Y, Liu H, Yan J, Lu Y, Yang Z, Wang F, Li P. Naringin and bone marrow mesenchymal stem cells repair articular cartilage defects in rabbit knees through the transforming growth factor-β superfamily signaling pathway. Exp Ther Med 2020; 20:59. [PMID: 32952649 PMCID: PMC7485297 DOI: 10.3892/etm.2020.9187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to assess the effect of a combination of naringin and rabbit bone marrow mesenchymal stem cells (BMSCs) on the repair of cartilage defects in rabbit knee joints and to assess possible involvement of the transforming growth factor-β (TGF-β) signaling pathway in this process. After establishing an articular cartilage defect model in rabbit knees, 20 New Zealand rabbits were divided into a sham operation group (Sham), a model group (Mod), a naringin treatment group (Nar), a BMSC group (BMSCs) and a naringin + BMSC group (Nar/BMSCs). At 12 weeks after treatment, the cartilage was evaluated using the International Cartilage Repair Society (ICRS)'s macroscopic evaluation of cartilage repair scale, the ICRS's visual histological assessment scale, the Modified O'Driscoll grading system, histological staining (hematoxylin and eosin staining, toluidine blue staining and safranin O staining) and immunohistochemical staining (type-II collagen, TGF-β3 and SOX-9 immunostaining). Using the above grading systems to quantify the extent of repair, histological quantification and macro quantification of joint tissue repair showed that the Nar/BMSCs group displayed repair after treatment in comparison to the untreated Mod group. Among the injury model groups (Mod, Nar, BMSCs and Nar/BMSCs), the Nar/BMSCs group displayed the highest degree of morphological repair. The results of histological and immunohistochemical staining of the repaired region of the joint defect indicated that the BMSCs had a satisfactory effect on the repair of the joint structure but had a poor effect on the repair of cartilage quality. The Nar/BMSCs group displayed satisfactory therapeutic effects on both repair of the joint structure and cartilage quality. The expression level of type-II collagen was high in the Nar/BMSCs group. Additionally, staining of TGF-β3 and SOX-9 in the Nar/BMSCs group was the strongest compared with that of any other group in the present study. Naringin and/BMSCs together demonstrated a more efficient repair effect on articular cartilage defects in rabbit knees than the use of either treatment alone in terms of joint structure and cartilage quality. One potential mechanism of naringin action may be through activation and continuous regulation of the TGF-β superfamily signaling pathway, which can promote BMSCs to differentiate into chondrocytes.
Collapse
Affiliation(s)
- Chao Ye
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Jing Chen
- Preventative Treatment of Disease Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yi Qu
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Hang Liu
- Orthopedics Department, Huguosi Hospital, Beijing University of Chinese Medicine, Beijing 100035, P.R. China
| | - Junxing Yan
- Orthopedics Department, Tongzhou District Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Beijing 101100, P.R. China
| | - Yingdong Lu
- Pathology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Zheng Yang
- SATCM Key Laboratory of Renowned Physician and Classical Formula, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Fengxian Wang
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Pengyang Li
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| |
Collapse
|
58
|
Degenerative osteoarthritis a reversible chronic disease. Regen Ther 2020; 15:149-160. [PMID: 33426213 PMCID: PMC7770340 DOI: 10.1016/j.reth.2020.07.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common chronic musculoskeletal disorder. It can affect any joint and is the most frequent single cause of disability in older adults. OA is a progressive degenerative disease involving the entire joint structure in a vicious circle that includes the capsule-bursa tissue inflammation, synovial fluid modifications, cartilage breakdown and erosions, osteochondral inflammatory damage leading to bone erosion and distortion. Research has identified the initial inflammatory-immunologic process that starts this vicious cycle leading to so-called early OA. Research has also identified the role played in the disease advancement by synoviocytes type A and B, chondrocytes, extracellular matrix, local immune-inflammatory mediators and proteases. This article investigates the joint-resident MSCs that play an essential local homeostatic role and regulate cell turn over and tissue repair. Resident MSCs establish and maintain a local regenerative microenvironment. The understanding of OA physiopathology clarifies the core mechanisms by which minimally invasive interventions might be able to halt and reverse the course of early stage OA. Interventions employing PRP, MSCs and exosomes are considered in this article.
Collapse
|
59
|
Dai G, Xiao H, Zhao C, Chen H, Liao J, Huang W. LncRNA H19 Regulates BMP2-Induced Hypertrophic Differentiation of Mesenchymal Stem Cells by Promoting Runx2 Phosphorylation. Front Cell Dev Biol 2020; 8:580. [PMID: 32903671 PMCID: PMC7438821 DOI: 10.3389/fcell.2020.00580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives Bone morphogenetic protein 2 (BMP2) triggers hypertrophic differentiation after chondrogenic differentiation of mesenchymal stem cells (MSCs), which blocked the further application of BMP2-mediated cartilage tissue engineering. Here, we investigated the underlying mechanisms of BMP2-mediated hypertrophic differentiation of MSCs. Materials and Methods In vitro and in vivo chondrogenic differentiation models of MSCs were constructed. The expression of H19 in mouse limb was detected by fluorescence in situ hybridization (FISH) analysis. Transgenes BMP2, H19 silencing, and overexpression were expressed by adenoviral vectors. Gene expression was determined by reverse transcription and quantitative real-time PCR (RT-qPCR), Western blot, and immunohistochemistry. Correlations between H19 expressions and other parameters were calculated with Spearman’s correlation coefficients. The combination of H19 and Runx2 was identified by RNA immunoprecipitation (RIP) analysis. Results We identified that H19 expression level was highest in proliferative zone and decreased gradually from prehypertrophic zone to hypertrophic zone in mouse limbs. With the stimulation of BMP2, the highest expression level of H19 was followed after the peak expression level of Sox9; meanwhile, H19 expression levels were positively correlated with chondrogenic differentiation markers, especially in the late stage of BMP2 stimulation, and negatively correlated with hypertrophic differentiation markers. Our further experiments found that silencing H19 promoted BMP2-triggered hypertrophic differentiation through in vitro and in vivo tests, which indicated the essential role of H19 for maintaining the phenotype of BMP2-induced chondrocytes. In mechanism, we characterized that H19 regulated BMP2-mediated hypertrophic differentiation of MSCs by promoting the phosphorylation of Runx2. Conclusion These findings suggested that H19 regulates BMP2-induced hypertrophic differentiation of MSCs by promoting the phosphorylation of Runx2.
Collapse
Affiliation(s)
- Guangming Dai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haozhuo Xiao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyi Liao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
60
|
Are Stem Cells Derived from Synovium and Fat Pad Able to Treat Induced Knee Osteoarthritis in Rats? Int J Rheumatol 2020; 2020:9610261. [PMID: 32765610 PMCID: PMC7374223 DOI: 10.1155/2020/9610261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023] Open
Abstract
Background Osteoarthritis (OA) is a chronic disease and a significant cause of joint pain, tenderness, and limitation of motion. At present, no specific treatment is available, and mesenchymal stem cells (MSCs) have shown promising potentials in this regard. Herein, we aimed to evaluate the repairing potentials of stem cells derived from the synovium and fat pad in the treatment of OA. Methods Twenty-eight male rats (220 ± 20 g, aged 10-12 weeks), were randomly divided into four groups (n = 7): C1: nontreated group, C2: Hyalgan-treated group, E1: adipose tissue-derived stem cell-treated group, and E2: synovial membrane-based stem cell-treated group. Collagenase type II was injected into the left knee; after eight weeks, OA was developed. Then, stem cells were injected, and rats were followed for three months. Afterward, specimens and radiological images were investigated. p value ≤ 0.05 was set as statistically significant. Results Compared to the C1 group, the E1 and E2 groups showed significantly better results in all six pathological criteria as well as joint space width and osteophytes of medial tibial, medial femoral, and medial fabellar condyles (p ≤ 0.001). Similarly, compared to the C2 group, the E1 and E2 groups had better scores regarding surface, matrix, cell distribution, and cell population viability (p < 0.05). E2 showed considerably higher scores compared to C2 regarding subchondral bone and cartilage mineralization (p < 0.05). The joint space width was similar between the C2 and E groups. Conclusion Treatment of OA with MSCs, particularly synovial membrane-derived stem cells, not only prevented but also healed OA of the knee to some extent in comparison to the Hyalgan and nontreatment groups.
Collapse
|
61
|
Najar M, Fahmi H. Of Mesenchymal Stem/Stromal Cells and Osteoarthritis: Time to Merge the Latest Breakthroughs. Stem Cell Rev Rep 2020; 16:1016-1018. [DOI: 10.1007/s12015-020-10001-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
62
|
Wits MI, Tobin GC, Silveira MD, Baja KG, Braga LMM, Sesterheim P, Camassola M, Nardi NB. Combining canine mesenchymal stromal cells and hyaluronic acid for cartilage repair. Genet Mol Biol 2020; 43:e20190275. [PMID: 32141471 PMCID: PMC7198007 DOI: 10.1590/1678-4685-gmb-2019-0275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/23/2020] [Indexed: 12/27/2022] Open
Abstract
Cell therapy and tissue engineering have been intensively researched for repair of articular cartilage. In this study, we investigated the chondrogenic potential of canine adipose-derived mesenchymal stromal cells (ASCs) combined to high molecular weight hyaluronic acid (HA) in vitro, and their therapeutic effect in dogs with chronic osteoarthritis (OA) associated with bilateral hip dysplasia. Canine ASCs were characterized after conventional 2D culture or 3D culture in HA, showing adequate immunophenotype, proliferation and trilineage differentiation, as well as chondrogenesis after cultivation in HA. ASC/HA constructs were used to treat 12 dogs with OA, sequentially assigned to control, ASC and ASC/HA groups. Animals were examined for clinical, orthopedic and radiological parameters. Lameness at walk and pain on manipulation were reduced in the ASC group and mainly in the ASC/HA group. Range of motion and detection of crepitus on hip rotation and abduction improved similarly in all groups. For articular edema, muscle atrophy, Norberg angle values and radiographic analyses, there were no variations throughout the period. These results indicate that ASC/HA constructs are safe and may be an effective therapeutic tool in treating canine chronic osteoarthritis, which should be confirmed with larger studies and additional clinical parameters.
Collapse
Affiliation(s)
- Maria Inês Wits
- Universidade Luterana do Brasil, Hospital Veterinário, Canoas, RS, Brazil
| | - Gabriela Cabanas Tobin
- Universidade Luterana do Brasil, Laboratório de Células-Tronco e Engenharia de Tecidos, Canoas, RS, Brazil
| | - Maiele Dornelles Silveira
- Universidade Luterana do Brasil, Laboratório de Células-Tronco e Engenharia de Tecidos, Canoas, RS, Brazil.,CellMed Medicina Regenerativa, Porto Alegre, RS, Brazil
| | - Karine Gehlen Baja
- Universidade Luterana do Brasil, Hospital Veterinário, Canoas, RS, Brazil
| | | | - Patricia Sesterheim
- Fundação Universitária de Cardiologia, Instituto de Cardiologia do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Melissa Camassola
- Universidade Luterana do Brasil, Laboratório de Células-Tronco e Engenharia de Tecidos, Canoas, RS, Brazil
| | - Nance Beyer Nardi
- Universidade Luterana do Brasil, Laboratório de Células-Tronco e Engenharia de Tecidos, Canoas, RS, Brazil.,CellMed Medicina Regenerativa, Porto Alegre, RS, Brazil.,Fundação Universitária de Cardiologia, Instituto de Cardiologia do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
63
|
Alcaraz MJ, Compañ A, Guillén MI. Extracellular Vesicles from Mesenchymal Stem Cells as Novel Treatments for Musculoskeletal Diseases. Cells 2019; 9:cells9010098. [PMID: 31906087 PMCID: PMC7017209 DOI: 10.3390/cells9010098] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a promising therapy for musculoskeletal diseases. There is compelling evidence indicating that MSC effects are mainly mediated by paracrine mechanisms and in particular by the secretion of extracellular vesicles (EVs). Many studies have thus suggested that EVs may be an alternative to cell therapy with MSCs in tissue repair. In this review, we summarize the current understanding of MSC EVs actions in preclinical studies of (1) immune regulation and rheumatoid arthritis, (2) bone repair and bone diseases, (3) cartilage repair and osteoarthritis, (4) intervertebral disk degeneration and (5) skeletal muscle and tendon repair. We also discuss the mechanisms underlying these actions and the perspectives of MSC EVs-based strategies for future treatments of musculoskeletal disorders.
Collapse
Affiliation(s)
- María José Alcaraz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain
- Correspondence:
| | - Alvaro Compañ
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain
| | - María Isabel Guillén
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain
- Department of Pharmacy, Cardenal Herrera-CEU University, Ed. Ciencias de la Salud, 46115 Alfara, Valencia, Spain
| |
Collapse
|
64
|
Jargin SV. Scientific Papers and Patents on Substances with Unproven Effects. Part 2. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 13:160-173. [PMID: 31424374 PMCID: PMC7011683 DOI: 10.2174/1872211313666190819124752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 12/03/2022]
Abstract
Several examples are discussed in this review, where substances without proven effects were proposed for practical use within the scope of evidence-based medicines. The following is discussed here: generalizations of the hormesis concept and its use in support of homeopathy; phytoestrogens and soy products potentially having feminizing effects; glycosaminoglycans for the treatment of osteoarthritis and possibilities of their replacement by diet modifications; flavonoids recommended for the treatment of chronic venous insufficiency and varicose veins; acetylcysteine as a mucolytic agent and its questionable efficiency especially by an oral intake; stem cells and cell therapies. In conclusion, placebo therapies can be beneficial and ethically justifiable but it is not a sufficient reason to publish biased information. Importantly, placebo must be devoid of adverse effects, otherwise, it is named pseudo-placebo. Therapeutic methods with unproven effects should be tested in high-quality research shielded from the funding bias. Some issues discussed in this review are not entirely clear, and the arguments provided here can initiate a constructive discussion.
Collapse
Affiliation(s)
- Sergei V. Jargin
- Peoples’ Friendship University of Russia, Clementovski per 6-82, Moscow115184, Russia
| |
Collapse
|